Timing and Source of the Hermyingyi W-Sn Deposit in Southern Myanmar, SE Asia: Evidence from Molybdenite Re-Os Age and Sulfur Isotopic Composition

Hai Jiang , Shao-Yong Jiang , Wenqian Li , Kuidong Zhao

Journal of Earth Science ›› 2019, Vol. 30 ›› Issue (1) : 70 -79.

PDF
Journal of Earth Science ›› 2019, Vol. 30 ›› Issue (1) : 70 -79. DOI: 10.1007/s12583-018-0860-y
Article

Timing and Source of the Hermyingyi W-Sn Deposit in Southern Myanmar, SE Asia: Evidence from Molybdenite Re-Os Age and Sulfur Isotopic Composition

Author information +
History +
PDF

Abstract

The Hermyingyi W-Sn deposit, situated in southern Myanmar, SE Asia, is a typical quartz-vein type W-Sn deposit. The ore-bearing quartz veins are mainly hosted by the Hermyingyi monzogranite which intruded into the Carboniferous metasedimentary rocks of Mergui Series. According to mineral assemblages and crosscutting relationships, four ore-forming stages are recognized: (1) silicate-oxide stage; (2) quartz-sulfide stage; (3) barren quartz vein stage; (4) supergene stage. Five molybdenite samples from the deposit yield Re-Os model ages ranging from 67.8±1.6 to 69.2±1.6 Ma (weighted mean age of 68.7±1.2 Ma), and a well-defined isochron age of 68.4±2.5 Ma (MSWD=0.18, 2σ). This Re-Os age is consistent with the previously published zircon U-Pb age of the Hermyingyi monzogranite (70.0±0.4 Ma) (MSWD=0.9, 2σ) within errors, which indicates a genetic link between the monzogranitic magmatism and W-Sn mineralization. The new high-precision geochronological data reveal that the granitic magmatism and associated W-Sn mineralization in southern Myanmar took place during the Late Cretaceous (70-68 Ma). The extremely low Re contents (22.9 ppb to 299 ppb) in molybdenite, coupled with sulfide δ34S values in the range of +1.9‰ to +5.6‰ suggest that ore-forming metals were predominately sourced from the crustal-derived granitic magma.

Keywords

Hermyingyi W-Sn deposit / molybdenite Re-Os dating / sulfur isotopes / Myanmar / SE Asia

Cite this article

Download citation ▾
Hai Jiang, Shao-Yong Jiang, Wenqian Li, Kuidong Zhao. Timing and Source of the Hermyingyi W-Sn Deposit in Southern Myanmar, SE Asia: Evidence from Molybdenite Re-Os Age and Sulfur Isotopic Composition. Journal of Earth Science, 2019, 30(1): 70-79 DOI:10.1007/s12583-018-0860-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Allen R., Najman Y., Carter A., . Provenance of the Tertiary Sedimentary Rocks of the Indo-Burman Ranges, Burma (Myanmar): Burman Arc or Himalayan-Derived?. Journal of the Geological Society, 2008, 165: 1045-1057.

[2]

Barber A. J., Crow M. J. An Evaluation of Plate Tectonic Models for the Development of Sumatra. Gondwana Research, 2003, 6(1): 1-28.

[3]

Barber A. J., Crow M. J. Structure of Sumatra and Its Implications for the Tectonic Assembly of Southeast Asia and the Destruction of Paleotethys. Island Arc, 2009, 18(1): 3-20.

[4]

Barley M. E., Pickard A. L., Zaw K., . Jurassic to Miocene Magmatism and Metamorphism in the Mogok Metamorphic Belt and the India-Eurasia Collision in Myanmar. Tectonics, 2003, 1019.

[5]

Berzina A. N., Sotnikov V. I., Economou-Eliopoulos M., . Distribution of Rhenium in Molybdenite from Porphyry Cu-Mo and Mo-Cu Deposits of Russia (Siberia) and Mongolia. Ore Geology Reviews, 2005, 26(1/2): 91-113.

[6]

Charusiri P., Clark A. H., Farrar E., . Granite Belts in Thailand: Evidence from the 40Ar/39Ar Geochronological and Geological Syn theses. Journal of Southeast Asian Earth Sciences, 1993, 127-136.

