Water in the Thickened Lower Crust of the Eastern Himalayan Orogen

Li Zhang , Yu Ye , Shan Qin , Zhenmin Jin

Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (5) : 1040 -1048.

PDF
Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (5) : 1040 -1048. DOI: 10.1007/s12583-018-0880-7
Metamorphism, Magmatism and Tectonic Evolution of the Himalayan Orogen and Tianshan Orogen

Water in the Thickened Lower Crust of the Eastern Himalayan Orogen

Author information +
History +
PDF

Abstract

Water content in nominally anhydrous minerals (NAMs) of the high-pressure (HP) metamorphic rocks controls the thermal structure, rheology and partial melting of orogenic belts. This paper conducts a systematic analysis of water in NAMs of the HP granulites from the Greater Himalayan Sequence (GHS), representing the thickened lower crust of the eastern Himalayan Orogen. The present result shows that the garnet, clinopyroxene, feldspar, quartz and kyanite contain 188 ppm–432 ppm, 193 ppm–547 ppm, 335 ppm–1 053 ppm, 125 ppm–185 ppm and 89 ppm H2O, respectively, and indicates that the thickened lower crust of the Himalayan Orogen is relatively wet rather than dry. The considerable concentrations of water in the HP granulites are expected to promote the rheological weakening of the metamorphic core of the Himalayan Orogen, providing a favorable evidence for the channel flow model of the exhumation of thickened lower crust.

Keywords

micro-FTIR (Fourier transform infrared spectroscopy) / water content / granulite / Himalayan Orogen

Cite this article

Download citation ▾
Li Zhang, Yu Ye, Shan Qin, Zhenmin Jin. Water in the Thickened Lower Crust of the Eastern Himalayan Orogen. Journal of Earth Science, 2018, 29(5): 1040-1048 DOI:10.1007/s12583-018-0880-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Beaumont C., Jamieson R. A., Nguyen M. H., . Crustal Channel Flows: 1, 2004, Numerical Models with Applications to the Tectonics of the Himalayan-Tibetan Orogen. Journal of Geophysical Research: Solid Earth, 109(B6): B06406

[2]

Bell D. R., Rossman G. R., Maldener J., . Hydroxide in Kyanite: A Quantitative Determination of the Absolute Amount and Calibration of the IR Spectrum. American Mineralogist, 2004, 89(7): 998-1003.

[3]

Bell D. R., Ihinger P. D., Rossman G. R. Quantitative Analysis of Trace OH in Garnet and Pyroxenes. American Mineralogist, 1995, 80(5/6): 465-474.

[4]

Beran A., Gotzinger M. A. The Quantitative IR Spectroscopic Determination of Structural OH Groups in Kyanites. Mineralogy and Petrology, 1987, 36(1): 41-49.

[5]

Booth A. L., Chamberlain C. P., Kidd W. S. F., . Constraints on the Metamorphic Evolution of the Eastern Himalayan Syntaxis from Geochronologic and Petrologic Studies of Namche Barwa. Geological Society of America Bulletin, 2009, 121(3/4): 385-407.

[6]

Booth A. L., Zeitler P. K., Kidd W. S. F., . U-Pb Zircon Constraints on the Tectonic Evolution of Southeastern Tibet, Namche Barwa Area. American Journal of Science, 2004, 304(10): 889-929.

[7]

Burg J.-P., Nievergelt P., Oberli F., . The Namche Barwa Syntaxis: Evidence for Exhumation Related to Compressional Crustal Folding. Journal of Asian Earth Sciences, 1998, 16(2/3): 239-252.

[8]

Ding L., Zhong D. L., Yin A., . Cenozoic Structural and Metamorphic Evolution of the Eastern Himalayan Syntaxis (Namche Barwa). Earth and Planetary Science Letters, 2001, 192(3): 423-438.

[9]

Geng Q. R., Pan G. T., Zheng L. L., . The Eastern Himalayan Syntaxis: Major Tectonic Domains, Ophiolitic Mélanges and Geologic Evolution. Journal of Asian Earth Sciences, 2006, 27(3): 265-285.

[10]

Gong B., Zheng Y. F., Chen R. X. TC/EA-MS Online Determination of Hydrogen Isotope Composition and Water Concentration in Eclogitic Garnet. Physics and Chemistry of Minerals, 2007, 34(10): 687-698.

[11]

Griggs D. A Model of Hydrolytic Weakening in Quartz. Journal of Geophysical Research, 1974, 79(11): 1653-1661.

