Petrogenesis of the Payangazu Complex in Southern Mandalay, Central Myanmar and Its Tectonic Implications

Kaixuan Li, Huaying Liang, Zhiwei Bao, Wenting Huang, Jian Zhang, Long Ren

Journal of Earth Science ›› 2019, Vol. 30 ›› Issue (1) : 20-36.

Journal of Earth Science ›› 2019, Vol. 30 ›› Issue (1) : 20-36. DOI: 10.1007/s12583-018-0862-9
Article

Petrogenesis of the Payangazu Complex in Southern Mandalay, Central Myanmar and Its Tectonic Implications

Author information +
History +

Abstract

The Payangazu complex in the central Myanmar is composed mainly of quartz diorite, granodiorite, and some synplutonic mafic dikes. The quartz diorite and granodiorite have zircon U-Pb ages of 130.5±4.0 (MSWD=3.5) and 118.4±2.5 Ma (MSWD=2.4), respectively. Rock samples of the quartz diorite and granodiorite are metaluminous, enriched in large-ion lithophile elements like LREE, Rb, Th, and U, and depleted in high field-strength elements such as HREE, Nb, Ta, P, and Ti, indicative of arc-type magmatic affinities. Whole rock samples of the quartz diorite have ε Hf(t) value of +0.6, initial 87Sr/86Sr ratios of 0.708 6 to 0.710 0, and ε Nd(t) values of -4.8 to -4.9; whereas rocks of the granodiorite are relatively isotopically enriched, with ε Hf(t) values of -5.1 to -7.2, initial 87Sr/86Sr ratios of 0.711 7 to 0.711 8, and ε Nd(t) values of -8.7 to -8.8. The isotopic data together with the high Mg# (both the quartz diorite and granodiorite have Mg# values of >40) suggest a strong involvement of mantle materials in the genesis of the parent magmas. The possible petrogenetic process may be that the ascending of melts from partial melting of metasomatized mantle wedge triggered by dehydration of subducted slab resulted in partial melting of the lower crust and mixed with the latter. These Early Cretaceous intrusions from the complex are older than those found in the eastern Wuntho-Popa arc in western Myanmar, eastern Himalaya, and western Yunnan which are interpreted to be related to the Neo-Tethyan subduction, and have ε Nd(t), ε Hf(t) values lower than the latter. On the contrary, the ages and geochemical characteristics of the Payangazu complex are consistent with some of the intrusions in the northern magmatic belt in Tibet, eastern Himalaya, and western Yunnan which are believed to be associated with the subduction of the Bangong-Nujiang Ocean crust. Thus, we propose that the Early Cretaceous intrusions in the central Myanmar are most likely related to the southward subduction of an ocean slab that was possibly an extension of the Bangong-Nujiang Ocean.

Keywords

central Myanmar / zircon U-Pb age / isotope / Early Cretaceous subduction

Cite this article

Download citation ▾
Kaixuan Li, Huaying Liang, Zhiwei Bao, Wenting Huang, Jian Zhang, Long Ren. Petrogenesis of the Payangazu Complex in Southern Mandalay, Central Myanmar and Its Tectonic Implications. Journal of Earth Science, 2019, 30(1): 20‒36 https://doi.org/10.1007/s12583-018-0862-9

