Geochronology, Geochemistry and Sr-Nd-Pb Isotopic Study of the Wulong Flower-Like Glomerophyric Diorite Porphyry (Central China): Implications for Tectonic Evolution of Eastern Qinling

Yuxiang Zhu , Lianxun Wang , Changqian Ma , Chao Zhang , Ke Wang

Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (5) : 1203 -1218.

PDF
Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (5) : 1203 -1218. DOI: 10.1007/s12583-018-0878-1
Metamorphism, Magmatism and Tectonic Evolution of Central China Orogenic Belts

Geochronology, Geochemistry and Sr-Nd-Pb Isotopic Study of the Wulong Flower-Like Glomerophyric Diorite Porphyry (Central China): Implications for Tectonic Evolution of Eastern Qinling

Author information +
History +
PDF

Abstract

The Wulong diorite porphyry displays a very unusual flower-like glomerophyric texture and is thus well-known as a gemstone type of “Luoyang peony stone” for non-geologists. Hereby, we present a comprehensive study in terms of petrography, zircon U-Pb geochronology, geochemistry and Sr-Nd-Pb isotope. The rock exposed as small-scale dykes in the field, intruding in the Archean migmatized biotiteplagioclase genesis at the southern margin of the North China Craton. It exhibits typical porphyrite texture with plagioclase and amphibole as dominant and subdominant phenocrysts, respectively. The diorite porphyry rocks contain 51 wt.%–59 wt.% SiO2, belonging to medium-K calc-alkaline rock series. They are characterized by enrichment of large ion lithophile elements (LILEs, e.g., Ba) and depletion of high field-strength elements (HFSEs, e.g., Nb, Ta, Zr and Hf), resembling island arc magmatic rocks. They show high initial Sr isotopic ratios (0.710 7–0.715 8), low ɛ Nd(t) values (-9.9 to -13.3) and variable initial Pb isotopic ratios (206Pb/204Pb vary from 17.3 to 19.3), similar to the coeval intermediate and mafic magmatic rocks of adjacent region. These geochemical features indicate that the Wulong diorite porphyry is likely to originate from an enriched mantle with contamination of crustal materials. Zircon U-Pb dating results reveal a magma crystallization age of 480±3 Ma, consistent with the summit of the magmatic events of the Qinling orogenic belt and reflecting the northernmost Paleozoic magmatic activity of the belt. This may indicate the influence of northward subduction of Paleotethyan oceanic slab can extend a distance of ca. 200 km to the north and reach Luoyang-Songshan region in the East Qinling Orogen.

Keywords

Early Paleozoic / North China Craton / geochronology / diorite porphyry / Wulong / flowerlike glomerophyric texture

Cite this article

Download citation ▾
Yuxiang Zhu, Lianxun Wang, Changqian Ma, Chao Zhang, Ke Wang. Geochronology, Geochemistry and Sr-Nd-Pb Isotopic Study of the Wulong Flower-Like Glomerophyric Diorite Porphyry (Central China): Implications for Tectonic Evolution of Eastern Qinling. Journal of Earth Science, 2018, 29(5): 1203-1218 DOI:10.1007/s12583-018-0878-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abouchami W., Galer S. J. G., Koschinsky A. Pb and Nd Isotopes in NE Atlantic Fe-Mn Crusts: Proxies for Trace Metal Paleosources and Paleocean Circulation. Geochimica et Cosmochimica Acta, 1999, 63(10): 1489-1505.

[2]

Annen C., Blundy J. D., Sparks R. S. J. The Genesis of Intermediate and Silicic Magmas in Deep Crustal Hot Zones. Journal of Petrology, 2005, 47(3): 505-539.

[3]

Bader T., Franz L., Ratschbacher L., . The Heart of China Revisited: II Early Paleozoic (Ultra)High-Pressure and (Ultra) High-Temperature Metamorphic Qinling Orogenic Collage. Tectonics, 2013, 32(4): 922-947.

[4]

Blatter D. L., Sisson T. W., Hankins W. B. Crystallization of Oxidized, Moderately Hydrous Arc Basalt at Mid-to Lower-Crustal Pressures: Implications for Andesite Genesis. Contributions to Mineralogy and Petrology, 2013, 166(3): 861-886.

