Conodonts and Carbon Isotopes during the Permian-Triassic Transition on the Napo Platform, South China

Yan Chen , Qian Ye , Haishui Jiang , Paul B. Wignall , Jinling Yuan

Journal of Earth Science ›› 2019, Vol. 30 ›› Issue (2) : 244 -257.

PDF
Journal of Earth Science ›› 2019, Vol. 30 ›› Issue (2) : 244 -257. DOI: 10.1007/s12583-018-0884-3
Paleontology and Paleoecology

Conodonts and Carbon Isotopes during the Permian-Triassic Transition on the Napo Platform, South China

Author information +
History +
PDF

Abstract

Two Permian-Triassic boundary (PTB) sections (Pojue and Dala) are well exposed in an isolated carbonate platform (Napo Platform) on the southwestern margin of the Nanpanjiang Basin, South China. These sections provide an insight into the transition across the PTB and a detailed investigation of the conodont biostratigraphy and inorganic carbon isotopes is presented. The PTB at the Pojue Section is placed at the base of Bed 10B (a dolomitized mudstone found below a microbialite horizon), defined by the first occurrence of Hindeodus parvus. At the Dala Section, four conodont zones occur. They are, in ascending order, the Hindeodus parvus Zone, Isarcicella staeschei Zone, Isarcicella isarcica Zone and Clarkina planata Zone. Comparison with the Pojue Section suggests the PTB at Dala also occurs at the base of dolomitized mudstone below a microbialite horizon, although the first occurrence of Hindeodus parvus is near the top of a microbialite bed: an occurrence that is also seen in other platform sections. The succeeding microbialite beds developed during the ongoing PTB mass extinction phase. This time was characterized by low carbon isotope values, and a microbialite ecosystem that provided a refuge for selected groups (bivalves, ostracods and microgastropods) that were likely tolerant of extremely high temperatures.

Keywords

Permian-Triassic / Napo Platform / conodont biostratigraphy / carbon isotope

Cite this article

Download citation ▾
Yan Chen, Qian Ye, Haishui Jiang, Paul B. Wignall, Jinling Yuan. Conodonts and Carbon Isotopes during the Permian-Triassic Transition on the Napo Platform, South China. Journal of Earth Science, 2019, 30(2): 244-257 DOI:10.1007/s12583-018-0884-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bai R Y, Dai X, Song H J. Conodont and Ammonoid Biostratigraphies around the Permian-Triassic Boundary from Jianzishan of South China. Journal of Earth Science, 2017, 28(4): 595-613.

[2]

Baresel B, Bucher H, Bagherpour B, . Timing of Global Regression and Microbial Bloom Linked with the Permian-Triassic Boundary Mass Extinction: Implications for Driving Mechanisms. Scientific Reports, 2017, 7 1 43630

[3]

Baud A, Richoz S, Pruss S. The Lower Triassic Anachronistic Carbonate Facies in Space and Time. Global and Planetary Change, 2007, 55(1/2/3): 81-89.

[4]

Brand U, Blamey N, Garbelli C, . Methane Hydrate: Killer Cause of Earth’s Greatest Mass Extinction. Palaeoworld, 2016, 25(4): 496-507.

[5]

Brosse M, Bucher H, Bagherpour B, . Conodonts from the Early Triassic Microbialite of Guangxi (South China): Implications for the Definition of the Base of the Triassic System. Palaeontology, 2015, 58(3): 563-584.

[6]

Burgess S D, Bowring S, Shen S Z. High-Precision Timeline for Earth’s Most Severe Extinction. Proceedings of the National Academy of Sciences, 2014, 111(9): 3316-3321.

[7]

Chen B, Joachimski M M, Wang X D, . Ice Volume and Paleoclimate History of the Late Paleozoic Ice Age from Conodont Apatite Oxygen Isotopes from Naqing (Guizhou, China). Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 448: 151-161.

[8]

Chen J, Beatty T W, Henderson C M, . Conodont Biostratigraphy across the Permian-Triassic Boundary at the Dawen Section, Great Bank of Guizhou, Guizhou Province, South China: Implications for the Late Permian Extinction and Correlation with Meishan. Journal of Asian Earth Sciences, 2009, 36(6): 442-458.

[9]

Chen Z-Q, Yang H, Luo M, . Complete Biotic and Sedimentary Records of the Permian-Triassic Transition from Meishan Section, South China: Ecologically Assessing Mass Extinction and Its Aftermath. Earth-Science Reviews, 2015, 149: 67-107.

[10]

Clark D L. Conodonts from the Triassic of Nevada and Utah. Journal of Paleontology, 1959, 33(2): 305-312.