[7]

Chen X. C., Hu R. Z., Bi X. W., . Cassiterite LA-MC-ICP-MS U/Pb and Muscovite 40Ar/39Ar Dating of Tin Deposits in the Tengchong-Lianghe Tin District, NW Yunnan, China. Mineralium Deposita, 2014, 49(7): 843-860.

[8]

Chen X. C., Hu R. Z., Bi X. W., . Petrogenesis of Metaluminous A-Type Granitoids in the Tengchong-Lianghe Tin Belt of Southwestern China: Evidences from Zircon U-Pb Ages and Hf-O Isotopes, and Whole-Rock Sr-Nd Isotopes. Lithos, 2015, 93-110.

[9]

Cobbing E. J., Mallick D. I. J., Pitfield P. E. J., . The Granites of the Southeast Asian Tin Belt. Journal of the Geological Society, 1986, 143(3): 537-550.

[10]

Du A. D., Wu S. Q., Sun D. Z., . Preparation and Certification of Re-Os Dating Reference Materials: Molybdenites HLP and JDC. Geostandards and Geoanalytical Research, 2004, 28(1): 41-52.

[11]

Feng C. Y., Zeng Z. L., Zhang D. Q., . SHRIMP Zircon U-Pb and Molybdenite Re-Os Isotopic Dating of the Tungsten Deposits in the Tianmenshan-Hongtaoling W-Sn Orefield, Southern Jiangxi Province, China, and Geological Implications. Ore Geology Reviews, 2011, 43(1): 8-25.

[12]

Gardiner N. J., Hawkesworth C. J., Robb L. J., . Contrasting Granite Metallogeny through the Zircon Record: A Case Study from Myanmar. Scientific Reports, 2017, 7 1 748

[13]

Gardiner N. J., Robb L. J., Morley C. K., . The Tectonic and Metallogenic Framework of Myanmar: A Tethyan Mineral System. Ore Geology Reviews, 2016, 79: 26-45.

[14]

Gardiner N. J., Robb L. J., Searle M. P. The Metallogenic Provinces of Myanmar. Applied Earth Science, 2014, 123(1): 25-38.

[15]

Gardiner N. J., Searle M. P., Robb L. J., . Neo-Tethyan Magmatism and Metallogeny in Myanmar--An Andean Analogue?. Journal of Asian Earth Sciences, 2015, 106: 197-215.

[16]

Grassineau N. V., Mattey D. P., Lowry D. Sulfur Isotope Analysis of Sulfide and Sulfate Minerals by Continuous Flow-Isotope Ratio Mass Spectrometry. Analytical Chemistry, 2001, 73(2): 220-225.

[17]

Hall R. Cenozoic Geological and Plate Tectonic Evolution of SE Asia and the SW Pacific: Computer-Based Reconstructions, Model and Animations. Journal of Asian Earth Sciences, 2002, 20: 353-431.

[18]

Hou Z. Q., Zaw K., Pan G. T., . Sanjiang Tethyan Metallogenesis in S.W, 2007, China: Tectonic Setting, Metallogenic Epochs and Deposit Types, 48-87.

[19]

Hu R. Z., Wei W. F., Bi X. W., . Molybdenite Re-Os and Muscovite 40Ar/39Ar Dating of the Xihuashan Tungsten Deposit, Central Nanling District, South China. Lithos, 2012, 150: 111-118.

[20]

Hutchison C. S., Taylor D. Metallogenesis in SE Asia. Journal of the Geological Society, 1978, 135(4): 407-428.

[21]

Jiang H., Li W. Q., Jiang S.Y., . Geochronological, Geochemical and Sr-Nd-Hf Isotopic Constraints on the Petrogenesis of Late Cretaceous A-Type Granites from the Sibumasu Block, Southern Myanmar, SE Asia. Lithos, 2017, 268–271: 32-47.

[22]

Khan P. K., Shamim S., Mohanty M., . Myanmar-Andaman-Sumatra Subduction Margin Revisited: Insights of Arc-Specific Deformations. Journal of Earth Science, 2017, 28(4): 683-694.

[23]

Li J., Sun Y. L., He K., . The Improved Molybdenite Re-Os Dating Method and Its Applications. Acta Petrologica Sinica, 2010, 26(2): 642-648.

