Geological Evidence for the Operation of Plate Tectonics throughout the Archean: Records from Archean Paleo-Plate Boundaries

Timothy M. Kusky , Brian F. Windley , Ali Polat

Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (6) : 1291 -1303.

PDF
Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (6) : 1291 -1303. DOI: 10.1007/s12583-018-0999-6
Invited Review

Geological Evidence for the Operation of Plate Tectonics throughout the Archean: Records from Archean Paleo-Plate Boundaries

Author information +
History +
PDF

Abstract

Plate tectonics describes the horizontal motion of rigid lithospheric plates away from midoceanic ridges and parallel to transforms, towards deep-sea trenches, where the oceanic lithosphere is subducted into the mantle. This process is the surface expression of modern-day heat loss from Earth. One of the biggest questions in Geosciences today is “when did plate tectonics begin on Earth” with a wide range of theories based on an equally diverse set of constraints from geology, geochemistry, numerical modeling, or pure speculation. In this contribution, we turn the coin over and ask “when was the last appearance in the geological record for which there is proof that plate tectonics did not operate on the planet as it does today”. We apply the laws of uniformitarianism to the rock record to ask how far back in time is the geologic record consistent with presently-operating kinematics of plate motion, before which some other mechanisms of planetary heat loss may have been in operation. Some have suggested that evidence shows that there was no plate tectonics before 800 Ma ago, others sometime before 1.8–2.7 Ga, or before 2.7 Ga. Still others recognize evidence for plate tectonics as early as 3.0 Ga, 3.3–3.5 Ga, the age of the oldest rocks, or in the Hadean before 4.3 Ga. A key undiscussed question is: why is there such a diversity of opinion about the age at which plate tectonics can be shown to not have operated, and what criteria are the different research groups using to define plate tectonics, and to recognize evidence of plate tectonics in very old rocks? Here, we present and evaluate data from the rock record, constrained by relevant geochemical-isotopic data, and conclude that the evidence shows indubitably that plate tectonics has been operating at least since the formation of the oldest rocks, albeit with some differences in processes, compositions, and products in earlier times of higher heat generation and mantle temperature, weaker oceanic lithosphere, hotter subduction zones caused by more slab-melt generation, and under different biological and atmospheric conditions.

Keywords

Archean / tectonics / ophiolite / OPS (oceanic plate stratigraphy) / orogeny

Cite this article

Download citation ▾
Timothy M. Kusky, Brian F. Windley, Ali Polat. Geological Evidence for the Operation of Plate Tectonics throughout the Archean: Records from Archean Paleo-Plate Boundaries. Journal of Earth Science, 2018, 29(6): 1291-1303 DOI:10.1007/s12583-018-0999-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abbott D. H., Hoffman S. E. Archaean Plate Tectonics Revisited 1. Heat Flow, Spreading Rate, and the Age of Subducting Oceanic Lithosphere and Their Effects on the Origin and Evolution of Continents. Tectonics, 1984, 3(4): 429-448.

[2]

Anonymous, 1972. Ophiolites. Geotimes, 17: 24–25

[3]

Bleeker W., Hall H. C. The Slave Craton: Geologic and Metallogenic Evolution. In: Goodfellow, W. D., ed., Mineral Deposits of Canada. Geological Association of Canada, Mineral Deposits Division, Special Publication, 2007, 5: 849-879.

[4]

Bradley D. C., Kusky T. M. Bradley D. C., Ford A. Deformation History of the McHugh Accretionary Complex, Seldovia Quadrangle, South-Central Alaska. Geologic Studies in Alaska, 1992, 17-32.

[5]

Brown M. Duality of Thermal Regimes is the Distinctive Characteristic of Plate Tectonics since the Neoarchean. Geology, 2006, 34(11): 961-964.

[6]

Brown M. Metamorphic Conditions in Orogenic Belts: A Record of Secular Change. International Geology Review, 2007, 49(3): 193-234.

