Paired δ13Ccarb13Corg Evolution of the Dengying Formation from Northeastern Guizhou and Implications for Stratigraphic Correlation and the Late Ediacaran Carbon Cycle

Yi Ding , Daizhao Chen , Xiqiang Zhou , Taiyu Huang , Chuan Guo , Rumana Yeasmin

Journal of Earth Science ›› 2020, Vol. 31 ›› Issue (2) : 342 -353.

PDF
Journal of Earth Science ›› 2020, Vol. 31 ›› Issue (2) : 342 -353. DOI: 10.1007/s12583-018-0886-1
Petroleum, Natural Gas Geology

Paired δ13Ccarb13Corg Evolution of the Dengying Formation from Northeastern Guizhou and Implications for Stratigraphic Correlation and the Late Ediacaran Carbon Cycle

Author information +
History +
PDF

Abstract

This study provides δ13C profiles from a lower-slope (Well ZK102) to basin (Bahuang Section) environment to better understand the temporal and spatial variability in δ13Ccarb13Corg of the Yangtze Block during the Late Ediacaran. Our new δ13C profiles together with the reported data suggest that the Upper Ediacaran successions from different depositional environments are generally bounded by negative δ13Ccarb and/or δ13Corg excursions in the underlying and overlying strata. Moreover, the Upper Ediacaran δ13Ccarb profiles generally can be subdivided into two positive excursions and an interjacent negative excursion, whereas the paired δ13Corg profiles from different depositional environments have individual variation trends. On the other hand, these data show a large surface-to-deep water δ13C gradient (~5‰ variation in δ13Ccarb, >10‰ variation in δ13Corg) which can be reasonably explained by the heterogeneity of the biological activities in the redox-stratified water column. Furthermore, the decoupled δ13Ccarb13Corg pattern with large δ13Corg perturbations at the lower slope precluded the existence of a large dissolved organic carbon reservoir at the Yangtze Block during the Late Ediacaran. Thus, the high δ13Ccarb values in the Upper Ediacaran succession could be balanced by large amounts of buried organic carbon likely associated with high productivity.

Keywords

Yangtze Block / Late Ediacaran / Dengying Formation / paired δ13Ccarb13Corg / stratigraphic correlation / carbon cycle

Cite this article

Download citation ▾
Yi Ding, Daizhao Chen, Xiqiang Zhou, Taiyu Huang, Chuan Guo, Rumana Yeasmin. Paired δ13Ccarb13Corg Evolution of the Dengying Formation from Northeastern Guizhou and Implications for Stratigraphic Correlation and the Late Ediacaran Carbon Cycle. Journal of Earth Science, 2020, 31(2): 342-353 DOI:10.1007/s12583-018-0886-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bowring S. A., Grotzinger J. P., Condon D. J., . Geochronologic Constraints on the Chronostratigraphic Framework of the Neoproterozoic Huqf Supergroup, Sultanate of Oman. American Journal of Science, 2007, 307(10): 1097-1145.

[2]

Cai Y. P., Hua H., Xiao S. H., . Biostratinomy of the Late Ediacaran Pyritized Gaojiashan Lagerstätte from Southern Shaanxi, South China: Importance of Event Deposits. PALAIOS, 2010, 25(7/8): 487-506.

[3]

Canfield D. E., Kump L. R. Carbon Cycle Makeover. Science, 2013, 339(6119): 533-534.

[4]

Chang H. J., Chu X. L., Feng L. J., . Progressive Oxidation of Anoxic and Ferruginous Deep-Water during Deposition of the Terminal Ediacaran Laobao Formation in South China. Palaeogeography, Palaeoclimatology. Palaeoecology, 2012, 321/322: 80-87.

[5]

Chen D. Z., Wang J. G., Qing H. R., . Hydrothermal Venting Activities in the Early Cambrian, South China: Petrological, Geochronological and Stable Isotopic Constraints. Chemical Geology, 2009, 258(3/4): 168-181.

[6]

Chen D. Z., Zhou X. Q., Fu Y., . New^U-Pb Zircon Ages of the Ediacaran-Cambrian Boundary Strata in South China. Terra Nova, 2015, 27(1): 62-68.

[7]

Condon D., Zhu M. Y., Bowring S., . U-Pb Ages from the Neoproterozoic Doushantuo Formation, China. Science, 2005, 308(5718): 95-98.

[8]

Cui H., Kaufman A. J., Xiao S., . Environmental Context for the Terminal Ediacaran Biomineralization of Animals. Geobiology, 2016, 14(4): 344-363.

[9]

Des Marais D. J., Strauss H., Summons R. E., . Carbon Isotope Evidence for the Stepwise Oxidation of the Proterozoic Environment. Nature, 1992, 359(6396): 605-609.

[10]

Fike D. A., Grotzinger J. P., Pratt L. M., . Oxidation of the Ediacaran Ocean. Nature, 2006, 444(7120): 744-747.

[11]

Guo Q. J., Strauss H., Liu C. Q., . Carbon Isotopic Evolution of the Terminal Neoproterozoic and Early Cambrian: Evidence from the Yangtze Platform, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1/2): 140-157.

