Petrogenesis and Tectonic Implications of Peralkaline A-Type Granites and Syenites from the Suizhou-Zaoyang Region, Central China

Hafizullah Abba Ahmed , Changqian Ma , Lianxun Wang , Ladislav A. Palinkaš , Musa Bala Girei , Yuxiang Zhu , Mukhtar Habib

Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (5) : 1181 -1202.

PDF
Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (5) : 1181 -1202. DOI: 10.1007/s12583-018-0877-2
Metamorphism, Magmatism and Tectonic Evolution of Central China Orogenic Belts

Petrogenesis and Tectonic Implications of Peralkaline A-Type Granites and Syenites from the Suizhou-Zaoyang Region, Central China

Author information +
History +
PDF

Abstract

ABSTRACT: In this study, we present systematic petrological, geochemical, LA-ICP-MS zircon U-Pb ages and Nd isotopic data for the A-type granites and syenites from Suizhou-Zaoyang region. The results show that the peralkaline A-type granites and syenites were episodically emplaced in Suizhou-Zaoyang region between 450±3 and 441±7 Ma which corresponds to Late Ordovician and Early Silurian periods, respectively. Petrologically, the syenite-peralkaline granite association comprises of nepheline normative-syenite and alkaline granite in Guanzishan and quartz normative syenite and alkaline granite in Huangyangshan. The syenite-granite associations are ferroan to alkali in composition. They depict characteristics of typical OIB (oceanic island basalts) derived A-type granites in multi-elements primitive normalized diagram and Yb/Ta vs. Y/Nb as well as Ce/Nb vs. Y/Nb binary plots. Significant depletion in Ba, Sr, P, Ti and Eu indicates fractionation of feldspars, biotite, amphiboles and Ti-rich augite. The values of ɛ Nd(t) in Guanzishan nepheline syenite and alkaline granite are +1.81 and +2.26, respectively and the calculated two-stage model age for these rocks are 1 040 and 1 003 Ma, respectively. On the other hand, the Huangyangshan alkaline granite has ɛ Nd(t) values ranging from +2.61 to +3.46 and a relatively younger two-stage Nd model age values ranging from 906 to 975 Ma, respectively. Based on these data, we inferred that the Guanzishan nepheline syenites and granites were formed from fractional crystallization of OIB-like basic magmas derived from upwelling of metasomatized lithospheric mantle. The Huangyangshan quartz syenite and granite on the other hand, were formed from similar magmas through fractional crystallization with low input from the ancient crustal rocks. Typically, the rocks exhibit A1-type granite affinity and classified as within plate granites associated with the Ordovician crustal extension and the Silurian rifting.

Keywords

Huangyangshan / Guanzishan / OIB derived A-type granites / nepheline syenite / alkaline granite / South Qinling / Suizhou-Zaoyang region

Cite this article

Download citation ▾
Hafizullah Abba Ahmed, Changqian Ma, Lianxun Wang, Ladislav A. Palinkaš, Musa Bala Girei, Yuxiang Zhu, Mukhtar Habib. Petrogenesis and Tectonic Implications of Peralkaline A-Type Granites and Syenites from the Suizhou-Zaoyang Region, Central China. Journal of Earth Science, 2018, 29(5): 1181-1202 DOI:10.1007/s12583-018-0877-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anderson J. L., Smith D. R. The Effects of Temperature and f O2 on the Al-in-Hornblende Barometer. American Mineralogist, 1995, 80(5/6): 549-559.

[2]

Barker D. S. Tertiary Magmatism in Trans-Pecos Texas. In: Fitton, J. G., Upton, B. G. J., eds., Alkaline Igneous Rocks. Geological Society Special Publication, 1987, 30: 415-431.

[3]

Belousova E. A., Griffin W., OʼReilly S. Y., . Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 2002, 143(5): 602-622.

[4]

Bonin B. A-Type Granites and Related Rocks: Evolution of a Concept, Problems and Prospects. Lithos, 2007, 97(1/2): 1-29.

[5]

Bowden P. The Geochemistry and Mineralization of Alkaline Ring Complexes in Africa (a Review). Journal of African Earth Sciences, 1985, 3(1/2): 17-39.