[24]

Liu Y. P., Li Z. X., Li H. M., . U-Pb Geochronology of Cassiterite and Zircon from the Dulong Sn-Zn Deposit: Evidence for Cretaceous Large-Scale Granitic Magmatism and Mineralization Events in Southeastern Yunnan Province, China. Acta Petrologica Sinica, 2007, 23: 967-976.

[25]

Ludwig K. R. User’s Manual for Isoplot/Ex Version 3.00, 2003, 41-70.

[26]

Ma N., Deng J., Wang Q. F., . Geochronology of the Dasongpo Tin Deposit, Yunnan Province: Evidence from Zircon LA-ICP-MS U-Pb Ages and Cassiterite LA-MC-ICP-MS U-Pb Age. Acta Petrologica Sinica, 2013, 29(4): 1223-1235.

[27]

Mao J. W., Cheng Y. B., Chen M. H., . Major Types and Time-Space Distribution of Mesozoic Ore Deposits in South China and Their Geodynamic Settings. Mineralium Deposita, 2013, 48(3): 267-294.

[28]

Mao J. W., Zhang Z. C., Zhang Z. H., . Re-Os Isotopic Dating of Molybdenites in the Xiaoliugou W (Mo) Deposit in the Northern Qilian Mountains and Its Geological Significance. Geochimica et Cosmochimica Acta, 1999, 63(11/12): 1815-1818.

[29]

Metcalfe I. Gondwana Dispersion and Asian Accretion: Tectonic and Palaeogeographic Evolution of Eastern Tethys. Journal of Asian Earth Sciences, 2013, 66: 1-33.

[30]

Mitchell A. H. G. Cretaceous-Cenozoic Tectonic Events in the Western Myanmar (Burma)-Assam Region. Journal of the Geological Society, 1993, 150: 1089-1102.

[31]

Mitchell A. H. G., Chung S. L., Oo T., . Zircon U-Pb Ages in Myanmar: Magmatic-Metamorphic Events and the Closure of a Neo-Tethys Ocean?. Journal of Asian Earth Sciences, 2012, 56: 1-23.

[32]

Ohmoto H. Systematics of Sulfur and Carbon Isotopes in Hydrothermal Ore Deposits. Economic Geology, 1972, 67(5): 551-578.

[33]

Ohmoto H., Rye R. O. Isotopes of Sulfur and Carbon, 1979, In: Barnes, H, 509-567.

[34]

Oo T., Hlaing T., Htay N. Permian of Myanmar. Journal of Asian Earth Sciences, 2002, 20(6): 683-689.

[35]

Peng J. T., Zhou M. F., Hu R. Z., . Precise Molybdenite Re-Os and Mica Ar-Ar Dating of the Mesozoic Yaogangxian Tungsten Deposit, Central Nanling District, South China. Mineralium Deposita, 2006, 41(7): 661-669.

[36]

Qi L., Zhou M. F., Gao J. F., . An Improved Carius Tube Technique for Determination of Low Concentrations of Re and Os in Pyrites. Journal of Analytical Atomic Spectrometry, 2010, 25(4): 585-589.

[37]

Schwartz M. O., Rajah S. S., Askury A. K., . The Southeast Asian Tin Belt, 1995, 95-293.

[38]

Searle M. P., Noble S. R., Cottle J. M., . Tectonic Evolution of the Mogok Metamorphic Belt, Burma (Myanmar) Constrained by U-Th-Pb Dating of Metamorphic and Magmatic Rocks. Tectonics, 2007.

[39]

Shirey S. B., Walker R. J. Carius Tube Digestion for Low-Blank Rhenium-Osmium Analysis. Analytical Chemistry, 1995, 67(13): 2136-2141.

[40]

Smoliar M. I., Walker R. J., Morgan J. W. Re-Os Ages of Group IIA, IIIA, IVA, and IVB Iron Meteorites. Science, 1996, 271(5252): 1099-1102.

[41]

Sone M., Metcalfe I. Parallel Tethyan Sutures in Mainland Southeast Asia: New Insights for Palaeo-Tethys Closure and Implications for the Indosinian Orogeny. Comptes Rendus Geoscience, 2008, 340(2/3): 166-179.

[42]

Stein H. J., Markey R. J., Morgan J. W., . The Remarkable Re-Os Chronometer in Molybdenite: How and Why It Works. Terra Nova, 2001, 13(6): 479-486.