[12]

Groppo C., Rolfo F., Indares A. Partial Melting in the Higher Himalayan Crystallines of Eastern Nepal: The Effect of Decompression and Implications for the ‘Channel Flow’ Model. Journal of Petrology, 2012, 53(5): 1057-1088.

[13]

Guilmette C., Indares A., Hébert R. High-Pressure Anatectic Paragneisses from the Namche Barwa, Eastern Himalayan Syntaxis: Textural Evidence for Partial Melting, Phase Equilibria Modeling and Tectonic Implications. Lithos, 2011, 124(1/2): 66-81.

[14]

Handy M. R., Mulch A., Rosenau M., . The Role of Fault Zones and Melts as Agents of Weakening, Hardening and Differentiation of the Continental Crust: A Synthesis. Geological Society, London, Special Publications, 2001, 186(1): 305-332.

[15]

Jamieson R. A., Beaumont C., Medvedev S., . Crustal Channel Flows: 2, 2004.

[16]

Jamieson R. A., Beaumont C., Nguyen M. H., . Provenance of the Greater Himalayan Sequence and Associated Rocks: Predictions of Channel Flow Models. Geological Society, London, Special Publications, 2006, 268(1): 165-182.

[17]

Johnson E. A. Water in Nominally Anhydrous Crustal Minerals: Speciation, Concentration, and Geologic Significance. Reviews in Mineralogy and Geochemistry, 2006, 62(1): 117-154.

[18]

Johnson E. A., Rossman G. R. The Concentration and Speciation of Hydrogen in Feldspars Using FTIR And1H MAS NMR Spectroscopy. American Mineralogist, 2003, 88(5/6): 901-911.

[19]

Johnson E. A., Rossman G. R. A Survey of Hydrous Species and Concentrations in Igneous Feldspars. American Mineralogist, 2004, 89(4): 586-600.

[20]

Johnson E. A., Rossman G. R., Dyar M. D., . Correlation between OH Concentration and Oxygen Isotope Diffusion Rate in Diopsides from the Adirondack Mountains, New York. American Mineralogist, 2002, 87(7): 899-908.

[21]

Katayama I., Nakashima S., Yurimoto H. Water Content in Natural Eclogite and Implication for Water Transport into the Deep Upper Mantle. Lithos, 2006, 86(3/4): 245-259.

[22]

Kohlstedt D. L. The Role of Water in High-Temperature Rock Deformation. Reviews in Mineralogy and Geochemistry, 2006, 62(1): 377-396.

[23]

Kohn M. J. P-T-t Data from Central Nepal Support Critical Taper and Repudiate Large-Scale Channel Flow of the Greater Himalayan Sequence. Geological Society of America Bulletin, 2008, 120(3/4): 259-273.

[24]

Kohn M. J. Himalayan Metamorphism and Its Tectonic Implications. Annual Review of Earth and Planetary Sciences, 2014, 42(1): 381-419.

[25]

Kovács I. J., Németh B., Török K., . Very Dry Lower Crust beneath the Central Part of the Carpathian-Pannonian Region: The Role of Miocene Extension Induced Melting. Goldschmidt Conference 2015, 2015, 16-21.

[26]

Kronenberg A. K. Hydrogen Speciation and Chemical Weakening of Quartz. Reviews in Mineralogy and Geochemistry, 1994, 29: 123-176.

[27]

Kronenberg A. K., Wolf G. H. Fourier Transform Infrared Spectroscopy Determinations of Intragranular Water Content in Quartz-Bearing Rocks: Implications for Hydrolytic Weakening in the Laboratory and within the Earth. Tectonophysics, 1990, 172(3/4): 255-271.

[28]

Langer K., Robarick E., Sobolev N. V., . Single-Crystal Spectra of Garnets from Diamondiferous High-Pressure Metamorphic Rocks from Kazakhstan: Indications for OH-, H2O, and FeTi Charge Transfer. European Journal of Mineralogy, 1993, 5(6): 1091-1100.

[29]

Leech M. L., Singh S., Jain A. K., . The Onset of India-Asia Continental Collision: Early, Steep Subduction Required by the Timing of UHP Metamorphism in the Western Himalaya. Earth and Planetary Science Letters, 2005, 234(1/2): 83-97.

[30]

Li W., Jin Z. M., Li H. M., . High Water Content in Primitive Mid-Ocean Ridge Basalt from Southwest Indian Ridge (51.56ºE): Implications for Recycled Hydrous Component in the Mantle. Journal of Earth Science, 2017, 28(3): 411-421.

