Early Paleozoic Granulite-Facies Metamorphism and Magmatism in the Northern Wulan Terrane of the Quanji Massif: Implications for the Evolution of the Proto-Tethys Ocean in Northwestern China

Qinyan Wang , Yanjun Dong , Yuanming Pan , Fanxi Liao , Xiaowei Guo

Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (5) : 1081 -1101.

PDF
Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (5) : 1081 -1101. DOI: 10.1007/s12583-018-0881-6
Metamorphism, Magmatism and Tectonic Evolution of Central China Orogenic Belts

Early Paleozoic Granulite-Facies Metamorphism and Magmatism in the Northern Wulan Terrane of the Quanji Massif: Implications for the Evolution of the Proto-Tethys Ocean in Northwestern China

Author information +
History +
PDF

Abstract

The nature and evolution of the Proto-Tethys Ocean originated from the breakup of the supercontinent Rodinia remain controversial. Early Paleozoic magmatism and metamorphism can provide important constraints on the closure of the Proto-Tethys Ocean. This paper reports on a set of geological, petrographical, geochronological, mineralogical and geochemical data for Early Paleozoic granite, gabbro, granulite and granitic leucosome in the northern Wulan terrane of the Quanji Massif. Zircon LA-ICP-MS U-Pb dating reveals two episodes of magmatism, with the emplacement of a granitic pluton at 476.7±2.8 Ma and a gabbroic dike at 423±2 Ma. Whole-rock geochemistry suggests an arc affinity for the magma of the granitic pluton but a post-collisional extension setting for the gabbroic dike. Zircon LA-ICP-MS U-Pb dating also shows that the peak granulite-facies metamorphism and anatexis occurred at ~475 Ma, coeval with the formation of the granitic pluton in the Quanji Massif as well as the early lawsonite-bearing eclogites in the North Qaidam high-pressure and ultrahigh-pressure (HP-UHP) metamorphic belt to the south. The granulite-facies metamorphism with peak P-T conditions at 718–729 ºC and 0.46–0.53 GPa is characterized by an anticlockwise P-T path. Our data provide compelling evidence for Early Paleozoic paired metamorphic belts with HP-UHP metamorphism in the North Qaidam to the south and low P/T metamorphism in the Quanji Massif as a continental arc to the north, hence suggesting a northward subduction polarity for the Proto-Tethys oceanic plate. The intrusion of the post-collisional gabbroic dike supports for the closure of the Proto-Tethys Ocean in northwestern China before 423 Ma.

Keywords

arc magmatism / low P/T granulite-facies metamorphism / paired metamorphic belts / Proto-Tethys Ocean / northern Wulan terrane / NW China

Cite this article

Download citation ▾
Qinyan Wang, Yanjun Dong, Yuanming Pan, Fanxi Liao, Xiaowei Guo. Early Paleozoic Granulite-Facies Metamorphism and Magmatism in the Northern Wulan Terrane of the Quanji Massif: Implications for the Evolution of the Proto-Tethys Ocean in Northwestern China. Journal of Earth Science, 2018, 29(5): 1081-1101 DOI:10.1007/s12583-018-0881-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Belousova E., Griffin W., OʼReilly S. Y., . Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 2002, 143(5): 602-622.

[2]

Brey G. P., Köhler T. Geothermobarometry in Four-Phase Lherzolites II. New Thermobarometers, and Practical Assessment of Existing Thermobarometers. Journal of Petrology, 1990, 31(6): 1353-1378.

[3]

Brown M. Paired Metamorphic Belts Revisited. Gondwana Research, 2010, 18(1): 46-59.

[4]

Bureau of GeologyMineral Resources Qinghai Province BGMQ Regional Geology of Qinghai Province, 1991, 315-318.

[5]

Cawood P. A., Buchan C. Linking Accretionary Orogenesis with Supercontinent Assembly. Earth-Science Reviews, 2007, 82(3/4): 217-256.

[6]

Cawood P. A., Johnson M. R. W., Nemchin A. A. Early Palaeozoic Orogenesis along the Indian Margin of Gondwana: Tectonic Response to Gondwana Assembly. Earth and Planetary Science Letters, 2007, 255(1/2): 70-84.

[7]

Chen D. L., Sun Y., Liu L. The Metamorphic Ages of the Country Rocks of the Yukahe Eclogites in the Northern Margin of Qaidam Basin and Its Geological Significance. Earth Science Frontiers, 2007, 14(1): 108-116.

[8]

Chen N.-S., Gong S. L., Xia X. P., . Zircon Hf Isotope of Yingfeng Rapakivi Granites from the Quanji Massif and ~2.7Ga Crustal Growth. Journal of Earth Science, 2013, 24(1): 29-41.

