Paleoproterozoic Underwater Volcanism and Microfossil-Like Structures in the Metasedimentary Siliceous Rocks, Hogland Island, Russia

Anatoly M. Belyaev

Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (6) : 1431 -1442.

PDF
Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (6) : 1431 -1442. DOI: 10.1007/s12583-018-0883-4
Volcanology

Paleoproterozoic Underwater Volcanism and Microfossil-Like Structures in the Metasedimentary Siliceous Rocks, Hogland Island, Russia

Author information +
History +
PDF

Abstract

Geological surveys showed that rhyolite and basalt strata with pillow structures typical for underwater volcanism form sheets over the Svecofennian basement. Original geochemical and isotope-geochemical data confirmed that the rhyolites were formed contemporaneously with the rapakivi granites of the Wiborg Massif (1 640 Ma), and the basalts are similar to gabbro-anorthosites. Abnormally high content of K2O and relatively low content of Na2O in rhyolites and basalts are interpreted as a result of hydrothermal interaction of eruptive magmas with K-enriched hot seawater. The strata of siliceous metasedimentary rocks (microquartzites) within basaltic and rhyolitic lavas were formed in processes of chemogenic sedimentation and subsequent contact metamorphism during underwater volcanism. Microquartzites showed carbon vastly depleted of heavy isotope 13С. This is typical for rocks formed with participation of living substance. The Raman spectra of the remaining carbon-containing substance have graphite bands. In the microquartzites among basalts and rhyolites we found a community of structures with external and internal morphology similar to modern or fossilized marine microorganisms: spiral cyanobacterias, amoebas, diatoms, foraminifers, virus capsids, flagellates and multicellular organisms. It is assumed that these silificated and ferruginizated microfossils represent the Paleoproterozoic community of marine microorganisms.

Keywords

submarine volcanism / siliceous rocks / silification / Paleoproterozoic microfossils / carbon isotopes

Cite this article

Download citation ▾
Anatoly M. Belyaev. Paleoproterozoic Underwater Volcanism and Microfossil-Like Structures in the Metasedimentary Siliceous Rocks, Hogland Island, Russia. Journal of Earth Science, 2018, 29(6): 1431-1442 DOI:10.1007/s12583-018-0883-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Belyaev A. M. Petrology of Volcanic Rocks from the Rapakivi Formation (Island Hogland). J. Regional Geology and Metallogeny, St. Petersburg, Russia, 2013, 55: 28-36.

[2]

Belyaev A. M., Bogdanov Y. B., Levchenkov O. A. Petrogenesis of the Bimodal Rapakivi-Related Volcanites of the Island of Hogland, 1.64 Ga Wiborg Batholith, Russia, 1998, Madison: USA. Abstr, 139-140.

[3]

Belyaev A. M., Bogdanov Y. B., Levchenkov O. A., . Bimodal Volcanic Formations of the Wiborg Batholith on the Island of Hogland (Suursaari), Russia, 1996.

[4]

Benning L. G., Phoenix V., Yee M. J., . Molecular Characterization of Cyanobacterial Cells during Silicification: A Synchrotronbased Infrared Study. Geochem. Earth Surf., 2002, 6: 259-263.

[5]

Bickford M. E., Sides J. R., Cullers R. L. Chemical Evolution of Magmas in the Proterozoic Terrane of the St, 1981, 10365-10386.

[6]

Biske N. S., Belyaev A. M., Kolodey V. A. Raman Spectrum of Carbonaceous Material from Hornstones of the Island of Hogland (Russia), 2015, 185-186.

[7]

Filippov A. N., Kemkin I. V. Siliceous-Volcanogenic Complexes of Western Sikhote Alin: Their Stratigraphy and Origin. Russian Journal of Pacific Geology, 2009, 3(2): 154-168.

[8]

Frikh-Khar D. I. The Interaction of Seawater with Igneous Matter. Soviet Geology, 1982, 10: 93-99.