[5]

Chen J. L., Xu X. Y., Wang H. L., . LA-ICPMS Zircon U-Pb Dating of Tangzang Quartz-Diorite Pluton in the West Segment of North Qinling Mountains and Its Tectonic Significance. Geoscience, 2008, 22(1): 63-70.

[6]

Chen J. L., Xu X. Y., Wang Z. Q., . Geological Features and SHRIMP U-Pb Zircon Age of the Yanwan-Yinggezui Ophiolitic Melange in the Taibai Area, West Qinling, China. Geological Bulletin of China, 2008, 27(4): 500-509.

[7]

Deniel C. Geochemical and Isotopic (Sr, Nd, Pb) Evidence for Plume-Lithosphere Interactions in the Genesis of Grande Comore Magmas (Indian Ocean). Chemical Geology, 1998, 144(3/4): 281-303.

[8]

Dong Y. P., Zhang G. W., Yang Z., . Geochemistry of the E-MORB Type Ophiolite and Related Volcanic Rocks from the Wushan Area, West Qinling, 2007, 234-245.

[9]

Dong Y. P., Zhang G. W., Hauzenberger C., . Palaeozoic Tectonics and Evolutionary History of the Qinling Orogen: Evidence from Geochemistry and Geochronology of Ophiolite and Related Volcanic Rocks. Lithos, 2011, 122(1/2): 39-56.

[10]

Dong Y. P., Zhang G. W., Neubauer F., . Tectonic Evolution of the Qinling Orogen, China: Review and Synthesis. Journal of Asian Earth Sciences, 2011, 41(3): 213-237.

[11]

Dong Y. P., Liu X. M., Neubauer F., . Timing of Paleozoic Amalgamation between the North China and South China Blocks: Evidence from Detrital Zircon U-Pb Ages. Tectonophysics, 2013, 586: 173-191.

[12]

Dong Y. P., Safonova I., Wang T. Tectonic Evolution of the Qinling Orogen and Adjacent Orogenic Belts. Gondwana Research, 2016, 30: 1-5.

[13]

Dong Y. P., Santosh M. Tectonic Architecture and Multiple Orogeny of the Qinling Orogenic Belt, Central China. Gondwana Research, 2016, 29(1): 1-40.

[14]

Dong Y. P., Zhang X. N., Liu X. M., . Propagation Tectonics and Multiple Accretionary Processes of the Qinling Orogen. Journal of Asian Earth Sciences, 2015, 104: 84-98.

[15]

Ewart A., Collerson K. D., Regelous M., . Geochemical Evolution within the Tonga-Kermadec-Lau Arc-Back-Arc Systems: The Role of Varying Mantle Wedge Composition in Space and Time. Journal of Petrology, 1998, 39(3): 331-368.

[16]

Furman T., Graham D. Erosion of Lithospheric Mantle beneath the East African Rift System: Geochemical Evidence from the Kivu Volcanic Province. Lithos, 1999, 48(1/2/3/4): 237-262.

[17]

Gan B. P., Lai S. C., Qin J. F., . Neoproterozoic Alkaline Intrusive Complex in the Northwestern Yangtze Block, Micang Mountains Region, South China: Petrogenesis and Tectonic Significance. International Geology Review, 2016, 59(3): 311-332.

[18]

Goldstein S. L., OʼNions R. K., Hamilton P. J. A Sm-Nd Isotopic Study of Atmospheric Dusts and Particulates from Major River Systems. Earth and Planetary Science Letters, 1984, 70(2): 221-236.

[19]

Hart S. R., Hauri E. H., Oschmann L. A., . Mantle Plumes and Entrainment: Isotopic Evidence. Science, 1992, 256(5056): 517-520.

[20]

He X. X. High-Precision Analysis of Pb Isotope Ratios Using MC-ICPMS. Acta Geoscientica Sinica, 2005, 19-22.