[9]

Chen N.-S., Liao F. X., Wang L., . Late Paleoproterozoic Multiple Metamorphic Events in the Quanji Massif: Links with Tarim and North China Cratons and Implications for Assembly of the Columbia Supercontinent. Precambrian Research, 2013, 228: 102-116.

[10]

Chen N.-S., Zhang L., Sun M., . U-Pb and Hf Isotopic Compositions of Detrital Zircons from the Paragneisses of the Quanji Massif, NW China: Implications for Its Early Tectonic Evolutionary History. Journal of Asian Earth Sciences, 2012, 110-130.

[11]

Chen N.-S., Gong S. L., Sun M., . Precambrian Evolution of the Quanji Block, Northeastern Margin of Tibet: Insights from Zircon U-Pb and Lu-Hf Isotope Compositions. Journal of Asian Earth Sciences, 2009, 35(3/4): 367-376.

[12]

Chen N.-S., Sun M., Wang Q. Y., . U-Pb Dating of Zircon from the Central Zone of the East Kunlun Orogen and Its Implications for Tectonic Evolution. Science in China Series D: Earth Sciences, 2008, 51(7): 929-938.

[13]

Chen N.-S., Wang X. Y., Zhang H. F., . Geochemistry and Nd-Sr-Pb Isotopic Compositions of Granitoids from Qaidam and Oulongbuluke Micro-Blocks, NW China: Constraints on Basement Nature and Tectonic Affinity. Earth Science—Journal of China University of Geosciences, 2007, 32(1): 7-21.

[14]

Cheng T. T., Niu M. L., Wu Q., . Petrogenesis of the Chahannuo Gabbro on the Northern Margin of Qaidam Basin: Constraint from Geochemistry, Zircon U-Pb Dating and Lu-Hf Isotopes. Chinese Journal of Geology, 2015, 50: 741-755.

[15]

Corfu F., Hanchar J. M., Hoskin P. W., . Atlas of Zircon Textures. Reviews in Mineralogy and Geochemistry, 2003, 53: 469-500.

[16]

Da L. C., Niu M. L., Li X. C., . Tectonic Deformation Characteristics of the L Tectonites in Erlangdong Area at the Northern Margin of Qaidam Basin and Its Geological Significance. Chinese Journal of Geology, 2017, 52: 1038-1057.

[17]

Dong Y. J. The Formation of Granulites and Its Tectonic Implications in Northern Wulan of the Quanji Massif: [Dissertation], 2014.

[18]

Droop G. T. R. A General Equation for Estimating Fe3+ Concentrations in Ferromagnesian Silicates and Oxides from Microprobe Analyses, Using Stoichiometric Criteria. Mineralogical Magazine, 1987, 51(361): 431-435.

[19]

Gao C. L., Huang Z. G., Ye D. L., . Three Paleo-Oceans in the Early Paleozoic and Their Control to Basins in China. Petroleum Geology and Experiment, 2005, 27(5): 439-448.

[20]

Gao X. F., Xiao P. X., Jia Q. Z. Redetermination of the Tanjianshan Group: Geochronological and Geochemical Evidence of Basalts from the Margin of the Qaidam Basin. Acta Geologica Sinica, 2011, 1452-1463.

[21]

Gong S. L., Chen N.-S., Geng H. Y., . Zircon Hf Isotopes and Geochemistry of the Early Paleoproterozoic High-Sr Low-Y Quartz-Diorite in the Quanji Massif, NW China: Crustal Growth and Tectonic Implications. Journal of Earth Science, 2014, 25(1): 74-86.

[22]

Gong S. L., Chen N.-S., Wang Q. Y., . Early Paleoproterozoic Magmatism in the Quanji Massif, Northeastern Margin of the Qinghai-Tibet Plateau and Its Tectonic Significance: LA-ICPMS U-Pb Zircon Geochronology and Geochemistry. Gondwana Research, 2012, 21(1): 152-166.

[23]

Guo A. L., Zhang G. W., Qiang J., . Indosinian Zongwulong Belt on the Northeastern Margin of the Qinghai-Tibet Plateau. Acta Petrologica Sinica, 2009, 25: 1-12.

[24]

Hao G. J., Lu S. N., Li H. K., . Determimation and Significance of Eclogite on Shaliuhe, in the North Margin of the Qaidam Basin. Geological Survey and Research, 2001, 24(3): 154-162.

[25]

Harley S. L. The Solubility of Alumina in Orthopyroxene Coexisting with Garnet in FeO-MgO-Al2O3-SiO2 and CaO-FeO-MgO-Al2O3-SiO2. Journal of Petrology, 1984, 25(3): 665-696.

[26]

He C., Gong S. L., Wang L., . Protracted Post-Collisional Magmatism during Plate Subduction Shutdown in Early Paleoproterozoic: Insights from Post-Collisional Granitoid Suite in NW China. Gondwana Research, 2018, 55: 92-111.