[6]

Cao L., Zhang Q. X., Hu S. J., . LAICP-MS Zircon U-Pb Age of Diabase Porphyry from the Donghe Area, Fangxian in South Daba Mountain and Its Tectonic Significance. Acta Geologica Sinica, 2015, 89(12): 2314-2322.

[7]

Cao Q., Liu J. J., Li L. Y., . Zircon U-Pb Age of Ore-Bearing Rock in the Qiaomaichong Gold Deposits on the Southern Margin of the Qinling Orogenic Belt and Its Geological Significance. Geology in China, 2015, 42(5): 1303-1323.

[8]

Collins W. J., Beams S. D., White A. J. R., . Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia. Contributions to Mineralogy and Petrology, 1982, 80(2): 189-200.

[9]

Condie K. C. Accretionary Orogens in Space and Time. Geological Society of America Memoirs, 2007, 200: 145-158.

[10]

DallʼAgnol R., de Oliveira D. C. Oxidized, Magnetite-Series, Rapakivi-Type Granites of Carajás, Brazil: Implications for Classification and Petrogenesis of A-Type Granites. Lithos, 2007, 93(3/4): 215-233.

[11]

Dall’Agnol R., Frost C. D., Rämö O. T. IGCP Project 510 “A-Type Granites and Related Rocks through Time”: Project Vita, Results, and Contribution to Granite Research. Lithos, 2012, 151: 1-16.

[12]

De la Roche H., Leterrier J., Grandclaude P., . A Classification of Volcanic and Plutonic Rocks Using R1-R2-Diagram and Major-Element Analyses—Its Relationships with Current Nomenclature. Chemical Geology, 1980, 29(1/2/3/4): 183-210.

[13]

Dong Y. P., Zhou D. W., Zhang G. W., . Geochemistry of the Caledonian Basic Volcanic Rocks in the South Margin of Qinling Orogenic Belt and Their Tectonic Implications. Geochimica, 1998, 27(5): 432-441.

[14]

Dong Y. P., Zhang G. W., Neubauer F., . Tectonic Evolution of the Qinling Orogen, China: Review and Synthesis. Journal of Asian Earth Sciences, 2011, 41(3): 213-237.

[15]

Dong Y. P., Santosh M. Tectonic Architecture and Multiple Orogeny of the Qinling Orogenic Belt, Central China. Gondwana Research, 2016, 29(1): 1-40.

[16]

Dostal J., Kontak D. J., Karl S. M. The Early Jurassic Bokan Mountain Peralkaline Granitic Complex (southeastern Alaska): Geochemistry, Petrogenesis and Rare-Metal Mineralization. Lithos, 2014, 202/203: 395-412.

[17]

Dostal J., Shellnutt J. G. Origin of Peralkaline Granites of the Jurassic Bokan Mountain Complex (southeastern Alaska) Hosting Rare Metal Mineralization. International Geology Review, 2015, 58(1): 1-13.

[18]

Eby G. N. The A-Type Granitoids: A Review of Their Occurrence and Chemical Characteristics and Speculations on Their Petrogenesis. Lithos, 1990, 26(1/2): 115-134.

[19]

Eby G. N. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 1992, 20(7): 641-644.

[20]

Feng Z. Q., Liu Y. J., Han G. Q., . The Petrogenesis of 3.0 Ma Metagabbro Granite from the Tayuan Area in the Northern Segment of the Da Xing’an Mts and Its Tectonic Implication. Acta Petrologica Sinica, 2014, 30: 1982-1994.

[21]

Frost B. R., Barnes C. G., Collins W. J., . A Geochemical Classification for Granitic Rocks. Journal of Petrology, 2001, 42(11): 2033-2048.

[22]

Frost C. D., Frost B. R. On Ferroan (A-Type) Granitoids: Their Compositional Variability and Modes of Origin. Journal of Petrology, 2011, 52(1): 39-53.

[23]

Giret A., Bonin B., Léger J.-M. Amphibole Compositional Trends in Oversaturated and Undersaturated Alkaline Plutonic Ring-Complexes. Canadian Mineralogist, 1980, 18: 481-495.