[21]

Hemley J. J., Jones W. R. Chemical Aspects of Hydrothermal Alteration with Emphasis on Hydrogen Metasomatism. Economic Geology, 1964, 59(4): 538-569.

[22]

Hofmann A. W. Mantle Geochemistry: The Message from Oceanic Volcanism. Nature, 1997, 385(6613): 219-229.

[23]

Hofmann A. W., Jochum K. P., Seufert M., . Nb and Pb in Oceanic Basalts: New Constraints on Mantle Evolution. Earth and Planetary Science Letters, 1986, 79(1/2): 33-45.

[24]

Hu G. H., Zhao T. P., Zhou Y. Y. Depositional Age, Provenance and Tectonic Setting of the Proterozoic Ruyang Group, Southern Margin of the North China Craton. Precambrian Research, 2014, 246: 296-318.

[25]

Kelemen P. B., Hanghøj K., Greene A. R. One View of the Geochemistry of Subduction-Related Magmatic Arcs, with an Emphasis on Primitive Andesite and Lower Crust. Treatise on Geochemistry, 2003, 3: 593-659.

[26]

Kelley K. A., Cottrell E. The Influence of Magmatic Differentiation on the Oxidation State of Fe in a Basaltic Arc Magma. Earth and Planetary Science Letters, 2012, 329/330: 109-121.

[27]

Kepezhinskas P., McDermott F., Defant M. J., . Trace Element and Sr-Nd-Pb Isotopic Constraints on a Three-Component Model of Kamchatka Arc Petrogenesis. Geochimica et Cosmochimica Acta, 1997, 61(3): 577-600.

[28]

Kirkland C. L., Whitehouse M. J., Slagstad T. Fluid-Assisted Zircon and Monazite Growth within a Shear Zone: A Case Study from Finnmark, Arctic Norway. Contributions to Mineralogy and Petrology, 2009, 158(5): 637-657.

[29]

Ling W. L. Neoproterozoic Tectonic Evolution of the Northwestern Yangtze Craton, South China: Implications for Amalgamation and Break-up of the Rodinia Supercontinent. Precambrian Research, 2003, 122(1/2/3/4): 111-140.

[30]

Liu J. F., Sun Y., Li H. Y., . LA-ICP-MS Zircon Dating of Sifangtai Mafic-Ultramafic Complex in the North Qinling Orogenic Belt. Acta Petrologica et Mineralogica, 2012, 31(4): 524-530.

[31]

Liu J. F., Sun Y., Zhang H. Zircon Age of Luohansi Group in the Northern Qinling and Their Geological Significance. Journal of Northwest University, 2007, 37(6): 907-911.

[32]

Liu L., Liao X. Y., Wang Y. W., . Early Paleozoic Tectonic Evolution of the North Qinling Orogenic Belt in Central China: Insights on Continental Deep Subduction and Multiphase Exhumation. Earth-Science Reviews, 2016, 159: 58-81.

[33]

Liu Y. S., Gao S., Hu Z. C., . Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 2010, 51(1/2): 537-571.

[34]

Liu Y. S., Zong K. Q., Kelemen P. B., . Geochemistry and Magmatic History of Eclogites and Ultramafic Rocks from the Chinese Continental Scientific Drill Hole: Subduction and Ultrahigh-Pressure Metamorphism of Lower Crustal Cumulates. Chemical Geology, 2008, 247(1/2): 133-153.

[35]

Lu S. N., Chen Z. H., Li H. K. Late Mesoproterozoic–Early Neo proterozoic Evolution of the Qinling Orogen. Regional Geology of China, 2004, 23(2): 107-112.

[36]

Lugwig K. Isoplot/.x Version 4.1: A Geochronological Toolkit for Microsoft Excel., 2010.

[37]

Ma C. Q., She Z. B., Zhang J. Y. Crustal Roots, Orogenic Heat and Magmatism. Earth Science Frontiers, 2006, 13(2): 130-139.

[38]

Ma C. Q., Zhang J. Y., She Z. B., . Paired Magmatic Belts and Multiple Orogenesis: A Case Study of the Central China Orogen, 2007.