[27]

Holdaway M. J. Application of New Experimental and Garnet Margules Data to the Garnet-Biotite Geothermometer. American Mineralogist, 2000, 85(7/8): 881-892.

[28]

Holdaway M. J. Recalibration of the GASP Geobarometer in Light of Recent Garnet and Plagioclase Activity Models and Versions of the Garnet-Biotite Geothermometer. American Mineralogist, 2001, 86(10): 1117-1129.

[29]

Hu Z. C., Gao S., Liu Y. S., . Signal Enhancement in Laser Ablation ICP-MS by Addition of Nitrogen in the Central Channel Gas. Journal of Analytical Atomic Spectrometry, 2008, 23(8): 1093-1101.

[30]

Hu Z. C., Liu Y. S., Gao S., . A Local Aerosol Extraction Strategy for the Determination of the Aerosol Composition in Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 2008, 23(9): 1192-1203.

[31]

Kelemen P. B., Shimizu N., Dunn T. Relative Depletion of Niobium in Some Arc Magmas and the Continental Crust: Partitioning of K, Nb, La and Ce during Melt/Rock Reaction in the Upper Mantle. Earth and Planetary Science Letters, 1993, 120(3/4): 111-134.

[32]

Lai S. C., Deng J. F., Zhao H. L. Paleozoic Ophiolites and Its Tectonic Significance on North Margin of Qiadam Basin. Geoscience, 1996, 10(1): 18-28.

[33]

Lai S. C., Deng J. F., Zhao H. L. Volcanism and Tectonic Setting during Ordovician Period on North Margin of Qaidam. Journal of Xi’an College of Geology, 1996, 18(3): 8-14.

[34]

Le Maitre R. W., Bateman P., Dudek A., . A Classification of Igneous Rocks and a Glossary of Terms. Recommendations of the IGUS Sub-Commission on the Systematic of Igneous Rocks, 1989.

[35]

Li Z. X., Bogdanova S. V., Collins A. S., . Assembly, Configuration, and Break-up History of Rodinia: A Synthesis. Precambrian Research, 2008, 160(1/2): 179-210.

[36]

Li S. Z., Yang Z., Zhao S. J., . Global Early Paleozoic Orogens (I): Collision-Type Orogeny. Journal of Jilin University (Earth Science Edition), 2016, 46(4): 945-967.

[37]

Li S. Z., Yang Z., Zhao S. J., . Global Early Paleozoic Orogens (II): Subduction-Accretionary-Type Orogeny. Journal of Jilin University (Earth Science Edition), 2016, 46(4): 968-1004.

[38]

Li S. Z., Li X. Y., Zhao S. J., . Global Early Paleozoic Orogens (III): Intracontinental Orogen in South China. Journal of Jilin University (Earth Science Edition), 2016, 46(4): 1005-1025.

[39]

Li S. Z., Yang Z., Zhao S. J., . Global Early Paleozoic Orogens (IV): Plate Reconstruction and Supercontinent Carolina. Journal of Jilin University (Earth Science Edition), 2016, 46(4): 1026-1041.

[40]

Li S. Z., Zhao S. J., Liu X., . Closure of the Proto-Tethys Ocean and Early Paleozoic Amalgamation of Microcontinental Blocks in East Asia, 2017.

[41]

Li X. C., Niu M. L., Yan Z., . LP/HT Metamorphic Rocks in Wulan County, Qinghai Province: An Early Paleozoic Paired Metamorphic Belt on the Northern Qaidam Basin. Chinese Science Bulletin, 2015, 60: 3501-3513.

[42]

Li X. C., Niu M. L., Yakymchuk C., . Anatexis of Former Arc Magmatic Rocks during Oceanic Subduction: A Case Study from the North Wulan Gneiss Complex. Gondwana Research, 2018, 61: 128-149.

[43]

Liao F. X., Wang Q. Y., Chen N.-S., . Geochemistry and Geochronology of the ~0.82Ga High-Mg Gabbroic Dykes from the Quanji Massif, Southeast Tarim Block, NW China: Implications for the Rodinia Supercontinent Assembly. Journal of Asian Earth Sciences, 2018, 157: 3-21.

[44]

Liao F. X., Chen N.-S., Santosh M., . Paleoproterozoic Nb-Enriched Meta-Gabbros in the Quanji Massif, NW China: Implications for Assembly of the Columbia Supercontinent. Geoscience Frontiers, 2018, 9(2): 577-590.

[45]

Liao F. X., Zhang L., Chen N.-S., . Geochronology and Geochemistry of Meta-Mafic Dykes in the Quanji Massif, NW China: Paleoproterozoic Evolution of the Tarim Craton and Implications for the Assembly of the Columbia Supercontinent. Precambrian Research, 2014, 249: 33-56.