[31]

Liu F. L., Zhang L. F. High-Pressure Granulites from Eastern Himalayan Syntaxis: P-T Path, Zircon U-Pb Dating and Geological Implications. Acta Petrologica Sinica, 2014, 30(10): 2808-2820.

[32]

Liu Y., Yang Z. Q., Wang M. History of Zircon Growth in a High-Pressure Granulite within the Eastern Himalayan Syntaxis, and Tectonic Implications. International Geology Review, 2007, 49(9): 861-872.

[33]

Liu Y., Zhong D. Petrology of High-Pressure Granulites from the Eastern Himalayan Syntaxis. Journal of Metamorphic Geology, 1997, 15(4): 451-466.

[34]

Ma X. X., Xu Z. Q., Chen X. J., . The Origin and Tectonic Significance of the Volcanic Rocks of the Yeba Formation in the Gangdese Magmatic Belt, South Tibet. Journal of Earth Science, 2017, 28(2): 265-282.

[35]

Nakashima S., Matayoshi H., Yuko T., . Infrared Microspectroscopy Analysis of Water Distribution in Deformed and Metamorphosed Rocks. Tectonophysics, 1995, 245(3/4): 263-276.

[36]

Parsons A. J., Phillips R. J., Lloyd G. E., . Mid-Crustal Deformation of the Annapurna-Dhaulagiri Himalaya, Central Nepal: A Typical Example of Channel Flow during the Himalayan Orogeny. Geosphere, 2016, 12(3): 985-1015.

[37]

Paterson M. S. The Determination of Hydroxyl by Infrared-Absorption in Quartz, Silicate-Glasses and Similar Materials. Bulletin de Mineralogie, 1982, 105: 20-29.

[38]

Potter R. M., Rossman G. R. Desert Varnish: The Importance of Clay Minerals. Science, 1977, 196(4297): 1446-1448.

[39]

Rossman G. R. Studies of OH in Nominally Anhydrous Minerals. Physics and Chemistry of Minerals, 1996, 23(4/5): 299-304.

[40]

Rossman G. R., Aines R. D. The Hydrous Components in Garnets: Grossular-Hydrogrossular. American Mineralogist, 1991, 76: 1153-1164.

[41]

Rowley D. B. Age of Initiation of Collision between India and Asia: A Review of Stratigraphic Data. Earth and Planetary Science Letters, 1996, 1-13.

[42]

Schmädicke E., Gose J., Reinhardt J., . Garnet in Cratonic and Non-Cratonic Mantle and Lower Crustal Xenoliths from Southern Africa: Composition, Water Incorporation and Geodynamic Constraints. Precambrian Research, 2015, 270: 285-299.

[43]

Seaman S. J., Williams M. L., Jercinovic M. J., . Water in Nominally Anhydrous Minerals: Implications for Partial Melting and Strain Localization in the Lower Crust. Geology, 2013, 41(10): 1051-1054.

[44]

Shen K., Wang J. L., Dong X. Fluid Inclusions of the High-Pressure Granulites from the Namche Barwa Complex of the Eastern Himalayan Syntaxis, Tibet: Fluid Composition and Evolution in the Continental Subduction-Zone. Journal of Asian Earth Sciences, 2010, 38(1/2): 44-56.

[45]

Sheng Y. M., Xia Q. K., Dallai L., . H2O Contents and D/H Ratios of Nominally Anhydrous Minerals from Ultrahigh-Pressure Eclogites of the Dabie Orogen, Eastern China. Geochimica et Cosmochimica Acta, 2007, 71(8): 2079-2103.

[46]

Skogby H., Bell D. R., Rossman G. R. Hydroxide in Pyroxene—Variations in the Natural-Environment. American Mineralogist, 1990, 75: 764-774.

[47]

Su W., Ji Z. P., Ye K., . Distribution of Hydrous Components in Jadeite of the Dabie Mountains. Earth and Planetary Science Letters, 2004, 222(1): 85-100.

[48]

Su W., Zhang M., Liu X. H., . Exact Timing of Granulite Metamorphism in the Namche-Barwa, Eastern Himalayan Syntaxis: New Constrains from SIMS U-Pb Zircon Age. International Journal of Earth Sciences, 2012, 101(1): 239-252.