[7]

Brown M., Johnson T. Secular Change in Metamorphism and the Onset of Global Plate Tectonics. American Mineralogist, 2018, 103(2): 181-196.

[8]

Burke K., Kidd W. S. F., Kusky T. M. The Pongola Structure of Southeastern Africa: The World’s Oldest Preserved Rift?. Journal of Geodynamics, 1985, 2(1): 35-49.

[9]

Calvert A. J., Sawyer E. W., Davis W. J., . Archaean Subduction Inferred from Seismic Images of a Mantle Suture in the Superior Province. Nature, 1995, 375(6533): 670-674.

[10]

Casey J. F., Dewey J. F., Fox P. J., . Heterogeneous Nature of Oceanic Crust and Upper Mantle: A Perspective from the Bay of Islands Ophiolite Complex. The Sea, 1981, 7: 305-338.

[11]

Cawood P. A., Kröner A., Pisarevsky S. Precambrian Plate Tectonics: Criteria and Evidence. GSA Today, 2006, 16(7): 4-11.

[12]

Cawood P. A., Kröner A., Collins W., . Earth Accretionary Orogens in Space and Time. Geological Society of London Special Publications, 2009, 318: 1-36.

[13]

Coleman R. G. Ophiolites: Ancient Oceanic Lithosphere, 2012, Berlin: Springer, 229.

[14]

Collet L. W. The Structure of the Alps, 1927, London: E. Arnold, 304.

[15]

Condie K. C. A Planet in Transition: The Onset of Plate Tectonics on Earth between 3 and 2 Ga?. Geoscience Frontiers, 2018, 9(1): 51-60.

[16]

Condie K. C., Kröner A. When did Plate Tectonics Begin? Evidence from the Geologic Record. In: Condie, K. C., Pease, V., eds., When did Plate Tectonics Begin on Planet Earth? Geological Society of America Special Paper, 2008, 440: 281-294.

[17]

Cook F. A. v d, Velden A. J., Hall K. W., . Frozen Subduction in Canada’s Northwest Territories: Lithoprobe Deep Lithospheric Reflection Profiling of the Western Canadian Shield. Tectonics, 1999, 18(1): 1-24.

[18]

de Wit M. J. Kusky T. M. Archean Greenstone Belts do Contain Fragments of Ophiolites. Precambrian Ophiolites and Related Rocks, 2004, Amsterdam: Elsevier, 599-614

[19]

de Wit M. J., Ashwal L. D. Greenstone Belts, 1997, Oxford: Oxford Monograph on Geology and Geophysics 35. Clarendon Press, 809.

[20]

de Wit M. J., Furnes H., MacLennan S., . Paleoarchean Bedrock Lithologies Across the Makhonjwa Mountains of South Africa and Swaziland Linked to Geochemical, Magnetic and Tectonic Data Reveal Early Plate Tectonic Genes Flanking Subduction Margins. Geoscience Frontiers, 2018, 9(3): 603-665.

[21]

Dewey J. F. Suture Zone Complexities: A Review. Tectonophysics, 1977, 40(1/2): 53-67.

[22]

Dewey J. F., Bird J. M. Mountain Belts and the New Global Tectonics. Journal of Geophysical Research, 1970, 75(14): 2625-2647.

[23]

Dhuime B., Hawkesworth C. J., Cawood P. A., . A Change in the Geodynamics of Continental Growth 3 Billion Years Ago. Science, 2012, 335(6074): 1334-1336.

[24]

Dilek Y., Furnes H. Ophiolite Genesis and Global Tectonics: Geochemical and Tectonic Fingerprinting of Ancient Oceanic Lithosphere. Geological Society of America Bulletin, 2011, 123(3/4): 387-411.

[25]

Dokukina K. A., Kaulina T. V., Konilov A. N., . Archaean to Palaeoproterozoic High-Grade Evolution of the Belomorian Eclogite Province in the Gridino Area, Fennoscandian Shield: Geochronological Evidence. Gondwana Research, 2014, 25(2): 585-613.

