Thermal Diffusivity of Lherzolite at High Pressures and High Temperatures Using Pulse Method

Sheqiang Miao , Yongsheng Zhou , Heping Li

Journal of Earth Science ›› 2019, Vol. 30 ›› Issue (1) : 218 -222.

PDF
Journal of Earth Science ›› 2019, Vol. 30 ›› Issue (1) : 218 -222. DOI: 10.1007/s12583-018-0868-3
Article

Thermal Diffusivity of Lherzolite at High Pressures and High Temperatures Using Pulse Method

Author information +
History +
PDF

Abstract

Lherzolite is one of the most important components of the subcontinental mantle lithosphere, and the study of its heat transfer properties aids in understanding the thermal structure of the continental mantle lithosphere. Currently, few studies have examined the heat transfer properties of lherzolite, and the experimental results remain controversial. This experiment utilized a pulse method to measure the thermal diffusivity of lherzolite at pressures ranging from 1.0 to 4.0 GPa and temperatures from 300 to 1 073 K on a cubic press apparatus. We obtained a thermal diffusivity for lherzolite of approximately 2.10 mm2s-1 at ambient condition. The experimental pressure derivative of the thermal conductivity of lherzolite decreased with temperature, reaching approximately 10% at high temperature, a value higher than the previously reported 4%, which indicates that the temperature gradient of the upper mantle lithosphere is smaller than previously thought. Therefore, concerning calculation of the lithosphere thickness using the thermal conductivity of the lherzolite, the previous calculation using pressure derivative of the thermal conductivity of 4% may cause an underestimation of the upper mantle lithosphere thickness by approximately 6% in a first approximation.

Keywords

thermal diffusivity / lherzolite / pulse method / pressure derivative

Cite this article

Download citation ▾
Sheqiang Miao, Yongsheng Zhou, Heping Li. Thermal Diffusivity of Lherzolite at High Pressures and High Temperatures Using Pulse Method. Journal of Earth Science, 2019, 30(1): 218-222 DOI:10.1007/s12583-018-0868-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anderson O. L., Isaak D., Oda H. High-Temperature Elastic Constant Data on Minerals Relevant to Geophysics. Reviews of Geophysics, 1992, 30(1): 57-90.

[2]

Angel R. J. Feldspars at High Pressure, 1994, 271-312.

[3]

Beck A. E., Darbha D. M., Schloessin H. H. Lattice Conductivities of Single-Crystal and Polycrystalline Materials at Mantle Pressures and Temperatures. Physics of the Earth and Planetary Interiors, 1978, 17(1): 35-53.

[4]

Feng J., Xie M., Zhang H., . Hannuoba Basalts and Nodules Derived from the Deep Earth. Bulletin of Hebei College of Geology, 1982, 1: 45-63.

[5]

Fujisawa H., Fujii N., Mizutani H., . Thermal Diffusivity of Mg2SiO4, Fe2SiO4, and NaCl at High Pressures and Temperatures. Journal of Geophysical Research, 1968, 73(14): 4727-4733.

[6]

Gibert B., Schilling F. R., Tommasi A., . Thermal Diffusivity of Olivine Single-Crystals and Polycrystalline Aggregates at Ambient Conditions--A Comparison. Geophysical Research Letters, 2003, 30(22): 2172-2176.

[7]

Gibert B., Seipold U., Tommasi A., . Thermal Diffusivity of Upper Mantle Rocks: Influence of Temperature, Pressure, and the Deformation Fabric. Journal of Geophysical Research, 2003, 1-15.

[8]

Gibert B., Schilling F. R., Gratz K., . Thermal Diffusivity of Olivine Single Crystals and a Dunite at High Temperature: Evidence for Heat Transfer by Radiation in the Upper Mantle. Physics of the Earth and Planetary Interiors, 2005, 151(1/2): 129-141.

[9]

Gong W., Jiang X. D. Thermal Evolution History and Its Genesis of the Ailao Shan-Red River Fault Zone in the Ailao Shan and Day Nui Con Voi Massif during Oligocene-Early Miocene. Earth Science--Journal of China University of Geosciences, 2017, 42(2): 223-239.