[46]

Liao F. X., Gong S. L., Dong Y. J., . LA-ICP-MS Zircon U-Pb Age of Meta-Basic Plutons in Eastern Quanji Massif: Evidence for Mesoproterozoic Continental Break-up. Geological Bulletin of China, 2012, 31(8): 1279-1286.

[47]

Liu Y. S., Hu Z. C., Gao S., . In situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 2008, 257(1/2): 34-43.

[48]

Liu Y. S., Zong K. Q., Kelemen P. B., . Geochemistry and Magmatic History of Eclogites and Ultramafic Rocks from the Chinese Continental Scientific Drill Hole: Subduction and Ultrahigh-Pressure Metamorphism of Lower Crustal Cumulates. Chemical Geology, 2008, 247(1/2): 133-153.

[49]

Liu Y. S., Gao S., Hu Z. C., . Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 2010, 51(1/2): 537-571.

[50]

Liu Y. S., Hu Z. C., Zong K. Q., . Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 2010, 55(15): 1535-1546.

[51]

Lu S. N., Li H. K., Zhang C. L., . Geological and Geochronological Evidence for the Precambrian Evolution of the Tarim Craton and Surrounding Continental Fragments. Precambrian Research, 2008, 160(1/2): 94-107.

[52]

Lu S. N., Yu H. F., Li H. K., . Precambrian Geology in the Central China Orogen (Western Part), 2009, 1-203.

[53]

Lu S. N., Yu H. F., Li H. K., . Research on Precambrian Major Problems in Chinese, 2006, 1-197.

[54]

Lu S. N. Preliminary Study of Precambrian Geology in the North Tibet-Qinghai Plateau., 2002, 1-125.

[55]

Ludwig K. R. Userʼs Manual for ISOPLOT/Ex 3.00: A Geochronological Toolkit for Microsoft Excel, 2003, 1-71.

[56]

Ma J. J., Wang H., He C., . Neoproterozoic Post-Collision Magmatism in South Qilian Orogen, China: Evidenced by Geochronology and Geochemistry. Journal of Earth Sciences and Environment, 2018, 40(2): 133-154.

[57]

Ma J. J., Wang H., He C., . Zircon U-Pb Age Evidence of Jinningan Kekesha Granite in North-Wulan Terrane, Western Qinghai, 2018.

[58]

MacDonald R., Hawkesworth C. J., Heath E. The Lesser Antilles Volcanic Chain: A Study in Arc Magmatism. Earth-Science Reviews, 2000, 49: 1-76.

[59]

Mattinson C. G., Wooden J. L., Liou J. G., . Age and Duration of Eclogite-Facies Metamorphism, North Qaidam HP/UHP Terrane, Western China. American Journal of Science, 2006, 306: 683-711.

[60]

McLennan S. M. Rare Earth Elements in Sedimentary Rocks: Influence of Provenance and Sedimentary Processes. Mineralogical Society of America, 1989, 21: 683-724.

[61]

Meert J. G. A Synopsis of Events Related to the Assembly of Eastern Gondwana. Tectonophysics, 2003, 1-40.

[62]

Meng F. C., Zhang J. X. Contemporaneous of Early Palaeozoic Granite and High Temperature Metamorphism, North Qaidam Mountains, Western China. Acta Petrologica Sinica, 2008, 24: 1585-1594.

[63]

Meng F. C., Zhang J. X., Yang J. S. Tectono-Thermal Event of Post-HP/UHP Metamorphism in Xitieshan Area of the North Qaidam Mountains, Western China: Isotopic and Geochemical Evidence of Granite and Gneiss. Acta Petrologica Sinica, 2005, 21: 45-56.

[64]

Miyashiro A. Metamorphism and Metamorphic Belts, 1973

[65]

Nimis P., Taylor W. R. Single Clinopyroxene Thermobarometry for Garnet Peridotites. Part I. Calibration and Testing of a Cr-in-Cpx Barometer and an Enstatite-in-Cpx Thermometer. Contributions to Mineralogy and Petrology, 2000, 139(5): 541-554.

[66]

Pan G. T., Chen Z. L., Li X. Z., . The Geological Tectonic Formation and Evolution of the Eastern Tethys. Geological Publishing House, Beijing, 1997, 65-128.

[67]

Pan G. T., Wang L. Q., Li R. S., . Tectonic Model of Archipelagic Arc-Basin: The Key to the Continental Geology. Sedimentary Geology and Tethyan Geology, 2012, 32(3): 1-20.

[68]

Pearce J. A. The Role of Sub-Continental Lithosphere in Magmagenesis at Destructive Plate Margins, 1983, 230-249.