[26]

Dolan J. F., Mann P. Active Strike-Slip and Collisional Tectonics of the Northern Caribbean Plate Boundary Zone. Geological Society of America Special Paper, 1998, 326 174.

[27]

Drabon N., Lowe D. R., Byerly G. R., . Detrital Zircon Geochronology of Sandstones of the 3.6–3.2 Ga Barberton Greenstone Belt: No Evidence for Older Continental Crust. Geology, 2017, 45(9): 803-806.

[28]

Drummond B. J., Goleby B. R., Swager C. P. Crustal Signature of Late Archaean Tectonic Episodes in the Yilgarn Craton, Western Australia: Evidence from Deep Seismic Sounding. Tectonophysics, 2000, 329(1/2/3/4): 193-221.

[29]

Duncan M. S., Dasgupta R. Rise of Earth’s Atmospheric Oxygen Controlled by Efficient Subduction of Organic Carbon. Nature Geoscience, 2017, 10(5): 387-392.

[30]

Ernst W. G. Occurrence and Mineralogic Evolution of Blueschist Belts with Time. American Journal of Science, 1972, 272(7): 657-668.

[31]

Ernst W. G. Blueschist Metamorphism and P-T Regimes in Active Subduction Zones. Tectonophysics, 1973, 17(3): 255-272.

[32]

Fitch T. J. Plate Convergence, Transcurrent Faults, and Internal Deformation Adjacent to Southeast Asia and the Western Pacific. Journal of Geophysical Research, 1972, 77(23): 4432-4460.

[33]

Foley B. J., Bercovici D., Elkins-Tanton L. T. Initiation of Plate Tectonics from Post-Magma Ocean Thermochemical Convection. Journal of Geophysical Research: Solid Earth, 2014, 119(11): 8538-8561.

[34]

Foley S. F., Buhre S., Jacob D. E. Evolution of the Archaean Crust by Delamination and Shallow Subduction. Nature, 2003, 421(6920): 249-252.

[35]

Fritz H., Abdelsalam M., Ali K. A., . Orogen Styles in the East African Orogens: A Review of Neoproterozoic to Early Phanerozoic Tectonic Evolution. Journal of African Earth Sciences, 2013, 86: 65-106.

[36]

Furnes H. d, Wit M., Dilek Y. Four Billion Years of Ophiolites Reveal Secular Trends in Oceanic Crust Formation. Geoscience Frontiers, 2014, 5(4): 571-603.

[37]

Furnes H. d, Wit M., Staudigel H., . A Vestige of Earth’s Oldest Ophiolite. Science, 2007, 315(5819): 1704-1707.

[38]

Furnes H., Dilek Y. d, Wit M. Precambrian Greenstone Sequences Represent Different Ophiolite Types. Gondwana Research, 2015, 27(2): 649-685.

[39]

Ganne J. D., Andrade V., Weinberg R. F., . Modern-Style Plate Subduction Preserved in the Palaeoproterozoic West African Craton. Nature Geoscience, 2011, 5(1): 60-65.

[40]

Gold D. J. C. Johnson M. R., Anhaeusser C. R., Thomas R. J. The Pongola Supergroup. The Geology of South Africa, 2006, Johannesburg: Geological Society of South Africa, 135-147.

[41]

Grosch E., Slama J. Evidence for 3.3-Billion-Year-Old Oceanic Crust in the Barberton Greenstone Belt, South Africa. Geology, 2017, 45: 695-698.

[42]

Harrison T. M. The Hadean Crust: Evidence from >4 Ga Zircons. Annual Review of Earth and Planetary Sciences, 2009, 37(1): 479-505.

[43]

Hickman A. H. Review of the Pilbara Craton and Fortescue Basin, Western Australia: Crustal Evolution Providing Environments for Early Life. Island Arc, 2012, 21(1): 1-31.