[11]

Clarkson M O, Kasemann S A, Wood R A, . Ocean Acidification and the Permo-Triassic Mass Extinction. Science, 2015, 348(6231): 229-232.

[12]

Ernst R E, Youbi N. How Large Igneous Provinces Affect Global Climate, sometimes Cause Mass Extinctions, and Represent Natural Markers in the Geological Record. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 478: 30-52.

[13]

Ezaki Y, Liu J, Nagano T, . Geobiological Aspects of the Earliest Triassic Microbialites along the Southern Periphery of the Tropical Yangtze Platform: Initiation and Cessation of a Microbial Regime. PALAIOS, 2008, 23(6): 356-369.

[14]

Forel M B, Crasquin S, Kershaw S, . In the Aftermath of the End-Permian Extinction: The Microbialite Refuge?. Terra Nova, 2013, 25(2): 137-143.

[15]

Foster W J, Danise S, Price G D, . Subsequent Biotic Crises Delayed Marine Recovery Following the Late Permian Mass Extinction Event in Northern Italy. PLOS ONE, 2017, 12 3 e0172321

[16]

Grasby S E, Beauchamp B, Knies J. Early Triassic Productivity Crises Delayed Recovery from World’s Worst Mass Extinction. Geology, 2016, 44(9): 779-782.

[17]

Hautmann M, Bucher H, Brühwiler T, . An Unusually Diverse Mollusc Fauna from the Earliest Triassic of South China and Its Implications for Benthic Recovery after the End-Permian Biotic Crisis. Geobios, 2011, 44(1): 71-85.

[18]

He W H, Shi G R, Twitchett R J, . Late Permian Marine Ecosystem Collapse Began in Deeper Waters: Evidence from Brachiopod Diversity and Body Size Changes. Geobiology, 2015, 13(2): 123-138.

[19]

Huckriede R. Die Conodonten Der Mediterranen Trias und Ihr Stratigraphischer Wert. Paläontologische Zeitschrift, 1958, 32(3/4): 141-175.

[20]

Jiang H S, Aldridge R J, Lai X L, . Phylogeny of the Conodont Genera Hindeodus and Isarcicella across the Permian-Triassic Boundary. Lethaia, 2011, 44(4): 374-382.

[21]

Jiang H S, Joachimski M M, Wignall P B, . A Delayed End-Permian Extinction in Deep-Water Locations and Its Relationship to Temperature Trends (Bianyang, Guizhou Province, South China). Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 440: 690-695.

[22]

Jiang H S, Lai X L, Luo G M, . Restudy of Conodont Zonation and Evolution across the P/T Boundary at Meishan Section, Changxing, Zhejiang, China. Global and Planetary Change, 2007, 55(1/2/3): 39-55.

[23]

Jiang H S, Lai X L, Sun Y D, . Permian-Triassic Conodonts from Dajiang (Guizhou, South China) and Their Implication for the Age of Microbialite Deposition in the Aftermath of the End-Permian Mass Extinction. Journal of Earth Science, 2014, 25(3): 413-430.

[24]

Joachimski M M, Lai X, Shen S, . Climate Warming in the Latest Permian and the Permian-Triassic Mass Extinction. Geology, 2012, 40(3): 195-198.

[25]

Kershaw S, Collin P Y, Crasquin S. Comment to Lehrmann et al. New Sections and Observations from the Nanpanjiang Basin, South China. PALAIOS, 2016, 31(3): 111-117.

[26]

Kozur H. Some Remarks to the Conodonts Hindeodus and Isarcicella in the Latest Permian and Earliest Triassic. Palaeoworld, 1995, 6: 64-77.

[27]

Kozur H. The Conodonts Hindeodus, Isarcicella, Sweetohindeodus in the Uppermost Permian and Lowermost Triassic. Geologia Croatica, 1996, 49(1): 81-116.

[28]

Kozur H, Mostler H, Rahimi-Yazd A. Beiträge zur Mikrofauna Permotriadischer Schichtfolgen Teil II: Neue Conodonten aus dem Oberperm und der Basalen Trias von Nord- und Zentraliran. Geol. Palaont. Mitt. Innsbruck, 1975, 5(3): 1-23.

[29]

Kozur H, Pjatakova M. Die Conodontenart Anchignathodus parvus n.sp., eine wichtige Leiform der basalen Trias. Proceedings Koninkl Nederland Akademie van Wetenschappen, Series B, 1976, 79: 123-128.

[30]

Krull E S, Lehrmann D J, Druke D, . Stable Carbon Isotope Stratigraphy across the Permian-Triassic Boundary in Shallow Marine Carbonate Platforms, Nanpanjiang Basin, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 204(3/4): 297-315.