[69]

Peng Y., Ma Y. S., Liu C. L., . Geological Characteristics and Tectonic Significance of the Indosinian Granodiorites from the Zongwulong Tectonic Belt in North Qaidam. Earth Science Frontiers, 2016, 23(2): 206-221.

[70]

Perkins D. I., Chipera S. J. Garnet-Orthopyroxene-Plagioclase-Quartz Barometry: Refinement and Application to the English River Subprovince and the Minnesota River Valley. Contributions to Mineralogy and Petrology, 1985, 89(1): 69-80.

[71]

Rittmann A. Volcanoes and Their Activity, 1962, 1-305.

[72]

Rubatto D. Zircon Trace Element Geochemistry: Partitioning with Garnet and the Link between U-Pb Ages and Metamorphism. Chemical Geology, 2002, 184(1/2): 123-138.

[73]

Shi R. D., Yang J. S., Wu C. L., . Island Arc Volcanic Rocks in the North Qaidam UHP Belt, Northern Tibet Plateau: Evidence for Ocean-Continent Subduction Preceding Continent-Continent Subduction. Journal of Asian Earth Sciences, 2006, 28(2/3): 151-159.

[74]

Shi R. D., Yang J. S., Wu C. L., . Island Arc Volcanic Rocks in the North Qaidam UHP Metamorphic Belt. Acta Geologica Sinica, 2004, 78(1): 52-64.

[75]

Song S. G., Niu Y. L., Su L., . Continental Orogenesis from Ocean Subduction, Continent Collision/Subduction, to Orogen Collapse, and Orogen Recycling: The Example of the North Qaidam UHPM Belt, NW China. Earth-Science Reviews, 2014, 129: 59-84.

[76]

Song S. G., Niu Y. L., Su L., . Tectonics of the North Qilian Orogen, NW China. Gondwana Research, 2013, 23(4): 1378-1401.

[77]

Song, S. G., Niu, Y. L., Zhang, G. B., et al., 2018. Two Epochs of Eclogite Metamorphism Link ‘Cold’ Oceanic Subduction and ‘Hot’ Continental Subduction, the North Qaidam UHP Belt, NW China. Geological Society, London, Special Publications, 474. https://doi.org/10.1144/sp474.2

[78]

Song S. G., Wang M. J., Wang C., . Magmatism during Continental Collision, Subduction, Exhumation and Mountain Collapse in Collisional Orogenic Belts and Continental Net Growth: A Perspective. Science China Earth Sciences, 2015, 58(8): 1284-1304.

[79]

Song S. G., Yang J. S., Xu Z. Q., . Metamorphic Evolution of the Coesite-Bearing Ultrahigh-Pressure Terrane in the North Qaidam, Northern Tibet, NW China. Journal of Metamorphic Geology, 2003, 21(6): 631-644.

[80]

Song S. G., Yang L. M., Zhang Y. Q., . Qi-Qin Accretionary Belt in Central China Orogen: Accretion by Trench Jam of Oceanic Plateau and Formation of Intra-Oceanic Arc in the Early Paleozoic Qin-Qi-Kun Ocean. Science Bulletin, 2017, 62(15): 1035-1038.

[81]

Song S. G., Zhang L. F., Niu Y. L., . Evolution from Oceanic Subduction to Continental Collision: A Case Study from the Northern Tibetan Plateau Based on Geochemical and Geochronological Data. Journal of Petrology, 2006, 47(3): 435-455.

[82]

Song S. G., Zhang L. F., Niu Y. L., . Geochronology of Diamond-Bearing Zircons from Garnet Peridotite in the North Qaidam UHPM Belt, Northern Tibetan Plateau: A Record of Compl.x Histories from Oceanic Lithosphere Subduction to Continental Collision. Earth and Planetary Science Letters, 2005, 234(1/2): 99-118.

[83]

Stern R. J. Subduction Zones. Reviews of Geophysics, 2002, 40(4): 1-40.

[84]

Sun J. P., Chen S. Y., Peng Y., . Research on Northern Qaidam Tectonic Attributes during Devonian. Journal of China University of Petroleum (Edition of Natural Science), 2015, 39(2): 23-30.

[85]

Sun S. S., McDonough W. F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 1989, 42(1): 313-345.

[86]

Taylor W. R. An Experimental Test of Some Geothermometer and Geobarometer Formulations for Upper Mantle Peridotites with Application to the Thermobarometry of Fertile Lherzolite and Garnet Websterite. Neues Jahrbuchfür Mineralogie—Abhandlungen, 1998, 172: 381-408.

[87]

Wan Y. S., Xu Z. Q., Yang J. S., . Ages and Compositions of the Precambrian High-Grade Basement of the Qilian Terrane and Its Adjacent Areas. Acta Geologica Sinica, 2001, 75: 375-384.