[44]

Hildebrand R. S. Autochthonous and Allochthonous Strata of the El Callao Greenstone Belt: Implications for the Nature of the Paleoproterozoic Trans-Amazonian Orogeny and the Origin of Gold-Bearing Shear Zones in the El Callao Mining District, Guayana Shield, Venezuela. Precambrian Research, 2005, 143(1/2/3/4): 75-86.

[45]

Hildebrand R. S. Mesozoic Assembly of the North American Cordillera. Geological Society of America Special Paper, 2013, 495 178.

[46]

Kato Y., Nakamura K. Origin and Global Tectonic Significance of Early Archean Cherts from the Marble Bar Greenstone Belt, Pilbara Craton, Western Australia. Precambrian Research, 2003, 125(3/4): 191-243.

[47]

Kato Y., Ohta I., Tsunematsu T., . Rare Earth Element Variations in Mid-Archean Banded Iron Formations: Implications for the Chemistry of Ocean and Continent and Plate Tectonics. Geochimica et Cosmochimica Acta, 1998, 62(21/22): 3475-3497.

[48]

Keller B., Schoene B. Plate Tectonics and Continental Basaltic Geochemistry throughout Earth History. Earth and Planetary Science Letters, 2018, 481: 290-304.

[49]

Kersting A. Pb Isotope Ratios of North Pacific Sediments, Sites 881, 883, and 884: Implications for Sediment Recycling in the Kamchatkan Arc. In: Rea, D. K., Baslov, I. A., Scholl, D. W., et al., eds., Proceedings of the Ocean Drilling Program, Scientific Results, 1995, 145: 383-388.

[50]

Komiya T., Yamamoto S., Aoki S., . Geology of the Eoarchean, >3.95 Ga, Nulliak Supracrustal Rocks in the Saglek Block, Northern Labrador, Canada: The Oldest Geological Evidence for Plate Tectonics. Tectonophysics, 2015, 662: 40-66.

[51]

Komiya T., Yamamoto S., Aoki S., . A Prolonged Granitoid Formation in Saglek Block, Labrador: Zonal Growth and Crustal Reworking of Continental Crust in the Eoarchean. Geoscience Frontiers, 2017, 8(2): 355-385.

[52]

Korenaga J. Archean Geodynamics and the Thermal Evolution of Earth. In: Benn, K., Mareschal, J.-C., Condie, K. C., eds., Archean Geodynamics and Environments. American Geophysical Union Monograph, 2006, 164: 7-32.

[53]

Korenaga J. Initiation and Evolution of Plate Tectonics on Earth: Theories and Observations. Annual Review of Earth and Planetary Sciences, 2013, 41(1): 117-151.

[54]

Korsch R. J., Kositcin N., Champion D. C. Australian Island Arcs through Time: Geodynamic Implications for the Archean and Proterozoic. Gondwana Research, 2011, 19(3): 716-734.

[55]

Krapez B., Barley M. E. Archaean Strike-Slip Faulting and Related Ensialic Basins: Evidence from the Pilbara Block, Australia. Geological Magazine, 1987, 124(6): 555-567.

[56]

Kusky T. M. Accretion of the Archean Slave Province. Geology, 1989, 17(1): 63-67.

[57]

Kusky T. M. Collapse of Archean Orogens and the Generation of Late-to Postkinematic Granitoids. Geology, 1993, 21(10): 925-928.

[58]

Kusky T. M. Tectonic Setting and Terrane Accretion of the Archean Zimbabwe Craton. Geology, 1998, 26(2): 163-166.

[59]

Kusky T. M., Li J. H., Tucker R. D. The Archean Dongwanzi Ophiolite Complex, North China Craton: 2.505-Billion-Year-Old Oceanic Crust and Mantle. Science, 2001, 292(5519): 1142-1145.

[60]

Kusky T. M. Kusky T. M. Precambrian Ophiolites and Related Rocks, Introduction. Precambrian Ophiolites and Related Rocks, 2004, Amsterdam: Elsevier, 1-35.

[61]

Kusky T. M. Geophysical and Geological Tests of Tectonic Models of the North China Craton. Gondwana Research, 2011, 20(1): 26-35.