[24]

Grebennikov A. V. A-Type Granites and Related Rocks: Petrogenesis and Classification. Russian Geology and Geophysics, 2014, 55(9): 1074-1086.

[25]

Hawthorne F. C., Oberti R., Harlow G. E., . Nomenclature of the Amphibole Supergroup. American Mineralogist, 2012, 97(11/12): 2031-2048.

[26]

Hawthorne F. C. Crystal Chemistry of the Amphiboles. Canadian Mineralogist, 1981, 21: 173-480.

[27]

Hofmann A. W. Mantle Geochemistry: The Message from Oceanic Volcanism. Nature, 1997, 385(6613): 219-229.

[28]

Jackson M. G., Dasgupta R. Compositions of HIMU, EM1, and EM2 from Global Trends between Radiogenic Isotopes and Major Elements in Ocean Island Basalts. Earth and Planetary Science Letters, 2008, 276(1/2): 175-186.

[29]

Jahn B. M., Wu F. Y., Chen B. Granitoids of the Central Asian Orogenic Belt and Continental Growth in the Phanerozoic. Transactions of the Royal Society of Edinburgh: Earth Sciences, 2000, 91(1/2): 181-193.

[30]

Jahn B. M., Capdevila R., Liu D. Y., . Sources of Phanerozoic Granitoids in the Transect Bayanhongor-Ulaan Baatar, Mongolia: Geochemical and Nd Isotopic Evidence, and Implications for Phanerozoic Crustal Growth. Journal of Asian Earth Sciences, 2004, 23(5): 629-653.

[31]

Jahn B. M., Litvinovsky B. A., Zanvilevich A. N., . Peralkaline Granitoid Magmatism in the Mongolian-Transbaikalian Belt: Evolution, Petrogenesis and Tectonic Significance. Lithos, 2009, 113(3/4): 521-539.

[32]

Jiang W. C., Li H., Wu J. H., . A Newly Found Biotite Syenogranite in the Huangshaping Polymetallic Deposit, South China: Insights into Cu Mineralization. Journal of Earth Science, 2018, 29(3): 537-555.

[33]

Katzir Y., Litvinovsky B. A., Jahn B. M., . Interrelations between Coeval Mafic and A-Type Silicic Magmas from Composite Dykes in a Bimodal Suite of Southern Israel, Northernmost Arabian-Nubian Shield: Geochemical and Isotope Constraints. Lithos, 2007, 97(3/4): 336-364.

[34]

King P. L., White A. J. R., Chappell B. W., . Characterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 1997, 38(3): 371-391.

[35]

Leake B. E., Woolley A. R., Arps C. E. S., . Nomenclature of Amphiboles Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. European Journal of Mineralogy, 1997, 9(3): 623-651.

[36]

Li X. H., McCulloch M. T. Geochemical Characteristics of Cretaceous Mafic Dikes from Northern Guangdong, SE China: Petrogenesis, Mantle Sources and Tectonic Significance. In: Flower, M. F. J., Chung, S.-L., Lo, Q.-H., et al., eds., Mantle Dynamics and Plate Interaction in East Asia. Geodynamics Series, 1998, 27: 405-419.

[37]

Li X. H., Liu D. Y., Sun M., . Precise Sm-Nd and U-Pb Isotopic Dating of the Supergiant Shizhuyuan Polymetallic Deposit and Its Host Granite, SE China. Geological Magazine, 2004, 141(2): 225-231.

[38]

Li H., Palinkaš L. A., Watanabe K., . Petrogenesis of Jurassic A-Type Granites Associated with Cu-Mo and W-Sn Deposits in the Central Nanling Region, South China: Relation to Mantle Upwelling and Intra-Continental Extension. Ore Geology Reviews, 2018, 92: 449-462.

[39]

Li H., Watanabe K., Yonezu K. Zircon Morphology, Geochronology and Trace Element Geochemistry of the Granites from the Huangshaping Polymetallic Deposit, South China: Implications for the Magmatic Evolution and Mineralization Processes. Ore Geology Reviews, 2014, 60: 14-35.