[39]

Meng Q. R., Zhang G. W. Timing of Collision of the North and South China Blocks: Controversy and Reconciliation. Geology, 1999, 27(2): 123-126.

[40]

Meng Q. R., Zhang G. W. Geologic Framework and Tectonic Evolution of the Qinling Orogen, Central China. Tectonophysics, 2000, 323(3/4): 183-196.

[41]

Middlemost E. A. K. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 1994, 37(3/4): 215-224.

[42]

Mustafa H. A., Wang Q. Y., Chen N.-S., . Geochemistry of Metamafic Dykes from the Quanji Massif: Petrogenesis and Further Evidence for Oceanic Subduction, Late Paleoproterozoic, NW China. Journal of Earth Science, 2016, 27(4): 529-544.

[43]

Pei X. Z., Ding S. P., Li Z. Q., . LA-ICP-MS Zircon U-Pb Dating of the Gabbro from the Guanzizhen Ophiolite in the Northern Margin of the Western Qinling and Its Geological Significance. Acta Geologica Sinica, 2007, 81(11): 1550-1561.

[44]

Pei X. Z., Sun R. Q., Ding S. P., . LA-ICP-MS Zircon U-Pb Dating of the Yanjiadian Diorite in the Eastern Qilian Mountains and Its Geological Significance. Geology in China, 2007, 34(1): 8-16.

[45]

Pu W., Gao J. F., Zhao K. D., . Separation Method of Rb-Sr, Sm-Nd Using DCTA and HIBA. Journal of Nanjing University (Nature Sciences), 2005, 41: 445-450.

[46]

Ratschbacher L., Hacker B. R., Calvert A., . Tectonics of the Qinling (Central China): Tectonostratigraphy, Geochronology, and Deformation History. Tectonophysics, 2003, 366(1/2): 1-53.

[47]

Rollinson H. R. Using Geochemical Data: Evaluation, Presentation, Interpretation, 1993, 1-352.

[48]

Rudnick R. L., Gao S. Composition of the Continental Crust. Treatise on Geochemistry, 2003, 3: 1-64.

[49]

Shervais J. W. Ti-V Plots and the Petrogenesis of Modern and Ophiolitic Lavas. Earth and Planetary Science Letters, 1982, 59(1): 101-118.

[50]

Shi Y., Pei X. L., Castillo P. R., . Petrogenesis of the ~5.0 Ma Fushui Mafic Intrusion and Early Paleozoic Tectonic Evolution of the Northern Qinling Belt, Central China. Journal of Asian Earth Sciences, 2017, 141: 74-96.

[51]

Shi Y., Yu J. H., Santosh M. Tectonic Evolution of the Qinling Orogenic Belt, Central China: New Evidence from Geochemical, Zircon U-Pb Geochronology and Hf Isotopes. Precambrian Research, 2013, 231: 19-60.

[52]

Sun S. S., McDonough W. F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 1989, 42(1): 313-345.

[53]

Tang G. J., Wyman D. A., Wang Q., . Asthenosphere-Lithosphere Interaction Triggered by a Slab Window during Ridge Subduction: Trace Element and Sr-Nd-Hf-Os Isotopic Evidence from Late Carboniferous Tholeiites in the Western Junggar Area (NW China). Earth and Planetary Science Letters, 2012, 329/330: 84-96.

[54]

Tang L., Santosh M., Dong Y. P., . Early Paleozoic Tectonic Evolution of the North Qinling Orogenic Belt: Evidence from Geochemistry, Phase Equilibrium Modeling and Geochronology of Metamorphosed Mafic Rocks from the Songshugou Ophiolite. Gondwana Research, 2016, 30: 48-64.

[55]

Tatsumi Y., Hanyu T. Geochemical Modeling of Dehydration and Partial Melting of Subducting Lithosphere: Toward a Comprehensive Understanding of High-Mg Andesite Formation in the Setouchi Volcanic Belt, SW Japan. Geochemistry, Geophysics, Geosystems, 2003.

[56]

Tatsumi Y., Takahashi T., Hirahara Y., . New Insights into Andesite Genesis: The Role of Mantle-Derived Calc-Alkalic and Crust-Derived Tholeiitic Melts in Magma Differentiation beneath Zao Volcano, NE Japan. Journal of Petrology, 2008, 49(11): 1971-2008.