[62]

Kusky T. M., Bradley D. C. Kinematic Analysis of Mélange Fabrics: Examples and Applications from the McHugh Complex, Kenai Peninsula, Alaska. Journal of Structural Geology, 1999, 21(12): 1773-1796.

[63]

Kusky T. M., Li J. H. Origin and Emplacement of Archean Ophiolites of the Central Orogenic Belt, North China Craton. Journal of Earth Science, 2010, 21(5): 744-781.

[64]

Kusky T. M., Li X. Y., Wang Z. S., . Are Wilson Cycles Preserved in Archean Cratons? A Comparison of the North China and Slave Cratons. Canadian Journal of Earth Sciences, 2014, 51(3): 297-311.

[65]

Kusky T. M., Windley B. F., Wang L., . Flat Slab Subduction, Trench Suction, and Craton Destruction: Comparison of the North China, Wyoming, and Brazilian Cratons. Tectonophysics, 2014, 630: 208-221.

[66]

Kusky T. M., Polat A. Growth of Granite-Greenstone Terranes at Convergent Margins, and Stabilization of Archean Cratons. Tectonophysics, 1999, 305(1/2/3): 43-73.

[67]

Kusky T. M., Polat A., Windley B. F., . Insights into the Tectonic Evolution of the North China Craton through Comparative Tectonic Analysis: A Record of Outward Growth of Precambrian Continents. Earth-Science Reviews, 2016, 162: 387-432.

[68]

Kusky T. M., Stern R. J., Dewey J. F. Secular Changes in Geologic and Tectonic Processes. Gondwana Research, 2013, 24(2): 451-452.

[69]

Kusky T. M., Windley B. F., Safonova I., . Recognition of Ocean Plate Stratigraphy in Accretionary Orogens through Earth History: A Record of 3.8 Billion Years of Sea Floor Spreading, Subduction, and Accretion. Gondwana Research, 2013, 24(2): 501-547.

[70]

Kusky T. M., Vearncombe J. de Wit M. J., Ashwal L. D. Structure of Archean Greenstone Belts. Tectonic Evolution of Greenstone Belts, 1997, Oxford: Clarendon Press, 95-128.

[71]

Kusky T. M., Wang L., Dilek Y., . Application of the Modern Ophiolite Concept with Special Reference to Precambrian Ophiolites. Science China Earth Sciences, 2011, 54(3): 315-341.

[72]

Kusky T. M., Zhai M. G. The Neoarchean Ophiolite in the North China Craton: Early Precambrian Plate Tectonics and Scientific Debate. Journal of Earth Science, 2012, 23(3): 277-284.

[73]

Liou J. G., Maruyama S., Wang X., . Precambrian Blueschist Terranes of the World. Tectonophysics, 1990, 181(1/2/3/4): 97-111.

[74]

Maruyama S., Kawai T., Windley B. F. Ocean Plate Stratigraphy and Its Imbrication in an Accretionary Orogen: The Mona Complex, Anglesey-Lleyn, Wales, UK. Geological Society, London, Special Publications, 2010, 338(1): 55-75.

[75]

Maruyama S., Santosh M., Azuma S. Initiation of Plate Tectonics in the Hadean: Eclogitization Triggered by the ABEL Bombardment. Geoscience Frontiers, 2018, 9(4): 1033-1048.

[76]

McClay K. R. Thrust Tectonics, 2012, Netherlands: Springer, 447.

[77]

Mohan M. R., Satyanarayanan M., Santosh M., . Neoarchean Suprasubduction Zone Arc Magmatism in Southern India: Geochemistry, Zircon U-Pb Geochronology and Hf Isotopes of the Sittampundi Anorthosite Complex. Gondwana Research, 2013, 23(2): 539-557.

[78]

Moyen J.-F., Stevens G., Kisters A. F. M. Condie K. C., Kröner A., Stein R. J. 3.2 Ga High-Pressure, Low-Temperature Metamorphism in the Barberton Greenstone Belt: The Evidence for Archaean Mountain Belts and Subduction Zones. When did Plate Tectonics Begin on Earth, 2006.