References

Barber A. J., Crow M. J., Milsom J. S. Sumatra: Geology, Resources and Tectonic Evolution. Geological Society Memoirs, London, 2005, 31: 1-248.
CrossRef Google scholar
Barley M. E., Pickard A. L., Zaw K., . Jurassic to Miocene Magmatism and Metamorphism in the Mogok Metamorphic Belt and the India-Eurasia Collision in Myanmar. Tectonics, 2003, 22(3): 4-14.
CrossRef Google scholar
Bertrand G., Rangin C., Maluski H. Diachronous Cooling along the Mogok Metamorphic Belt (Shan Scarp, Myanmar): The Trace of the Northward Migration of the Indian Syntaxis. Journal of Asian Earth Sciences, 2001, 19(5): 649-659.
CrossRef Google scholar
Black L. P., Kamo S. L., Allen C. M., . Temora 1: A New Zircon Standard for Phanerozoic U-Pb Geochronology. Chemical Geology, 2003, 200(1/2): 155-170.
CrossRef Google scholar
Blichert-Toft J., Gleason J. D., Télouk P., . The Lu-Hf Isotope Geochemistry of Shergottites and the Evolution of the Martian Mantle-Crust System. Earth and Planetary Science Letters, 1997, 154: 243-258.
CrossRef Google scholar
Castillo P. R., Janney P. E., Solidum R. U. Petrology and Geochemistry of Camiguin Island, Southern Philippines: Insights to the Source of Adakites and Other Lavas in a Complex Arc Setting. Contributions to Mineralogy & Petrology, 1999, 134(1): 33-51.
CrossRef Google scholar
Chen X. J., Xu Z. Q., Sein K., . The Early Cretaceous Tectonic Magmatism in the Mogok District, Central Myanmar, and Its Implication for the Evolution of Tethy. Acta Geologica Sinica, 2016, 90(11): 3060-3080.
Chiu H. Y., Chung S. L., Wu F. Y., . Zircon U-Pb and Hf Isotopic Constraints from Eastern Transhimalayan Batholiths on the Precollisional Magmatic and Tectonic Evolution in Southern Tibet. Tectonophysics, 2009, 477(1/2): 3-19.
CrossRef Google scholar
Chu M. F., Chung S. L., Song B., . Zircon U-Pb and Hf Isotope Constraints on the Mesozoic Tectonics and Crustal Evolution of Southern Tibet. Geology, 2006, 34(9): 745-752.
CrossRef Google scholar
Curray J. R. Tectonics and History of the Andaman Sea Region. Journal of Asian Earth Sciences, 2005, 25(1): 187-232.
CrossRef Google scholar
Defant M. J., Drummond M. S. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 1990, 347(6294): 662-665.
CrossRef Google scholar
Defant M. J., Drummond M. S. Mount St. Helens: Potential Example of the Partial Melting of the Subducted Lithosphere in a Volcanic Arc. Geology, 1993, 21(6): 547-550.
Gardiner N. J., Searle M. P., Robb L. J. Neo-Tethyan Magmatism and Metallogeny in Myanmar--An Andean Analogue. Journal of Asian Earth Sciences, 2015, 106(1): 197-215.
CrossRef Google scholar
Goffé B., Rangin C., Maluski H. Jade and Associated Rocks from the Jade Mines Area, Northern Myanmar as Record of a Polyphased High-pressure Metamorphism. Asian Earth Sci., 2002, 20: 16-17.
Goodge J. W., Vervoort J. D. Origin of Mesoproterozoic A-Type Granites in Laurentia: Hf Isotope Evidence. Earth and Planetary Science Letters, 2006, 243(3): 711-731.
CrossRef Google scholar
Goto A., Tatsumi Y. Quantitative Analysis of Rock Samples by an X-Ray Fluorescence Spectrometer (II). The Rigaku Journal, 1996, 13(2): 20-38.
Hattori K. H., Guillot S. Volcanic Fronts Form as a Consequence of Serpentinite Dehydration in the Forearc Mantle Wedge. Geology, 2003, 31(6): 525-528.
CrossRef Google scholar
Hildreth W., Moorbath S. Crustal Contributions to Arc Magmatism in the Andes of Central Chile. Contributions to Mineralogy and Petrology, 1988, 98(4): 455-489.
CrossRef Google scholar