[57]

Tseng C. Y., Yang H. J., Yang H. Y., . Continuity of the North Qilian and North Qinling Orogenic Belts, Central Orogenic System of China: Evidence from Newly Discovered Paleozoic Adakitic Rocks. Gondwana Research, 2009, 16(2): 285-293.

[58]

Vermeesch P. Tectonic Discrimination Diagrams Revisited, 2006.

[59]

Wan J., Liu C. X., Yang C., . Geochemical Characteristics and LA-ICP-MS Zircon U-Pb Age of the Trachytic Volcanic Rocks in Zhushan Area of Southern Qinling Mountain and Their Significance. Geological Bulletin of China, 2016, 35(7): 1134-1143.

[60]

Wang C. M., Lu Y. J., He X. Y., . The Paleoproterozoic Diorite Dykes in the Southern Margin of the North China Craton: Insight into Rift-Related Magmatism. Precambrian Research, 2016, 277: 26-46.

[61]

Wang H., Wu Y. B., Gao S., . Eclogite Origin and Timings in the North Qinling Terrane, and Their Bearing on the Amalgamation of the South and North China Blocks. Journal of Metamorphic Geology, 2011, 29(9): 1019-1031.

[62]

Wang H., Wu Y. B., Li C. R., . Recycling of Sediment into the Mantle Source of K-Rich Mafic Rocks: Sr-Nd-Hf-O Isotopic Evidence from the Fushui Complex in the Qinling Orogen. Contributions to Mineralogy and Petrology, 2014, 1062.

[63]

Wang H., Wu Y. B., Qin Z. W., . Age and Geochemistry of Silurian Gabbroic Rocks in the Tongbai Orogen, Central China: Implications for the Geodynamic Evolution of the North Qinling Arc-Back-Arc System. Lithos, 2013, 179(4): 1-15.

[64]

Wang L. X., Ma C. Q., Zhang C., . Genesis of Leucogranite by Prolonged Fractional Crystallization: A Case Study of the Mufushan Complex, South China. Lithos, 2014, 206/207: 147-163.

[65]

Wang X. X., Wang T., Zhang C. L. Neoproterozoic, Paleozoic, and Mesozoic Granitoid Magmatism in the Qinling Orogen, China: Constraints on Orogenic Process. Journal of Asian Earth Sciences, 2013, 72(4): 129-151.

[66]

Wang X. X., Wang T., Zhang C. L. Granitoid Magmatism in the Qinling Orogen, Central China and its Bearing on Orogenic Evolution. Science China Earth Sciences, 2015, 58(9): 1497-1512.

[67]

Wang T., Wang X. X., Tian W., . North Qinling Paleozoic Granite Associations and Their Variation in Space and Time: Implications for Orogenic Processes in the Orogens of Central China. Science in China Series D: Earth Sciences, 2009, 52(9): 1359-1384.

[68]

Wu Y. B., Zheng Y. F. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 2004, 49(15): 1554-1569.

[69]

Wu Y. B., Zheng Y. F. Tectonic Evolution of a Composite Collision Orogen: An Overview on the Qinling-Tongbai-Hongʼan-Dabie-Sulu Orogenic Belt in Central China. Gondwana Research, 2013, 23(4): 1402-1428.

[70]

Wu Y. W., Li C., Xu M. J., . Zircon U-Pb Age, Geochemical Data: Constraints on the Origin and Tectonic Evolution of the Metamafic Rocks from Longmuco-Shuanghu-Lancang Suture Zone, Tibet. Journal of Earth Science, 2017, 28(3): 422-432.

[71]

Xia L. Q., Xia Z. C., Xu X. Y., . The Discrimination between Continental Basalt and Island Arc Basalt Based on Geochemical Method. Acta Petrologica et Mineralogica, 2007, 26(1): 77-89.

[72]

Xue F., Lerch M. F., Kröner A., . Tectonic Evolution of the East Qinling Mountains, China, in the Palaeozoic: A Review and New Tectonic Model. Tectonophysics, 1996, 253(3/4): 271-284.