[12]

Guo Q. J., Strauss H., Zhu M. Y., . High Resolution Organic Carbon Isotope Stratigraphy from a Slope to Basinal Setting on the Yangtze Platform, South China: Implications for the Ediacaran–Cambrian Transition. Precambrian Research, 2013, 225: 209-217.

[13]

Hayes J. M., Strauss H., Kaufman A. J. The Abundance of 13C in Marine Organic Matter and Isotopic Fractionation in the Global Biogeochemical Cycle of Carbon during the Past 800 Ma. Chemical Geology, 1999, 103-125.

[14]

Hollander D. J., Smith M. A. Microbially Mediated Carbon Cycling as a Control on the δ13C of Sedimentary Carbon in Eutrophic Lake Mendota (USA): New Models for Interpreting Isotopic Excursions in the Sedimentary Record. Geochimica et Cosmochimica Acta, 2001, 65(23): 4321-4337.

[15]

Ishikawa T., Ueno Y., Komiya T., . Carbon Isotope Chemostratigraphy of a Precambrian/Cambrian Boundary Section in the Three Gorge Area, South China: Prominent Global-Scale Isotope Excursions just before the Cambrian Explosion. Gondwana Research, 2008, 14(1/2): 193-208.

[16]

Ishikawa T., Ueno Y., Shu D. G., . Irreversible Change of the Oceanic Carbon Cycle in the Earliest Cambrian: High-Resolution Organic and Inorganic Carbon Chemostratigraphy in the Three Gorges Area, South China. Precambrian Research, 2013, 225: 190-208.

[17]

Jacobsen S. B., Kaufman A. J. The^Sr, C and O Isotopic Evolution of Neoproterozoic Seawater. Chemical Geology, 1999, 37-57.

[18]

Jiang G. Q., Kaufman A. J., Christie-Blick N., . Carbon Isotope Variability across the Ediacaran Yangtze Platform in South China: Implications for a Large Surface-to-Deep Ocean δ13C Gradient. Earth and Planetary Science Letters, 2007, 261(1/2): 303-320.

[19]

Jiang G. Q., Shi X. Y., Zhang S. H., . Stratigraphy and Paleogeography of the Ediacaran Doushantuo Formation (ca. 635–551 Ma) in South China. Gondwana Research, 2011, 19(4): 831-849.

[20]

Jiang G. Q., Wang X. Q., Shi X. Y., . The Origin of Decoupled Carbonate and Organic Carbon Isotope Signatures in the Early Cambrian (ca. 542–520 Ma) Yangtze Platform. Earth and Planetary Science Letters, 2012, 96-110.

[21]

Jiang G. Q., Wang X. Q., Shi X. Y., . Organic Carbon Isotope Constraints on the Dissolved Organic Carbon (DOC) Reservoir at the Cryogenian–Ediacaran Transition. Earth and Planetary Science Letters, 2010, 299(1/2): 159-168.

[22]

Johnston D. T., Macdonald F. A., Gill B. C., . Uncovering the Neoproterozoic Carbon Cycle. Nature, 2012, 483(7389): 320-323.

[23]

Kaufman A. J., Jiang G. Q., Christie-Blick N., . Stable Isotope Record of the Terminal Neoproterozoic Krol Platform in the Lesser Himalayas of Northern India. Precambrian Research, 2006, 147(1/2): 156-185.

[24]

Kunimitsu Y., Setsuda Y., Furuyama S., . Ediacaran Chemostratigraphy and Paleoceanography at a Shallow Marine Setting in Northwestern Hunan Province, South China. Precambrian Research, 2011, 191(3/4): 194-208.

[25]

Landing E., Geyer G., Brasier M. D., . Cambrian Evolutionary Radiation: Context, Correlation, and Chronostratigraphy—Overcoming Deficiencies of the First Appearance Datum (FAD) Concept. Earth-Science Reviews, 2013, 123: 133-172.

[26]

Li D., Ling H.-F., Shields-Zhou G. A., . Carbon and Strontium Isotope Evolution of Seawater across the Ediacaran–Cambrian Transition: Evidence from the Xiaotan Section, NE Yunnan, South China. Precambrian Research, 2013, 225: 128-147.

[27]

Ling H.-F., Chen X., Li D., . Cerium Anomaly Variations in Ediacaran–Earliest Cambrian Carbonates from the Yangtze Gorges Area, South China: Implications for Oxygenation of Coeval Shallow Seawater. Precambrian Research, 2013, 225: 110-127.

[28]

Liu B. J., Xu X. S. Atlas of the Palaeogeography of South China, 1994.

[29]

Liu S. G., Wang Y. G., Sun W., . Control of Intracratonic Sags on the Hydrocarbon Accumulations in the Marine Strata across the Sichuan Basin, China. Journal of Chengdu University of Technology (Science & Technology Edition), 2016, 43(1): 1-23.