[88]

Wan Y. S., Zhang J. X., Yang J. S., . Geochemistry of High-Grade Metamorphic Rocks of the North Qaidam Mountains and Their Geological Significance. Journal of Asian Earth Sciences, 2006, 28(2/3): 174-184.

[89]

Wang H. The Grenville Granitic Magmatismin North-Wulan Terrane, Qinghai Province: Evidence from Geochronology and Geochemistry: [Dissertation], 2016.

[90]

Wang H. C., Lu S. N., Mo X. X., . An Early Paleozoic Collisional Orogeny on the Northern Margin of the Qaidam Basin, Northwestern China. Geological Bulletin of China, 2005, 24(7): 603-612.

[91]

Wang H. C., Lu S. N., Yuan G. B., . Tectonic Setting and Age of the “Tanjianshan Group” on the Northern Margin of the Qaidam Basin. Geological Bulletin of China, 2003, 22(7): 487-493.

[92]

Wang H. C., Yuan G. B., Xin H. T., . Occurrence of the Eclogite and Its Genesis in the Luliangshan Area, the Northern Margin of the Qaidam Basin. Geology in China, 2001, 28(7): 22-27.

[93]

Wang L., Wang H., He C., . Mesoproterozoic Continental Breakup in NW China: Evidence from Gray Gneisses from the North Wulan Terrane. Precambrian Research, 2016, 281: 521-536.

[94]

Wang L. Petrogenesis of Metamorphosed Mesoproterozoic–Neoproterozoic Rocks in the North Wulan Terrane, Southern Qilian Orogen and Its Tectonic Implications: [Dissertation], 2018.

[95]

Wang Q. Y., Chen N.-S., Li X. Y., . LA-ICPMS Zircon U-Pb Geochronological Constraints on the Tectonothermal Evolution of the Early Paleoproterozoic Dakendaban Group in the Quanji Block, NW China. Science Bulletin, 2008, 53(18): 2849-2858.

[96]

Wang Q. Y., Dong Y. J., Guo X. W., . Early Paleozoic Granulite-Facies Metamorphism and Magmatism in Northern Wulan of the Quanji Massif, Northwestern China, and Their Tectonic Implications. International Association for Gondwana Research Conference Series, 2015, 21: 126-127.

[97]

Wang Q. Y., Pan Y. M., Chen N.-S., . Proterozoic Polymetamorphism in the Quanji Block, Northwestern China: Evidence from Microtextures, Garnet Compositions and Monazite CHIME Ages. Journal of Asian Earth Sciences, 2009, 34(5): 686-698.

[98]

Wang Q. Y., Zheng J. P., Pan Y. M., . Archean Crustal Evolution in the Southeastern North China Craton: New Data from the Huoqiu Complex. Precambrian Research, 2014, 255: 294-315.

[99]

Wang Y. Z., Liang C. Y., Wang G. X. Discovery of Granulite in the North Margin of Qaidam Basin and Its Geological Characteristics. Qinghai Geology, 2000, 9(1): 33-38.

[100]

Winter J. D. Principles of Igneous and Metamorphic Petrology, Pearson New International Edition (Second Edition), 2014, 1-745.

[101]

Wu C. L., Gao Y. H., Frost B. R., . An Early Palaeozoic Double-Subduction Model for the North Qilian Oceanic Plate: Evidence from Zircon SHRIMP Dating of Granites. International Geology Review, 2011, 53(2): 157-181.

[102]

Wu C. L., Gao Y. H., Wu S. P., . Zircon SHRIMP U-Pb Dating of Granites from the Da Qiadam Area in the North Marign of Qaidam Basin, NW China. Acta Petrologica Sinica, 2007, 23(8): 1861-1875.

[103]

Wu C. L., Gao Y. H., Wu S. P., . Geochemistry and Zircon SHRIMP U-Pb Dating of Granitoids from the West Segment of the North Qaidam. Science China Series D: Earth Sciences, 2008, 38(8): 930-949.

[104]

Wu C. L., Lei M., Wu D., . Zircon SHRIMP Dating and Genesis of Granites in Wulan Area of Northern Qaidam. Acta Geoscientica Sinica, 2016, 37(4): 493-516.

[105]

Wu C. L., Wooden J. L., Robinson P. T., . Geochemistry and Zircon SHRIMP U-Pb Dating of Granitoids from the West Segment of the North Qaidam. Science in China Series D: Earth Sciences, 2009, 52(11): 1771-1790.

[106]

Wu C. L., Wooden J. L., Yang J. S., . Granitic Magmatism in the North Qaidam Early Paleozoic Ultrahigh-Pressure Metamorphic Belt, Northwest China. International Geology Review, 2006, 48(3): 223-240.

[107]

Wu C. L., Yang J. S., Xu Z. Q., . Granitic Magmatism on the Early Paleozoic UHP Belt of Northern Qaidam, NW China. Acta Geologica Sinica, 2004, 78(5): 658-674.