[73]

Yan Q. R., Chen J. L., Wang Z. Q., . Tectonic Setting and SHRIMP Age of Volcanic Rocks in the Xieyuguan and Caotangou Group: Implications for the North Qinling Orogenic Belt. Acta Geologica Sinica, 2007, 81: 488-500.

[74]

Zhang C. L., Liu L., Wang T., . Granitic Magmatism Related to Early Paleozoic Continental Collision in North Qinling. Chinese Science Bulletin, 2013, 58(35): 4405-4410.

[75]

Zhang G. W., Zhang B. R., Yuan X. C., . Qinling Orogenic Belt and Continent Dynamics. Science Publishing House, Beijing, 2001, 1-855.

[76]

Zhang H. F., Yu H., Zhou D. W., . The Meta-Gabbroic Complex of Fushui in North Qinling Orogen: A Case of Syn-Subduction Mafic Magmatism. Gondwana Research, 2015, 28(1): 262-275.

[77]

Zhang R. Y., Sun Y., Zhang X., . Neoproterozoic Magmatic Events in the South Qinling Belt, China: Implications for Amalgamation and Breakup of the Rodinia Supercontinent. Gondwana Research, 2016, 30: 6-23.

[78]

Zhang S. M., Jiang G. L., Liu K. F., . Evolution of Neoproterozoic–Mesozoic Sedimentary Basins in Qinling-Dabie Orogenic Belt. Earth Science—Journal of China University of Geosciences, 2014, 39(8): 1185-1199.

[79]

Zhao J. H., Hu R. Z., Zhou M. F., . Elemental and Sr-Nd-Pb Isotopic Geochemistry of Mesozoic Mafic Intrusions in Southern Fujian Province, SE China: Implications for Lithospheric Mantle Evolution. Geological Magazine, 2007, 144(6): 937-952.

[80]

Zhao J. H., Zhou M. F., Zheng J. P. Metasomatic Mantle Source and Crustal Contamination for the Formation of the Neoproterozoic Mafic Dike Swarm in the Northern Yangtze Block, South China. Lithos, 2010, 115(1/2/3/4): 177-189.

[81]

Zhao T. P., Zhai M. G., Xia B., . Zircon U-Pb SHRIMP Dating for the Volcanic Rocks of the Xiong’er Group: Constraints on the Initial Formation Age of the Cover of the North China Craton. Chinese Science Bulletin, 2004, 49(23): 2495-2502.

[82]

Zhao T. P., Zhou M. F. Geochemical Constraints on the Tectonic Setting of Paleoproterozoic A-Type Granites in the Southern Margin of the North China Craton. Journal of Asian Earth Sciences, 2009, 36(2/3): 183-195.

[83]

Zhong Y. F., Ma C. Q., She Z. B. Geochemical Characteristics of Zircon and Its Applications in Geosciences. Geological Science and Technology Information, 2006, 25(1): 27-40.

[84]

Zhou Z. M., Ma C. Q., Xie C. F., . Genesis of Highly Fractionated I-Type Granites from Fengshun Complex: Implications to Tectonic Evolutions of South China. Journal of Earth Science, 2016, 27(3): 444-460.

[85]

Zhu J., Wang L. X., Peng S. G., . U-Pb Zircon Age, Geochemical and Isotopic Characteristics of the Miaoya Syenite and Carbonatite Complex, Central China. Geological Journal, 2017, 52(6): 938-954.

[86]

Zhu Y. X., Wang L. X., Ma C. Q. An Unique Glomerophyric Diorite Porphyry from the Southern Margin of North China Craton: Geochronology, Geochemical and Quantitative Textural Analysis Constraints. Acta Geologica Sinica—English Edition, 2017, 111-112.

[87]

Zhu Y. X., Wang L. X., Ma C. Q., . A Flower-Like Glomerophyric Diorite Porphyry from Central China: Constraints on the Unusual Texture. Lithos, 2018, 318/319: 1-13.

AI Summary AI Mindmap
PDF

148

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/