[79]

Musacchio G., White D. J., Asudeh I., . Lithospheric Structure and Composition of the Archean Western Superior Province from Seismic Refraction/Wide-Angle Reflection and Gravity Modeling. Journal of Geophysical Research, 2004, 109 B3 B03304

[80]

Myers J. S. The Generation and Assembly of an Archaean Supercontinent: Evidence from the Yilgarn Craton, Western Australia. Geological Society, London, Special Publications, 1995, 95(1): 143-154.

[81]

Næraa T., Scherstén A., Rosing M. T., . Hafnium Isotope Evidence for a Transition in the Dynamics of Continental Growth 3.2 Gyr Ago. Nature, 2012, 485(7400): 627-630.

[82]

Nutman A. P., Bennett V. C., Friend C. R. L. The Emergence of the Eoarchaean Proto-Arc: Evolution of a C. 3 700 Ma Convergent Plate Boundary at Isua, Southern West Greenland. Geological Society, London, Special Publications, 2015, 389(1): 113-133.

[83]

Percival J. A., Skulski T., Sanborn-Barrie M., . Geology and Tectonic Evolution of the Superior Province, Canada. In: Percival, J. A., Cook, F. A., Clowes, R. M., eds., Tectonic Styles in Canada: The Lithoprobe Perspective. Geological Association of Canada Special Paper, 2012, 49: 321-378.

[84]

Plank T., Ludden J. N., Escutia C., . Site 1149. Proceedings of the Ocean Drilling Program, 2000, 185.

[85]

Polat A. Growth of Archean Continental Crust in Oceanic Island Arcs. Geology, 2012, 40(4): 383-384.

[86]

Richardson S. H., Shirey S. B. Continental Mantle Signature of Bushveld Magmas and Coeval Diamonds. Nature, 2008, 453(7197): 910-913.

[87]

Richardson S. H., Shirey S. B., Harris J. W., . Archean Subduction Recorded by Re-Os Isotopes in Eclogitic Sulfide Inclusions in Kimberley Diamonds. Earth and Planetary Science Letters, 2001, 191(3/4): 257-266.

[88]

Rollinson H. Coupled Evolution of Archean Continental Crust and Subcontinental Lithospheric Mantle. Geology, 2010, 38(12): 1083-1086.

[89]

Sajeev K., Windley B. F., Connolly J. A. D., . Retrogressed Eclogite (20 kbar, 1 020 °C) from the Neoproterozoic Palghat-Cauvery Suture Zone, Southern India. Precambrian Research, 2009, 171(1/2/3/4): 23-36.

[90]

Sawaki Y., Shibuya T., Kawai T., . Imbricated Ocean-Plate Stratigraphy and U-Pb Zircon Ages from Tuff Beds in Cherts in the Ballantrae Complex, SW Scotland. Geological Society of America Bulletin, 2010, 122(3/4): 454-464.

[91]

Şengör A. M. C., Natal’in B. A., Sunal G., . A New Look at the Altaids: A Superorogenic Complex in Northern and Central Asia as a Factory of Continental Crust. Part I: Geological Data Compilation (Exclusive of Palaeomagnetic Observations). Austrian Journal of Earth Sciences, 2014, 107: 169-232.

[92]

Shibuya T., Komiya T., Nakamura K., . Highly Alkaline, High-Temperature Hydrothermal Fluids in the Early Archean Ocean. Precambrian Research, 2010, 182(3): 230-238.

[93]

Shipboard Scientific Party, 2000. Leg 190 Preliminary Report: Deformation and Fluid Flow Processes in the Nankai Trough Accretionary Prism. ODP Prelim. Rpt., 190. [2018-10-29]. https://doi.org/www-odp.tamu.edu/publications/prelim/190_prel/190Prel.pdf

[94]

Shirey S. B., Richardson S. H. Start of the Wilson Cycle at 3 Ga Shown by Diamonds from Subcontinental Mantle. Science, 2011, 333(6041): 434-436.