[31]

Lehrmann D J, Bentz J M, Wood T, . Environmental Controls on the Genesis of Marine Microbialites and Dissolution Surface Associated with the End-Permian Mass Extinction: New Sections and Observations from the Nanpanjiang Basin, South China. PALAIOS, 2015, 30(7): 529-552.

[32]

Lehrmann D J, Minzoni M, Li X W, . Lower Triassic Oolites of the Nanpanjiang Basin, South China: Facies Architecture, Giant Ooids, and Diagenesis—Implications for Hydrocarbon Reservoirs. AAPG Bulletin, 2012, 96(8): 1389-1414.

[33]

Lehrmann D J, Payne J L, Felix S V, . Permian-Triassic Boundary Sections from Shallow-Marine Carbonate Platforms of the Nanpanjiang Basin, South China: Implications for Oceanic Conditions Associated with the End-Permian Extinction and Its Aftermath. PALAIOS, 2003, 18(2): 138-152.

[34]

Li F, Yan J X, Algeo T, . Paleoceanographic Conditions Following the End-Permian Mass Extinction Recorded by Giant Ooids (Moyang, South China). Global and Planetary Change, 2013, 105: 102-120.

[35]

Li F, Yan J X, Chen Z Q, . Global Oolite Deposits Across the Permian-Triassic Boundary: A Synthesis and Implications for Palaeoceanography Immediately after the End-Permian Biocrisis. Earth-Science Reviews, 2015, 149: 163-180.

[36]

Li Z S Z L P, Dai J Y, . Study on the Permian-Triassic Biostratigraphy and Event Stratigraphy of Northern Sichuan and Southern Shaanxi, 1989, Beijing: Geological Publishing House, 448 (in Chinese)

[37]

Liu J B, Ezaki Y, Yang S R, . Age and Sedimentology of Microbialites after the End-Permian Mass Extinction in Luodian, Guizhou Province. Journal of Palaeogeography, 2007, 9(5): 473-486. (in Chinese with English Abstract)

[38]

Luo G M, Kump L R, Wang Y B, . Isotopic Evidence for an Anomalously Low Oceanic Sulfate Concentration Following End-Permian Mass Extinction. Earth and Planetary Science Letters, 2010, 300(1/2): 101-111.

[39]

Nicoll R S, Metcalfe I, Wang C Y. New Species of the Conodont Genus Hindeodus and the Conodont Biostratigraphy of the Permian-Triassic Boundary Interval. Journal of Asian Earth Sciences, 2002, 20(6): 609-631.

[40]

Orchard M J, Nassichuk W W, Rui L. Conodonts from the Lower Griesbachian Otoceras Latilobatum Bed of Selong, Tibet and the Position of the Permian-Triassic boundary. Memoir-Canadian Society of Petroleum Geologists, 1994, 17: 823-843.

[41]

Payne J L, Lehrmann D J, Follett D, . Erosional Truncation of Uppermost Permian Shallow-Marine Carbonates and Implications for Permian-Triassic Boundary Events. Geological Society of America Bulletin, 2007, 119(7/8): 771-784.

[42]

Perri, M. C., Farabegoli, F., 2003. Conodonts across the Permian-Triassic Boundary in the Southern Alps. In: Mawson, R., Talent, J. A., eds., Contributions to the Second Australian Conodont Symposium. Courier Forschungsinstitut Senckenberg Series, 281–313

[43]

Regional Geological Survey Team of the Guangxi Zhuang Autonomous Region Geological Bureau 1: 20 000 Regional Geological Survey Report of the People’s Republic of China: Baise Map and Delong Map, Geological Part, 1974, Yishan: Guangxi Zhuang Autonomous Region Geological Bureau, 1-188 (in Chinese)

[44]

Shen S Z, Cao C Q, Zhang H, . High-Resolution δ13Ccarb Chemostratigraphy from Latest Guadalupian through Earliest Triassic in South China and Iran. Earth and Planetary Science Letters, 2013, 375: 156-165.

[45]

Shen S Z, Crowley J L, Wang Y, . Calibrating the End-Permian Mass Extinction. Science, 2011, 334(6061): 1367-1372.

[46]

Shen, S. Z., Ramezani, J., Chen, J., et al., 2018. A Sudden End-Permian Mass Extinction in South China. GSA Bulletin.https://doi.org/10.1130/b31909.1

[47]

Song H J, Tong J N, Xiong Y L, . The Large Increase of δ13Ccarb-Depth Gradient and the End-Permian Mass Extinction. Science China Earth Sciences, 2012, 55(7): 1101-1109.

[48]

Song H J, Wignall P B, Chu D L, . Anoxia/High Temperature Double Whammy during the Permian-Triassic Marine Crisis and Its Aftermath. Scientific Reports, 2014, 4 1 4132

[49]

Song H J, Wignall P B, Tong J N, . Two Pulses of Extinction during the Permian-Triassic Crisis. Nature Geoscience, 2013, 6(1): 52-56.