[108]

Wu C. L., Yang J. S., Yang H. Y. Two Types of I-Type Granite Dating and Geological Significance from North Qilian, NW China. Acta Petrologica Sinica, 2004, 20(3): 425-432.

[109]

Wu C. L., Yang J. S., Yao S. Z., . Characteristics of the Granitoid Complex and Its Zircon SHRIMP Dating at the South Margin of the Bashikaogong Basin, North Altun, NW China. Acta Petrologica Sinica, 2005, 21: 846-858.

[110]

Wu C. M., Zhang J., Ren L. D. Empirical Garnet-Muscovite-Plagioclase-Quartz Geobarometry in Medium-to High-Grade Metapelites. Lithos, 2004, 78(4): 319-332.

[111]

Xia L. Q., Li X. M., Yu J. Y., . Mid–Late Neoproterozoic to Early Paleozoic Volcanism and Tectonic Evolution of the Qilian Mountain. Geology in China, 2016, 43(4): 1087-1138.

[112]

Xiong Q., Zheng J. P., Griffin W. L., . Decoupling of U-Pb and Lu-Hf Isotopes and Trace Elements in Zircon from the UHP North Qaidam Orogen, NE Tibet (China): Tracing the Deep Subduction of Continental Blocks. Lithos, 2012, 155: 125-145.

[113]

Xiong Q., Zheng J. P., Griffin W. L., . Zircons in the Shenglikou Ultrahigh-Pressure Garnet Peridotite Massif and Its Country Rocks from the North Qaidam Terrane (Western China): Meso–Neoproterozoic Crust-Mantle Coupling and Early Paleozoic Convergent Plate-Margin Processes. Precambrian Research, 2011, 187(1/2): 33-57.

[114]

Xu Z. Q., Yang J. S., Wu C. L., . Timing and Mechanism of Formation and Exhumation of the Northern Qaidam Ultrahigh-Pressure Metamorphic Belt. Journal of Asian Earth Sciences, 2006, 28(2/3): 160-173.

[115]

Yang J. J., Powell R. Ultrahigh-Pressure Garnet Peridotites from the Devolatilization of Sea-Floor Hydrated Ultramafic Rocks. Journal of Metamorphic Geology, 2008, 26(6): 695-716.

[116]

Yang J. S., Liu F. L., Wu C., . Two Ultrahigh-Pressure Metamorphic Events Recognized in the Central Orogenic Belt of China: Evidence from the U-Pb Dating of Coesite-Bearing Zircons. International Geology Review, 2005, 47(4): 327-343.

[117]

Yang J. S., Liu F. L., Wu C. L., . Two Ultra-High Pressure Metamorphic Events Recognized in the Central Orogenic Belt of China: Evidence from the U-Pb Dating of Coesite-Bearing Zircons. Acta Geologica Sinica, 2003, 77: 463-477.

[118]

Yang J. S., Xu Z. Q., Li H. B., . Discovery of Eclogite at Northern Margin of Qaidam Basin, NW China. Chinese Science Bulletin, 1998, 43(20): 1755-1760.

[119]

Yang J. J., Deng J. F. Garnet Peridotite and Eclogites in the Northern Qaidam Mountains, Tibetan Plateau: A First Record on UHP Metamorphism and Tectonics, 1994.

[120]

Yu F. C., Wei G. F., Sun J. D. Metallogenic Modal for the Syntectonic Gold Deposits in Black Series—A Case Study of the Tanjianshan Deposit. Northwest University Press, Xi’an, 1994, 1-130.

[121]

Yu S. Y., Zhang J. X., Li J. P., . Zircon U-Pb Geochronology of High-Pressure Granulite and Its Tectonic Implications in the Dulan Area, North Qaidam Mountains, Western China. Acta Petrologica et Mineralogica, 2010, 29: 139-150.

[122]

Yu S. Y., Zhang J. X., Mattinson C. G., . Paleozoic HP Granulite-Facies Metamorphism and Anatexis in the Dulan Area of the North Qaidam UHP Terrane, Western China: Constraints from Petrology, Zircon U-Pb and Amphibole Ar-Ar Geochronology. Lithos, 2014, 58-76.

[123]

Yu S. Y., Zhang J. X., Real P. G. D. Petrology and P-T Path of High-Pressure Granulite from the Dulan Area, North Qaidam Mountains, Northwestern China. Journal of Asian Earth Sciences, 2011, 42(4): 641-660.

[124]

Yu S. Y., Zhang J. X., Sun D. Y., . Petrology, Geochemistry, Zircon U-Pb Dating and Lu-Hf Isotope of Granitic Leucosomes within Felsic Gneiss from the North Qaidam UHP Terrane: Constraints on the Timing and Nature of Partial Melting. Lithos, 2015, 218/219: 1-21.