[40]

Li S. Age and Genesis of the Alkaline Rocks in Northern Hubei Province. Acta Petrologica Sinica, 1991, 3: 27-36.

[41]

Liu Y., Liu H. C., Li X. H. Simultaneous and Precise Determination of 40 Trace Elements in Rock Samples Using ICP-MS. Geochimica, 1996, 25: 552-558.

[42]

Liu Y. S., Gao S., Hu Z. C., . Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 2010, 51(1/2): 537-571.

[43]

Litvinovsky B. A., Steele I. M., Wickham S. M. Silicic Magma Formation in Overthickened Crust: Melting of Charnockite and Leucogranite at 15, 20 and 25 kbar. Journal of Petrology, 2000, 41(5): 717-737.

[44]

Litvinovsky B. A., Jahn B. M., Zanvilevich A. N., . Petrogenesis of Syenite-Granite Suites from the Bryansky Complex (Transbaikalia, Russia): Implications for the Origin of A-Type Granitoid Magmas. Chemical Geology, 2002, 189(1/2): 105-133.

[45]

Litvinovsky B. A., Tsygankov A. A., Jahn B. M., . Origin and Evolution of Overlapping Calc-Alkaline and Alkaline Magmas: The Late Palaeozoic Post-Collisional Igneous Province of Transbaikalia (Russia). Lithos, 2011, 125(3/4): 845-874.

[46]

Litvinovsky B. A., Jahn B. M., Eyal M. Mantle-Derived Sources of Syenites from the A-Type Igneous Suites—New Approach to the Provenance of Alkaline Silicic Magmas. Lithos, 2015, 232: 242-265.

[47]

Locock A. J. An Excel Spreadsheet to Classify Chemical Analyses of Amphiboles Following the IMA 20.2 Recommendations. Computers & Geosciences, 2012, 62: 1-11.

[48]

Loiselle M. C., Wones D. R. Characteristics and Origin of Anorogenic Granites, 1979.

[49]

Lubala R. T., Frick C., Rogers J. H., . Petrogenesis of Syenites and Granites of the Schiel Alkaline Complex, Northern Transvaal, South Africa. The Journal of Geology, 1994, 102(3): 307-316.

[50]

Ludwig K. R. Userʼs Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel, 2003.

[51]

Ma C. Q., Yang K. G., Ming M. L., . The Timing of Tectonic Transition from Compression to Extension in Dabieshan: Evidence from Mesozoic Granites. Science China Series D: Earth Sciences, 2004, 47(5): 453-462.

[52]

Ma C. Q., She Z. B., Xu P., . Silurian A-Type Granitoids in the Southern Margin of the Tongbai-Dabieshan: Evidence from SHRIMP Zircon Geochronology and Geochemistry. Science China Series D: Earth Sciences, 2005, 48(8): 1134-1145.

[53]

Ma C. Q., She Z. B., Zhang J. Y., . Crustal Roots, Orogenic Heat and Magmatism. Earth Science Frontiers, 2006, 13(2): 130-139.

[54]

Martin R. F. A-Type Granites of Crustal Origin Ultimately Result from Open-System Fenitization-Type Reactions in an Extensional Environment. Lithos, 2006, 91(1/2/3/4): 125-136.

[55]

Martin R. F. Amphiboles in the Igneous Environment. Reviews in Mineralogy and Geochemistry, 2007, 67(1): 323-358.

[56]

Nardi L. V. S., de Fatima Bitencourt M. A-Type Granitic Rocks in Post-Collisional Settings in Southernmost Brazil: Their Classification and Relationship with Tectonics and Magmatic Series. The Canadian Mineralogist, 2009, 47(6): 1493-1503.

[57]

Nie H., Wan X., Zhang H., . Ordovician and Triassic Mafic Dykes in the Wudang Terrane: Evidence for Opening and Closure of the South Qinling Ocean Basin, Central China. Lithos, 2016, 266/267: 1-15.

[58]

Niu Y. L., OʼHara M. J. MORB Mantle Hosts the Missing Eu (Sr, Nb, Ta and Ti) in the Continental Crust: New Perspectives on Crustal Growth, Crust-Mantle Differentiation and Chemical Structure of Oceanic Upper Mantle. Lithos, 2009, 112(1/2): 1-17.