[50]

Sun H, Xiao Y L, Gao Y J, . Rapid Enhancement of Chemical Weathering Recorded by Extremely Light Seawater Lithium Isotopes at the Permian-Triassic Boundary. Proceedings of the National Academy of Sciences, 2018, 115(15): 3782-3787.

[51]

Sun Y D, Joachimski M M, Wignall P B, . Lethally Hot Temperatures during the Early Triassic Greenhouse. Science, 2012, 338(6105): 366-370.

[52]

Tian L, Bottjer D J, Tong J N, . Distribution and Size Variation of Ooids in the Aftermath of the Permian-Triassic Mass Extinction. PALAIOS, 2015, 30(9): 714-727.

[53]

Wang C Y. Conodont Evolutionary Lineage and Zonation for the Latest Permian and the Earliest Triassic. Permophiles, 1996, 29: 30-37.

[54]

Wang L N, Wignall P B, Wang Y B, . Depositional Conditions and Revised Age of the Permo-Triassic Microbialites at Gaohua Section, Cili County (Hunan Province, South China). Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 443: 156-166.

[55]

Wang Y B, Meng Z, Liao W, . Shallow Marine Ecosystem Feedback to the Permian/Triassic Mass Extinction. Frontiers of Earth Science, 2011, 5(1): 14-22.

[56]

Wang Y, Sadler P M, Shen S Z, . Quantifying the Process and Abruptness of the End-Permian Mass Extinction. Paleobiology, 2014, 40(1): 113-129.

[57]

Wignall P B. The Worst of Times: How Life on Earth Survived Eighty Million Years of Extinctions, 2015, Princeton: Princeton University Press, 224

[58]

Wignall P B, Hallam A. Facies Change and the End-Permian Mass Extinction in S.E. Sichuan, China. PALAIOS, 1996, 11(6): 587-596.

[59]

Wignall P B, Kershaw S, Collin P Y, . Erosional Truncation of Uppermost Permian Shallow-Marine Carbonates and Implications for Permian-Triassic Boundary Events: Comment. Geological Society of America Bulletin, 2009, 121(5/6): 954-956.

[60]

Wu H C, Zhang S H, Hinnov L A, . Time-Calibrated Milankovitch Cycles for the Late Permian. Nature Communications, 2013, 4 1 2452

[61]

Xiang L, Schoepfer S D, Zhang H, . Oceanic Redox Evolution across the End-Permian Mass Extinction at Shangsi, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 448: 59-71.

[62]

Yan C B, Wang L N, Jiang H S, . Uppermost Permian to Lower Triassic Conodonts at Bianyang Section, Guihzou Province, South China. PALAIOS, 2013, 28(8): 509-522.

[63]

Yang B, Lai X L, Wignall P B, . A Newly Discovered Earliest Triassic Chert at Gaimao Section, Guizhou, Southwestern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 344/345: 69-77.

[64]

Yin H F, Jiang H S, Xia W C, . The End-Permian Regression in South China and Its Implication on Mass Extinction. Earth-Science Reviews, 2014, 137: 19-33.

[65]

Yin H F, Xie S C, Luo G M, . Two Episodes of Environmental Change at the Permian-Triassic Boundary of the GSSP Section Meishan. Earth-Science Reviews, 2012, 115(3): 163-172.

[66]

Yin H F, Zhang K X, Tong J N, . The Global Stratotype Section and Point (GSSP) of the Permian-Triassic Boundary. Episodes, 2001, 24(2): 102-114.

[67]

Yuan J L, Jiang H S, Wang D C. LST: A New Inorganic Heavy Liquid Used in Conodont Separation. Geological Science and Technology Information, 2015, 34(5): 225-230. (in Chinese with English Abstract)

[68]

Zhang K X, Tong J N, Lai X L, . Progress on Study of Conodont Sequence for the GSSP Section at Meishan, Changxing, Zhejiang Province, South China. Acta Palaeontologica Sinica, 2009, 48(3): 474-486. (in Chinese with English Abstract)

[69]

Zhang N, Jiang H S, Zhong W L, . Conodont Biostratigraphy across the Permian-Triassic Boundary at the Xinmin Section, Guizhou, South China. Journal of Earth Science, 2014, 25(5): 779-786.

[70]

Zhao X M, Tong J N, Yao H Z, . Anachronistic Facies in the Lower Triassic of South China and Their Implications to the Ecosystems during the Recovery Time. Science in China Series D: Earth Sciences, 2008, 51(11): 1646-1657.

AI Summary AI Mindmap
PDF

311

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/