Hoskin P. W. O. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 27-62.
CrossRef Google scholar
Huangfu P. P., Wang Y., Li Z., . Effects of Crustal Eclogitization on Plate Subduction-Collision Dynamics: Implications for India-Asia Collision. Journal of Earth Science, 2016, 27(5): 727-739.
CrossRef Google scholar
Jahn B. M., Condie K. C. Evolution of the Kaapvaal Craton as Viewed from Geochemical and Sm-Nd Isotopic Analyses of Intracratonic Pelites. Geochimica et Cosmochimica Acta, 1995, 59(11): 2239-2258.
CrossRef Google scholar
Ji W. Q., Wu F. Y., Chung S. L., . Zircon U-Pb Geochronology and Hf Isotopic Constraints on Petrogenesis of the Gangdese Batholith, Southern Tibet. Chemical Geology, 2009, 262(3/4): 229-245.
CrossRef Google scholar
Jiang H., Li W. Q., Jiang S. Y., . Geochronological, Geochemical and Sr-Nd-Hf Isotopic Constraints on the Petrogenesis of Late Cretaceous A-type Granites from the Sibumasu Block, Southern Myanmar, SE Asia. Lithos, 2017, 268–271: 32-47.
CrossRef Google scholar
Kogiso T., Tatsumi Y., Nakano S. Trace Element Transport during Dehydration Processes in the Subducted Oceanic Crust: 1. Experiments and Implications for the Origin of Ocean Island Basalts. Earth and Planetary Science Letters, 1997, 148(1/2): 193-205.
CrossRef Google scholar
Li X. H., Li Z. X., Wingate M. T. D., . Geochemistry of the 755 Ma Mundine Well Dyke Swarm, Northwestern Australia: Part of a Neoproterozoic Mantle Superplume Beneath Rodinia?. Precambrian Research, 2006, 146(1/2): 1-15.
CrossRef Google scholar
Liang Y. S. C. D. L. Y., . Detrital Zircon Evidence from Burma for Reorganization of the Eastern Himalayan River System. American Journal of Science, 2008, 308(4): 618-638.
CrossRef Google scholar
Lin I. J., Chung S. L., Chu C. H., . Geochemical and Sr-Nd Isotopic Characteristics of Cretaceous to Paleocene Granitoids and Volcanic rocks, SE Tibet: Petrogenesis and Tectonic Implications. Journal of Asian Earth Sciences, 2012, 53(7): 131-150.
CrossRef Google scholar
Liu Y., Hu Z., Gao S., . In situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 2008, 34-43.
Liu Y., Liu H. C., Li X. H. Simultaneous and Precise Determination of 40 Trace Elements in Rock Samples Using ICP-MS. Geochimica, 1996, 25(6): 552-558.
López-Escobar L., Killian R., Kempton P., . Petrography and Geochemistry of Quaternary Rocks from the Southern Volcanic Zone between 41°30′ and 46°00′S, Chile. Andean Geology, 1993, 20(1): 33-55.
Ludwig K. R. Isoplot/Ex Version 3.00: A Geochronological Toolkit for Microsoft Excel. Geochronology Center Special Publication, Berkeley., 2003, 4 37.
Lugmair G. W., Marti K. Lunar Initial 143Nd/144Nd: Differential Evolution of the Lunar Crust and Mantle. Earth and Planetary Science Letters, 1978, 39(3): 349-357.
CrossRef Google scholar
Ma X., Xu Z., Chen X., . The Origin and Tectonic Significance of the Volcanic Rocks of the Yeba Formation in the Gangdese Magmatic Belt, South Tibet. Journal of Earth Science, 2017, 28(2): 265-282.
CrossRef Google scholar
Maniar P. D., Piccoli P. M. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 1989, 101(5): 635-643.
CrossRef Google scholar
Martin H., Smithies R. H., Rapp R., . An Overview of Adakite, Tonalite-Trondhjemite-Granodiorite (TTG), and Sanukitoid: Relationships and Some Implications for Crustal Evolution. Lithos, 2005, 79(1/2): 1-24.
CrossRef Google scholar
Maurin T., Masson F., Rangin C., . First Global Positioning System Results in Northern Myanmar: Constant and Localized Slip Rate along the Sagaing Fault. Geology, 2010, 38(7): 591-594.