[59]

Papoutsa A., Pe-Piper G. Geochemical Variation of Amphiboles in A-Type Granites as an Indicator of Complex Magmatic Systems: Wentworth Pluton, Nova Scotia, Canada. Chemical Geology, 2014, 384: 120-134.

[60]

Patiño Douce A. E. Generation of Metaluminous A-Type Granites by Low-Pressure Melting of Calc-Alkaline Granitoids. Geology, 1997, 25(8): 743-746.

[61]

Pearce J. A., Harris N. B. W., Tindle A. G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 1984, 25(4): 956-983.

[62]

Peng P., Liu F., Zhai M. G., . Age of the Miyun Dyke Swarm: Constraints on the Maximum Depositional Age of the Changcheng System. Chinese Science Bulletin, 2012, 57(1): 105-110.

[63]

Pe-Piper G. Relationship of Amphibole Composition to Host-Rock Geochemistry: The A-Type Gabbro-Granite Wentworth Pluton, Cobequid Shear Zone, Eastern Canada. European Journal of Mineralogy, 2007, 19(1): 29-38.

[64]

Qiu J. X. Alkaline Rocks in Qinling-Dabashan Mountains. Geological Publishing House, 1993.

[65]

Rudnick R. L., Gao S. Composition of the Continental Crust. Treatise on Geochemistry, 2003, 3: 1-64.

[66]

Shand S. J. Eruptive Rocks: Their Genesis, Composition, Classification, and Their Relation to Ore-Deposits with a Chapter on Meteorite, 1943, 1-350.

[67]

Shellnutt J. G., Zhou M. F. Permian Peralkaline, Peraluminous and Metaluminous A-Type Granites in the Panxi District, SW China: Their Relationship to the Emeishan Mantle Plume. Chemical Geology, 2007, 243(3/4): 286-316.

[68]

Shellnutt J. G., Wang C. Y., Zhou M. F., . Zircon Lu-Hf Isotopic Compositions of Metaluminous and Peralkaline A-Type Granitic Plutons of the Emeishan Large Igneous Province (SW China): Constraints on the Mantle Source. Journal of Asian Earth Sciences, 2009, 35(1): 45-55.

[69]

Shellnutt J. G., Jahn B. M., Zhou M. F. Crustally-Derived Granites in the Panzhihua Region, SW China: Implications for Felsic Magmatism in the Emeishan Large Igneous Province. Lithos, 2011, 123(1/2/3/4): 145-157.

[70]

Sun S. S., McDonough W. F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 1989, 42(1): 313-345.

[71]

Sutcliffe R. H., Smith A. R., Doherty W., . Mantle Derivation of Archean Amphibole-Bearing Granitoid and Associated Mafic Rocks: Evidence from the Southern Superior Province, Canada. Contributions to Mineralogy and Petrology, 1990, 105(3): 255-274.

[72]

Sylvester P. J. Post-Collisional Alkaline Granites. The Journal of Geology, 1989, 97(3): 261-280.

[73]

Taylor S. R. Island Arc Models and the Composition of the Continental Crust. In: Talwani, M., Pitman, W. C. III, eds., Am. Geophys. Union Maurice Ewing Series, 1977, 1: 325-335.

[74]

Taylor S. R., McLennan S. M. The Continental Crust: Its Composition and Evolution, 1985.

[75]

Turner S. P., Foden J. D., Morrison R. S. Derivation of some A-Type Magmas by Fractionation of Basaltic Magma: An Example from the Padthaway Ridge, South Australia. Lithos, 1992, 28(2): 151-179.

[76]

Upton B. G. J., Emeleus L. M., Heaman C. H., . Magmatism of the Mid-Proterozoic Gardar Province, South Greenland: Chronology, Petrogenesis and Geological Setting. Lithos, 2003, 68(1/2): 43-65.

[77]

Vilalva F. C. J., Vlach S. R. F. Geology, Petrography and Geochemistry of the A-Type Granites from the Morro Redondo Complex (PR-SC), Southern Brazil, Graciosa Province. Anais da Academia Brasileira de Ciências, 2014, 86(1): 85-116.