[10]

Hofmeister A. M. Mantle Values of Thermal Conductivity and the Geotherm from Phonon Lifetimes. Science, 1999, 283(5408): 1699-1706.

[11]

Hofmeister A. M. Thermal Diffusivity of Garnets at High Temperature. Physics and Chemistry of Minerals, 2006, 33(1): 45-62.

[12]

Hofmeister A. M. Pressure Dependence of Thermal Transport Properties. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(22): 9192-9197.

[13]

Hofmeister A. M. Thermal Diffusivity of Orthopyroxenes and Protoenstatite as a Function of Temperature and Chemical Composition. European Journal of Mineralogy, 2012, 24(4): 669-681.

[14]

Horai K. I., Susaki J. I. The Effect of Pressure on the Thermal Conductivity of Silicate Rocks up to 12 kbar. Physics of the Earth and Planetary Interiors, 1989, 55(3/4): 292-305.

[15]

Katsura T. Thermal Diffusivity of Olivine under Upper Mantle Conditions. Geophysical Journal International, 1995, 122(1): 63-69.

[16]

Kubičár, Vretenár V., Hammerschmidt U. Thermophysical Parameters of Optical Glass BK 7 Measured by the Pulse Transient Method. International Journal of Thermophysics, 2005, 26(2): 507-518.

[17]

Miao S. Q., Li H. P., Chen G. Measurement of Thermal Diffusivity for Rocks at High Temperature and High Pressure-Application to Basalt. Chinese Journal of High Pressure Physics, 2014, 28: 11-17.

[18]

Osako M., Ito E., Yoneda A. Simultaneous Measurements of Thermal Conductivity and Thermal Diffusivity for Garnet and Olivine under High Pressure. Physics of the Earth and Planetary Interiors, 2004, 143–144: 311-320.

[19]

Pertermann M., Hofmeister A. M. Thermal Diffusivity of Olivine-Group Minerals at High Temperature. American Mineralogist, 2006, 91(11/12): 1747-1760.

[20]

Tommasi A., Gibert B., Seipold U., . Anisotropy of Thermal Diffusivity in the Upper Mantle. Nature, 2001, 411(6839): 783-786.

[21]

Wang Y., Cheng S. H. Lithospheric Thermal Structure and Rheology of the Eastern China. Journal of Asian Earth Sciences, 2012, 47: 51-63.

[22]

Xu L. L., Jin Z. M., Mei S. H. Deformation-DIA Coupled with Synchrotron X-Ray Diffraction and Its Applications to Deformation Experiments of Minerals at High Temperature and High Pressure. Earth Science--Journal of China University of Geosciences, 2017, 42(6): 974-989.

[23]

Xu Y. S., Shankland T. J., Linhardt S., . Thermal Diffusivity and Conductivity of Olivine, Wadsleyite and Ringwoodite to 20 GPa and 1373 K. Physics of the Earth and Planetary Interiors, 2004, 143/144: 321-336.

[24]

Xu Y. X., Zhu L. P., Wang Q. Y., . Heat Shielding Effects in the Earth’s Crust. Journal of Earth Science, 2017, 28(1): 161-167.

[25]

Zhang Y. F., Hu C. L., Wang X. M., . An Improved Method of Laser Particle Size Analysis and Its Applications in Identification of Lacustrine Tempestite and Beach Bar: An Example from the Dongying Depression. Journal of Earth Science, 2017, 28(6): 1145-1152.

[26]

Zhou F. Z., Zheng X. H. Heat Transfer in Tubing-Casing Annulus during Production Process of Geothermal Systems. Journal of Earth Science, 2015, 26(1): 116-123.

[27]

Zhou F. Z., Xiong Y. C., Tian M. Predicting Initial Formation Temperature for Deep Well Engineering with a New Method. Journal of Earth Science, 2015, 26(1): 108-115.

AI Summary AI Mindmap
PDF

116

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/