CrossRef Google scholar
Mcdonough W. F. Partial Melting of Subducted Oceanic Crust and Isolation of Its Residual Eclogitic Lithology. Philosophical Transactions of the Royal Soceity, 1991, 335(1638): 407-418.
Metcalfe I. Origin and Assembly of South-East Asian Continental Terranes. Geological Society, London, Special Publications, 1988, 37: 101-118.
CrossRef Google scholar
Metcalfe I. Gondwana Dispersion and Asian Accretion: Tectonic and Palaeogeographic Evolution of Eastern Tethys. Journal of Asian Earth Sciences, 2013, 66: 1-33.
CrossRef Google scholar
Middlemost E. A. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 1994, 37(3/4): 215-224.
CrossRef Google scholar
Mitchell A. H. G. Tectonic Settings for Emplacement of Southeast Asian Tin Granites. Bulletin of the Geological Society of Malaysia, 1977, 9: 123-140.
Mitchell A. H. G. Late Permian-Mesozoic Events and the Mergui Group Nappe in Myanmar and Thailand. Journal of Southeast Asian Earth Sciences, 1992, 7(2/3): 165-178.
CrossRef Google scholar
Mitchell A. H. G., Htay M. T., Htun K. M., . Rock Relationships in the Mogok Metamorphic Belt, Tatkon to Mandalay, Central Myanmar. Journal of Asian Earth Sciences, 2007, 29(5): 891-910.
CrossRef Google scholar
Mitchell A. Cretaceous-Cenozoic Tectonic Events in the Western Myanmar (Burma)-Assam Region. Journal of the Geological Society, 1993, 150(6): 1089-1102.
CrossRef Google scholar
Mitchell A., Chung S. L., Oo T., . Zircon U-Pb Ages in Myanmar: Magmatic-Metamorphic Events and the Closure of a Neo-Tethys Ocean?. Journal of Asian Earth Sciences, 2012, 56(3): 1-23.
CrossRef Google scholar
Mo X. X., Deng J., Lu F. Volcanism and the Evolution of Tethys in Sanjiang Area, Southwestern China. Journal of Southeast Asian Earth Sciences, 1994, 9(4): 325-333.
CrossRef Google scholar
Peacock S. M. Large-Scale Hydration of the Lithosphere above Subducting Slabs. Chemical Geology, 1993, 49-59.
Peacock S. M., Rushmer T., Thompson A. B. Partial Melting of Subducting Oceanic Crust. Earth and Planetary Science Letters, 1994, 121(1/2): 227-244.
CrossRef Google scholar
Pearce J. A., Harris N. B. W., Tindle A. G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 1984, 25(4): 956-983.
CrossRef Google scholar
Peccerillo A., Taylor S. R. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 1976, 58(1): 63-81.
CrossRef Google scholar
Prosanta K. K., Shamim S., Manoranjan M., . Myanmar-Andaman-Sumatra Subduction Margin Revisited: Insights of Arc-Specific Deformations. Journal of Earth Science, 2017, 28(4): 1-12.
Rapp R. P., Watson E. B. Dehydration Melting of Metabasalt at 8–32 kbar: Implications for Continental Growth and Crust-Mantle Recycling. Journal of Petrology, 1995, 36(4): 891-931.
CrossRef Google scholar
Richards J. P., Kerrich R. Special Paper: Adakite-Like Rocks: Their Diverse Origins and Questionable Role in Metallogenesis. Economic Geology, 2007, 102(4): 537-576.
CrossRef Google scholar
Rollinson H. Using Geochemical Data: Evaluation, Presentation, Interpretation, 1993, 1-352.
Scherer E., Münker C., Mezger K. Calibration of the Lutetium-Hafnium Clock. Science, 2001, 293: 683-687.
CrossRef Google scholar
Schmidt M. W., Poli S. Experimentally Based Water Budgets for Dehydrating Slabs and Consequences for Arc Magma Generation. Earth and Planetary Science Letters, 1998, 163: 361-379.
CrossRef Google scholar