[95]

Sleep N. H., Windley B. F. Archean Plate Tectonics: Constraints and Inferences. The Journal of Geology, 1982, 90(4): 363-379.

[96]

Smart K. A., Tappe S., Stern R. A., . Early Archaean Tectonics and Mantle Redox Recorded in Witwatersrand Diamonds. Nature Geoscience, 2016, 9(3): 255-259.

[97]

Smithies R. H. V., Kranendonk M. J., Champion D. C. The Mesoarchean Emergence of Modern-Style Subduction. Gondwana Research, 2007, 11(1/2): 50-68.

[98]

Sol S., Thomson C. J., Kendall J. M., . Seismic Tomographic Images of the Cratonic Upper Mantle beneath the Western Superior Province of the Canadian Shield—A Remnant Archean Slab?. Physics of the Earth and Planetary Interiors, 2002, 134(1/2): 53-69.

[99]

Stern R. J. When and how did Plate Tectonics Begin? Theoretical and Empirical Considerations. Chinese Science Bulletin, 2007, 52(5): 578-591.

[100]

Stern R. J. Modern-Style Plate Tectonics Began in Neoproterozoic Time: An Alternative Interpretation of Earth’s Tectonic History. Geological Society of America Special Paper, 2008, 440: 265-280.

[101]

Szilas K., Tusch J., Hoffmann J. E., . Hafnium Isotope Constraints on the Origin of Mesoarchaean Andesites in Southern West Greenland, North Atlantic Craton. Geological Society, London, Special Publications, 2016, 449(1): 19-38.

[102]

van Hunen J., Moyen J. F. Archean Subduction: Fact or Fiction?. Annual Review of Earth and Planetary Sciences, 2012, 40(1): 195-219.

[103]

von Huene R., Scholl D. W. The Return of Sialic Material to the Mantle Indicated by Terrigeneous Material Subducted at Convergent Margins. Tectonophysics, 1993, 219(1/2/3): 163-175.

[104]

Wakita K. Accretionary Complex and Ocean Plate Stratigraphy. Earth Science (Chikyu Kagaku), 1997, 51: 300-310.

[105]

Wakita K. Mappable Features of Mélanges Derived from Ocean Plate Stratigraphy in the Jurassic Accretionary Complexes of Mino and Chichibu Terranes in Southwest Japan. Tectonophysics, 2012, 568/569: 74-85.

[106]

Wang J. P., Kusky T. M., Polat A., . A Late Archean Tectonic Mélange in the Central Orogenic Belt, North China Craton. Tectonophysics, 2013, 608: 929-946.

[107]

Wang J. P., Kusky T. M., Wang L., . Structural Relationships along a Neoarchean Arc-Continent Collision Zone, North China Craton. Geological Society of America Bulletin, 2016, 129(1/2): 59-75.

[108]

Wilson J. T. A New Class of Faults and Their Bearing on Continental Drift. Nature, 1965, 207(4995): 343-347.

[109]

Wilson J. T. Static or Mobile Earth: The Current Scientific Revolution. Proceedings American Philosophical Society, 1968, 112: 309-320.

[110]

Windley B. F. Uniformitarianism Today: Plate Tectonics is the Key to the Past. Journal of the Geological Society, 1993, 150(1): 7-19.

[111]

Windley B. F., Garde A. A. Arc-Generated Blocks with Crustal Sections in the North Atlantic Craton of West Greenland: Crustal Growth in the Archean with Modern Analogues. Earth-Science Reviews, 2009, 93(1/2): 1-30.

[112]

Zibra I., Korhonen F. J., Peternell M., . On Thrusting, Regional Unconformities and Exhumation of High-Grade Greenstones in Neoarchean Orogens. the Case of the Waroonga Shear Zone, Yilgarn Craton. Tectonophysics, 2017, 712/713: 362-395.

AI Summary AI Mindmap
PDF

152

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/