[125]

Yuan G. B., Wang H. C., Li H. M., . Zircon U-Pb Age of the Gabbros in Luliangshan Area on the Northern Margin of Qaidam Basin and Its Geological Implication. Progress in Precambrian Research, 2002, 25(1): 37-40.

[126]

Zhang G. B., Song S. G., Zhang L. F., . Ophiolite-Type Mantle Peridotite from Shaliuhe, North Qaidam UHPM Belt, NW China and Its Tectonic Implications. Acta Petrologica Sinica, 2005, 21(4): 1049-1058.

[127]

Zhang L., Ba J., Chen N.-S., . U-Pb Age Spectra and Trace Elements of Detrital Zircon from Quanji Group: Implications for Thermal Events and Early Evolution in the Basement. Earth Science—Journal of China University of Geosciences, 2012, 37: 28-42.

[128]

Zhang L., Liao F. X., Ba J., . Mineral Evolution and Zircon Geochronology of Mafic Enclave in Granitic Gneiss of the Quanji Block and Implications for Paleoproterozoic Regional Metamorphism. Earth Science Frontiers, 2011, 18(2): 79-84.

[129]

Zhang L., Wang Q. Y., Chen N.-S., . Geochemistry and Detrital Zircon U-Pb and Hf Isotopes of the Paragneiss Suite from the Quanji Massif, SE Tarim Craton: Implications for Paleoproterozoic Tectonics in NW China. Journal of Asian Earth Sciences, 2014, 95: 33-50.

[130]

Zhang J. X., Mattinson C. G., Meng F. C., . Polyphase Tectonothermal History Recorded in Granulitized Gneisses from the North Qaidam HP/UHP Metamorphic Terrane, Western China: Evidence from Zircon U-Pb Geochronology. Geological Society of America Bulletin, 2008, 120(5/6): 732-749.

[131]

Zhang J. X., Mattinson C. G., Meng F. C., . An Early Palaeozoic HP/HT Granulite-Garnet Peridotite Association in the South Altyn Tagh, NW China: P-T History and U-Pb Geochronology. Journal of Metamorphic Geology, 2005, 23(7): 491-510.

[132]

Zhang J. X., Mattinson C. G., Yu S. Y., . U-Pb Zircon Geochronology of Coesite-Bearing Eclogites from the Southern Dulan Area of the North Qaidam UHP Terrane, Northwestern China: Spatially and Temporally Extensive UHP Metamorphism during Continental Subduction. Journal of Metamorphic Geology, 2010, 28(9): 955-978.

[133]

Zhang J. X., Mattinson C. G., Yu S. Y., . Combined Rutile-Zircon Thermometry and U-Pb Geochronology: New Constraints on Early Paleozoic HP/UHT Granulite in the South Altyn Tagh, North Tibet, China. Lithos, 2014, 200/201: 241-257.

[134]

Zhang J. X., Meng F. C., Yu S. Y., . Metamorphic History Recorded in High Pressure Mafic Granulites in Luliangshan, North Qaidam Mountains: Evidence from Petrology. Earth Science Frontiers, 2007, 14(1): 85-97.

[135]

Zhang J. X., Yu S. Y., Li Y. S., . Subduction, Accretion and Closure of Proto-Tethyan Ocean: Early Paleozoic Accretion/Collision Orogeny in the Altun-Qilian-North Qaidam Orogenic System. Acta Petrologica Sinica, 2015, 31(12): 3531-3554.

[136]

Zhang J. X., Yu S. Y., Mattinson C. G. Early Paleozoic Polyphase Metamorphism in Northern Tibet, China. Gondwana Research, 2017, 41: 267-289.

[137]

Zhang J. X., Yu S. Y., Meng F. C., . Paired High-Pressure Granulite and Eclogite in Collision Orogens and Their Geodynamic Implications. Acta Petrologica Sinica, 2009, 25(9): 2050-2066.

[138]

Zhang J. X., Yang J. S., Xu Z. Q., . Peak and Retrograde age of Eclogites at the Northern Margin of Qaidam Basin, Northwestern China: Evidence from U-Pb and Ar-Ar Dates. Geochimica, 2000, 29(3): 217-222.

[139]

Zhao F. Q., Lu S. N., Li H. K. The Geochemical Characteristics of the Meso–Neoproterozoic Granite Belt in the Dakendaban Compl.x Rocks of the Qaidam Block, 2000, 95-97.

[140]

Zhu X. H., Chen D. L., Liu L., . Geochronology, Geochemistry and Significance of the Early Paleozoic Back-Arc Type Ophiolite in Lüliangshan Area, North Qaidam. Acta Petrologica Sinica, 2014, 30(3): 822-834.

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/