[78]

Wang L. X., Ma C. Q., Zhang C., . Halogen Geochemistry of I- And A-Type Granites from Jiuhuashan Region (South China): Insights into the Elevated Fluorine in A-Type Granite. Chemical Geology, 2018, 478: 164-182.

[79]

Wang R. R., Xu Z. Q., Santosh M., . Late Neoproterozoic Magmatism in South Qinling, Central China: Geochemistry, Zircon UPb-Lu-Hf Isotopes and Tectonic Implications. Tectonophysics, 2016, 683: 43-61.

[80]

Wang R. R., Xu Z. Q., Santosh M., . Petrogenesis and Tectonic Implications of the Early Paleozoic Intermediate and Mafic Intrusions in the South Qinling Belt, Central China: Constraints from Geochemistry, Zircon U-Pb Geochronology and Hf Isotopes. Tectonophysics, 2017, 712/713: 270-288.

[81]

Wedepohl K. H. The Composition of the Continental Crust. Geochimica et Cosmochimica Acta, 1995, 59(7): 1217-1232.

[82]

Wei C. S., Zheng Y. F., Zhao Z. F., . Oxygen and Neodymium Isotope Evidence for Recycling of Juvenile Crust in Northeast China. Geology, 2002, 30(4): 375-378.

[83]

Whalen J. B., Currie K. L., Chappell B. W. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 1987, 95(4): 407-419.

[84]

Winter J. D. An Introduction to Igneous and Metamorphic Petrology: Upper Saddle River, 2001.

[85]

Wu F. Y., Sun D. Y., Li H. M., . A-Type Granites in Northeastern China: Age and Geochemical Constraints on Their Petrogenesis. Chemical Geology, 2002, 187(1/2): 143-173.

[86]

Xu C., Campbell I. H., Allen C. M., . U-Pb Zircon Age, Geochemical and Isotopic Characteristics of Carbonatite and Syenite Complexes from the Shaxiongdong, China. Lithos, 2008, 105(1/2): 118-128.

[87]

Yu X. H. The Relation of Alkaline Rocks in the Qinling-Daba Mountains Region and the Tectonic Evolution of the Orogen and Their Features. Regional Geology of China, 1992, 3: 233-240.

[88]

Zhang G. W., Zhang B. R., Yuan X. C., . Qinling Orogenic Belt and Continental Dynamics, 2001, 1-855.

[89]

Zhang C. L., Gao S., Yuan H. L., . Sr-Nd-Pb Isotopes of the Early Paleozoic Mafic-Ultramafic Dykes and Basalts from South Qinling Belt and Their Implications for Mantle Composition. Science in China Series D: Earth Sciences, 2007, 50(9): 1293-1301.

[90]

Zhang X. The Dynamic Mechanism and Geological Significance of Mafic Intrusion in the Ziyang-Zhenba Area, South Qinling: [Dissertation], 2010.

[91]

Zhang X. H., Zhang H. F., Jiang N., . Early Devonian Alkaline Intrusive Complex from the Northern North China Craton: A Petrological Monitor of Post-Collisional Tectonics. Journal of the Geological Society, 2010, 167(4): 717-730.

[92]

Zhang R. X., Yang S. Y. A Mathematical Model for Determining Carbon Coating Thickness and Its Application in Electron Probe Microanalysis. Microscopy and Microanalysis, 2016, 22(6): 1374-1380.

[93]

Zhang W. X., Zhu L. Q., Wang H., . Generation of Post-Collisional Normal Calc-Alkaline and Adakitic Granites in the Tongbai Orogen, Central China. Lithos, 2018, 296–299: 513-531.

[94]

Zhu G., Wang Y. S., Wang W., . An Accreted Micro-Continent in the North of the Dabie Orogen, East China: Evidence from Detrital Zircon Dating. Tectonophysics, 2017, 698: 47-64.

[95]

Zindler A., Hart S. Chemical Geodynamics. Annual Review of Earth and Planetary Sciences, 1986, 14(1): 493-571.

AI Summary AI Mindmap
PDF

213

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/