[30]

Lu M., Zhu M. Y., Zhang J. M., . The^DOUNCE Event at the Top of the Ediacaran Doushantuo Formation, South China: Broad Stratigraphic Occurrence and Non-Diagenetic Origin. Precambrian Research, 2013, 225: 86-109.

[31]

Macdonald F. A., Strauss J. V., Sperling E. A., . The Stratigraphic Relationship between the Shuram Carbon Isotope Excursion, the Oxygenation of Neoproterozoic Oceans, and the First Appearance of the Ediacara Biota and Bilaterian Trace Fossils in Northwestern Canada. Chemical Geology, 2013, 362: 250-272.

[32]

Maloof A. C., Porter S. M., Moore J. L., . The Earliest Cambrian Record of Animals and Ocean Geochemical Change. Geological Society of America Bulletin, 2010, 122(11/12): 1731-1774.

[33]

Mason R., Li Y. J., Cao K. N., . Ediacaran Macrofossils in Shunyang Valley, Sixi, Three Gorges District, Hubei Province, China. Journal of Earth Science, 2017, 28(4): 614-621.

[34]

McFadden K. A., Huang J., Chu X., . Pulsed Oxidation and Biological Evolution in the Ediacaran Doushantuo Formation. Proceedings of the National Academy of Sciences, 2008, 105(9): 3197-3202.

[35]

Rothman D. H., Hayes J. M., Summons R. E. Dynamics of the Neoproterozoic Carbon Cycle. Proceedings of the National Academy of Sciences, 2003, 100(14): 8124-8129.

[36]

Saylor B. Z., Kaufman A. J., Grotzinger J. P., . A Composite Reference Section for Terminal Proterozoic Strata of Southern Namibia. Journal of Sedimentary Research, 1998, 68(6): 1223-1235.

[37]

Schrag D. P., Higgins J. A., Macdonald F. A., . Authigenic Carbonate and the History of the Global Carbon Cycle. Science, 2013, 339(6119): 540-543.

[38]

Shen B., Xiao S. H., Bao H. M., . Carbon, Sulfur, and Oxygen Isotope Evidence for a Strong Depth Gradient and Oceanic Oxidation after the Ediacaran Hankalchough Glaciation. Geochimica et Cosmochimica Acta, 2011, 75(5): 1357-1373.

[39]

Shen B., Xiao S. H., Zhou C. M., . Carbon and Sulfur Isotope Chemostratigraphy of the Neoproterozoic Quanji Group of the Chaidam Basin, NW China: Basin Stratification in the Aftermath of an Ediacaran Glaciation Postdating the Shuram Event?. Precambrian Research, 2010, 177(3/4): 241-252.

[40]

Steiner M., Li G. X., Qian Y., . Neoproterozoic to Early Cambrian Small Shelly Fossil Assemblages and a Revised Biostratigraphic Correlation of the Yangtze Platform (China). Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1/2): 67-99.

[41]

Wakeham S. G., Turich C., Schubotz F., . Biomarkers, Chemistry and Microbiology Show Chemoautotrophy in a Multilayer Chemocline in the Cariaco Basin. Deep Sea Research Part I: Oceanographic Research Papers, 2012, 63: 133-156.

[42]

Wang J. G., Chen D. Z., Yan D. T., . Evolution from an Anoxic to Oxic Deep Ocean during the Ediacaran–Cambrian Transition and Implications for Bioradiation. Chemical Geology, 2012, 306/307: 129-138.

[43]

Wang X. Q., Jiang G. Q., Shi X. Y., . Paired Carbonate and Organic Carbon Isotope Variations of the Ediacaran Doushantuo Formation from an Upper Slope Section at Siduping, South China. Precambrian Research, 2016, 273: 53-66.

[44]

Wang X. Q., Shi X. Y., Jiang G. Q., . Organic Carbon Isotope Gradient and Ocean Stratification across the Late Ediacaran–Early Cambrian Yangtze Platform. Science China Earth Sciences, 2014, 57(5): 919-929.

[45]

Wang X. Q., Shi X. Y., Jiang G. Q., . New^U-Pb Age from the Basal Niutitang Formation in South China: Implications for Diachronous Development and Condensation of Stratigraphic Units across the Yangtze Platform at the Ediacaran–Cambrian Transition. Journal of Asian Earth Sciences, 2012, 48: 1-8.

[46]

Zhang X. L., Cui L. H. Oxygen Requirements for the Cambrian Explosion. Journal of Earth Science, 2016, 27(2): 187-195.

[47]

Zhou C. M., Xiao S. H. Ediacaran δ13C Chemostratigraphy of South China. Chemical Geology, 2007, 237(1/2): 89-108.

[48]

Zhu M. Y., Zhang J. M., Steiner M., . Sinian-Cambrian Stratigraphic Framework for Shallow- to Deep-Water Environments of the Yangtze Platform: An Integrated Approach. Progress in Natural Science, 2003, 13(12): 951-960.

[49]

Zhu M. Y., Zhang J. M., Yang A. H. Integrated Ediacaran (Sinian) Chronostratigraphy of South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1/2): 7-61.

AI Summary AI Mindmap
PDF

142

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/