[9]

Grosberg R. K., Strathmann R. R. The Evolution of Multicellularity: A Minor Major Transition?. Annual Review of Ecology, Evolution, and Systematics, 2007, 38(1): 621-654.

[10]

Iyer L. M., Balaji S., Koonin E. V., . Evolutionary Genomics of Nucleo-Cytoplasmic Large DNA Viruses. Virus Research, 2006, 117(1): 156-184.

[11]

Jehlička J., Urban O., Pokorný J. Raman Spectroscopy of Carbon and Solid Bitumens in Sedimentary and Metamorphic Rocks. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2003, 59(10): 2341-2352.

[12]

Kisvarsanyi E. B. Petrochemistry of Precambrian Igneous Province, St. Francois Mountains, Missouri, 1972.

[13]

Kooistra W. H. C. F., Medlin L. K. Evolution of the Diatoms (Bacillariophyta) IV: A Reconstruction of Their Age from Small Subunit rRNA Coding Regions and the Fossil Record. Molecular Phylogenetics and Evolution, 1996, 6(3): 391-407.

[14]

Lawrence C. M., Menon S., Eilers B. J., . Structural and Functional Studies of Archaeal Viruses. Journal of Biological Chemistry, 2009, 284(19): 12599-12603.

[15]

Orange F., Chabin A., Gorlas A., . Experimental Fossilisation of Viruses from Extremophilic Archaea. Biogeosciences, 2011, 8(6): 1465-1475.

[16]

Pawlowski J., Holzmann M., Berney C., . The Evolution of Early Foraminifera. Proceedings of the National Academy of Sciences, 2003, 100(20): 11494-11498.

[17]

Rämö O. T. Petrogenesis of the Proterozoic Rapakivi Granites and Related Basic Rocks of Southeastern Fennoscandia: Nd and Pb Isotopic and General Geochemical Constraints, 1991.

[18]

Rämö O. T., Mänttäri I., Huhma H., . 1 635 Ma Bimodal Volcanism Associated with the Wiborg Rapakivi Batholith (Suursaari, Gulf of Finland, Russia). Sixth Hutton Symposium on the Origin of Granitic Rocks. University of Stellenbosch, 2007, 174-175.

[19]

Renaut R. W., Jones B., Tiercelin J. J. Rapid in situ Silicification of Microbes at Loburu Hot Springs, Lake Bogoria, Kenya Rift Valley. Sedimentology, 1998, 45(6): 1083-1103.

[20]

Rozanov A. Y. Bacterial Paleontology, 2002.

[21]

Rozanov A. Y., Astafieva M. M. The Evolution of the Early Precambrian Geobiological Systems. Paleontological Journal, 2009, 43(8): 911-927.

[22]

Sides J. R., Bickford M. E., Shuster R. D., . Calderas in the Precambrian Terrane of the St, 1981, 10349-10364.

[23]

Streng M., Babcock L. E., Hollingsworth J. S. Agglutinated Protists from the Lower Cambrian of Nevada. Journal of Paleontology, 2005, 79(6): 1214-1218.

[24]

Westall F., Boni L., Guerzoni E. The Experimental Silicification of Microorganisms. Palaeontology, 1995, 38(3): 495-528.

[25]

Yu J., Fu H., Zhang F., . Petrogenesis of Potassic Alkaline Volcanics Associated with Rapakivi Granites in the Proterozoic Rift of Beijing, China. Mineralogy and Petrology, 1994, 50: 83-96.

[26]

Zhang S. H., Liu S. W., Zhao Y., . The 1.75–1.68 Ga Anorthosite-Mangerite-Alkali Granitoid-Rapakivi Granite Suite from the Northern North China Craton: Magmatism Related to a Paleoproterozoic Orogen. Precambrian Research, 2007, 155(3/4): 287-312.

AI Summary AI Mindmap
PDF

149

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/