Searle M. P., Noble S. R., Cottle J. M., . Tectonic Evolution of the Mogok Metamorphic Belt, Burma (Myanmar) Constrained by U-Th-Pb Dating of Metamorphic and Magmatic Rocks. Tectonics, 2007, 26(3): 623-626.
Sun S. S., McDonough W. F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 1989, 42(1): 313-345.
CrossRef Google scholar
Tu X. L., Hong Z., Deng W. F., . Application of Resolution in-situ Laser Ablation ICP-MS in Trace Element Analyses. Geochimica, 2011, 40(1): 308-313.
Ulmer P. Partial Melting in the Mantle Wedge—The Role of H2O in the Genesis of Mantle-Derived ‘Arc-Related’ Magmas. Physics of the Earth and Planetary Interiors, 2001, 215-32.
Waltham T. The Ruby Mines of Mogok. Geology Today, 2010, 15(4): 143-149.
CrossRef Google scholar
Wang H., Lin F. C., Li X. Z., . Tectonic Unit Division and Neo-Tethys Tectonic Evolution in North-Central Myanmar and Its Adjacent Areas. Geology in China, 2012, 39(4): 912-922.
Wang J. G., Wu F. Y., Tan X. C., . Magmatic Evolution of the Western Myanmar Arc Documented by U-Pb and Hf Isotopes in Detrital Zircon. Tectonophysics, 2014, 612-613: 97-105.
CrossRef Google scholar
Wen D. R., Liu D., Chung S. L., . Zircon SHRIMP U-Pb Ages of the Gangdese Batholith and Implications for Neotethyan Subduction in Southern Tibet. Chemical Geology, 2008, 252(3/4): 191-201.
CrossRef Google scholar
Wiedenbeck M., Allé P., Corfu F., . Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analysis. Geostandards and Geoanalytical Research, 1995, 19(1): 1-23.
CrossRef Google scholar
Wörner G., Moorbath S., Harmon R. S. Andean Cenozoic Volcanic Centers Reflect Basement Isotopic Domains. Geology, 1992, 20(12): 1103-1106.
CrossRef Google scholar
Xu Y. G., Yang Q. J., Lan J. B., . Temporal-Spatial Distribution and Tectonic Implications of the Batholiths in the Gaoligong-Tengliang-Yingjiang Area, Western Yunnan: Constraints from Zircon U-Pb Ages and Hf Isotopes. Journal of Asian Earth Sciences, 2012, 53: 151-175.
CrossRef Google scholar
Yang Q. J., Xu Y. G., Huang X. L. Geochronology and Geochemistry of Granites in the Gaoligong Tectonic Belt and Their Tectonic Implications. Acta Petrologica Sinica, 2006, 22(4): 817-834.
Yang Y. H., Wu F. Y., Xie L. W., . High-Precision Measurements of the (143)Nd/(144)Nd Isotope Ratio in Certified Reference Materials without Nd and Sm Separation by Multiple Collector Inductively Coupled Plasma Mass Spectrometry. Analytical Letters, 2011, 43(1): 142-150.
CrossRef Google scholar
Yonemura K., Osanai Y., Nakano N., . EPMA U-Th-Pb Monazite Dating of Metamorphic Rocks from the Mogok Metamorphic Belt, Central Myanmar. Journal of Mineralogical and Petrological Sciences, 2013, 108(3): 184-188.
CrossRef Google scholar
Zaw K., Meffre S., Lai C. K., . Tectonics and Metallogeny of Mainland Southeast Asia—A Review and Contribution. Gondwana Research, 2014, 26(1): 5-30.
CrossRef Google scholar
Zhu D. C., Mo X. X., Niu Y. L., . Geochemical Investigation of Early Cretaceous Igneous Rocks along an East-West Traverse throughout the Central Lhasa Terrane, Tibet. Chemical Geology, 2009, 268(3/4): 298-312.
CrossRef Google scholar
Zhu D. C., Mo X. X., Wang L. Q., . Petrogenesis of Highly Fractionated I-Type Granites in the Zayu Area of Eastern Gangdese, Tibet: Constraints from Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Hf Isotopes. Science in China Series D: Earth Sciences, 2009, 52(9): 1223-1239.
CrossRef Google scholar
Zhu D. C., Zhao Z. D., Niu Y. L. The Lhasa Terrane: Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 2011, 301(1–2): 241-255.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/