[49]

Thomas S.-M., Koch-Müller M., Reichart P., . IR Calibrations for Water Determination in Olivine, R-GeO2, and SiO2 Polymorphs. Physics and Chemistry of Minerals, 2009, 36(9): 489-509.

[50]

Tian Z. L., Zhang Z. M., Dong X. Metamorphism of High-P Metagreywacke from the Eastern Himalayan Syntaxis: Phase Equilibria and P-T Path. Journal of Metamorphic Geology, 2016, 34(7): 697-718.

[51]

Wang J. M., Rubatto D., Zhang J. J. Timing of Partial Melting and Cooling across the Greater Himalayan Crystalline Complex (Nyalam, Central Himalaya): In-Sequence Thrusting and Its Implications. Journal of Petrology, 2015, 56(9): 1677-1702.

[52]

Wang Q., Bagdassarov N., Xia Q. K., . Water Contents and Electrical Conductivity of Peridotite Xenoliths from the North China Craton: Implications for Water Distribution in the Upper Mantle. Lithos, 2014, 189: 105-126.

[53]

Wang Y. H., Zhang L. F., Zhang J. J., . The Youngest Eclogite in Central Himalaya: P-T Path, U-Pb Zircon Age and Its Tectonic Implication. Gondwana Research, 2017, 41: 188-206.

[54]

Xia Q. K., Sheng Y. M., Yang X. Z., . Heterogeneity of Water in Garnets from UHP Eclogites, Eastern Dabieshan, China. Chemical Geology, 2005, 224(4): 237-246.

[55]

Xia Q. K., Yang X. Z., Deloule E., . Water in the Lower Crustal Granulite Xenoliths from Nushan, Eastern China, 2006.

[56]

Xu W. C., Zhang H. F., Parrish R., . Timing of Granulite-Facies Metamorphism in the Eastern Himalayan Syntaxis and Its Tectonic Implications. Tectonophysics, 2010, 231-244.

[57]

Yang X. Z., Xia Q. K., Deloule E., . Water in Minerals of the Continental Lithospheric Mantle and Overlying Lower Crust: A Comparative Study of Peridotite and Granulite Xenoliths from the North China Craton. Chemical Geology, 2008, 256(1/2): 33-45.

[58]

Yin A., Harrison T. M. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 2000, 28(1): 211-280.

[59]

Zhang J. F., Jin Z. M., Green H. W., . Hydroxyl in Continental Deep Subduction Zone: Evidence from UHP Eclogites of the Dabie Mountains. Chinese Science Bulletin, 2001, 46(7): 592-596.

[60]

Zhang J. J., Ji J. Q., Zhong D. L., . Structural Pattern of Eastern Himalayan Syntaxis in Namjagbarwa and Its Formation Process. Science in China Series D: Earth Sciences, 2004, 47(2): 138-150.

[61]

Zhang L., Jin Z. M. High-Temperature Metamorphism of the Yushugou Ophiolitic Slice: Late Devonian Subduction of Seamount and Mid-Oceanic Ridge in the South Tianshan Orogen. Journal of Asian Earth Sciences, 2016, 132: 75-93.

[62]

Zhang L., Zhang J. F., Jin Z. M. Metamorphic P-T-Water Conditions of the Yushugou Granulites from the Southeastern Tianshan Orogen: Implications for Paleozoic Accretionary Orogeny. Gondwana Research, 2016, 29(1): 264-277.

[63]

Zhang Z. M., Dong X., Santosh M., . Petrology and Geochronology of the Namche Barwa Complex in the Eastern Himalayan Syntaxis, Tibet: Constraints on the Origin and Evolution of the North-Eastern Margin of the Indian Craton. Gondwana Research, 2012, 21(1): 123-137.

[64]

Zhang Z. M., Shen K., Sun W. D., . Fluids in Deeply Subducted Continental Crust: Petrology, Mineral Chemistry and Fluid Inclusion of UHP Metamorphic Veins from the Sulu Orogen, Eastern China. Geochimica et Cosmochimica Acta, 2008, 72(13): 3200-3228.

[65]

Zhang Z. M., Xiang H., Dong X., . Long-Lived High-Temperature Granulite-Facies Metamorphism in the Eastern Himalayan Orogen. South Tibet. Lithos, 2015, 212–215: 1-15.

[66]

Zheng Y. F. Fluid Regime in Continental Subduction Zones: Petrological Insights from Ultrahigh-Pressure Metamorphic Rocks. Journal of the Geological Society, 2009, 166(4): 763-782.

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/