[43]

Stein H. J., Sundblad K., Markey R. J., . Re-Os Ages for Archean Molybdenite and Pyrite, Kuittila-Kivisuo, Finland and Proterozoic Molybdenite, Kabeliai, Lithuania: Testing the Chronometer in a Metamorphic and Metasomatic Setting. Mineralium Deposita, 1998, 33(4): 329-345.

[44]

Suzuki K., Shimizu H., Masuda A. Re-Os Dating of Molybdenites from Ore Deposits in Japan: Implication for the Closure Temperature of the Re-Os System for Molybdenite and the Cooling History of Molybdenum Ore Deposits. Geochimica et Cosmochimica Acta, 1996, 60(16): 3151-3159.

[45]

Than H., Than H., Zaw K. Tin-Tungsten Deposits of Myanmar. Geological Society, London, Memoirs, 2017, 48 625

[46]

Yang Z. X., Mao J. W., Chen M. H., . Re-Os Dating of Molybdenite from the Kafang Skarn Copper (Tin) Deposit in the Gejiu Tin Polymetallic Ore Distric and Its Geological Significance. Acta Petrologica Sinica, 2008, 24: 1937-1944.

[47]

Yang Z., Jiang H., Yang G. M., . Zircon U-Pb and Molybdenite Re-Os Dating of the Gangjiang Porphyry Cu-Mo Deposit in Central Gangdese and Its Geological Significance. Earth Science, 2017, 42(3): 339-356.

[48]

York D. Least Squares Fitting of a Straight Line with Correlated Errors. Earth and Planetary Science Letters, 1968, 5: 320-324.

[49]

Zaw K. Fluid Inclusion Studies on the Hermyingyi Tungsten-Tin Deposit, Southern Burma, 1978, In: Prinya, N, 393-397.

[50]

Zaw K. Geology and Geothermometry of Vein-Type W-Sn Deposits at Pennaichaung and Yetkanzintaung Prospects, Tavoy Township, Tennasserim Division, Southern Burma. Mineralium Deposita, 1984, 19(2): 138-144.

[51]

Zaw K. Geological, Petrological and Geochemical Characteristics of Granitoid Rocks in Burma: With Special Reference to the Associated W-Sn Mineralization and Their Tectonic Setting. Journal of Southeast Asian Earth Sciences, 1990, 4(4): 293-335.

[52]

Zaw K. K. M. T. A Note on a Fluid Inclusion Study of Tin-Tungsten Mineralization at Mawchi Mine, Kayah State, Burma. Economic Geology, 1983, 78(3): 530-534.

[53]

Zaw K., Meffre S., Lai C. K., . Tectonics and Metallogeny of Mainland Southeast Asi—A Review and Contribution. Gondwana Research, 2014, 26(1): 5-30.

[54]

Zhang R. Q., Lu J. J., Wang R. C., . Constraints of in Situ Zircon and Cassiterite U-Pb, Molybdenite Re-Os and Muscovite 40Ar-39Ar Ages on Multiple Generations of Granitic Magmatism and Related W-Sn Mineralization in the Wangxianling Area, Nanling Range, South China. Ore Geology Reviews, 2015, 65: 1021-1042.

[55]

Zhang X. B., Wang K. Y., Wang C. Y., . Age, Genesis, and Tectonic Setting of the Mo-W Mineralized Dongshanwan Granite Porphyry from the Xilamulun Metallogenic Belt, NE China. Journal of Earth Science, 2017, 28(3): 433-446.

[56]

Zhang Z., Song J. L., Tang J. X., . Petrogenesis, Diagenesis and Mineralization Ages of Galale Cu-Au Deposit, Tibet: Zircon U-Pb Age, Hf Isotopic Composition and Molybdenite Re-Os Dating. Earth Science, 2017, 42(6): 862-880.

[57]

Zhao W. W., Zhou M. F., Li Y. H. M., . Genetic Types, Mineralization Styles, and Geodynamic Settings of Mesozoic Tungsten Deposits in South China. Journal of Asian Earth Sciences, 2017, 137: 109-140.

[58]

Zheng W., Mao J. W., Zhao H. J., . Geochemistry, Sr-Nd-Pb-Hf Isotopes Systematics and Geochronological Constrains on Petrogenesis of the Xishan A-Type Granite and Associated W-Sn Mineralization in Guangdong Province, South China. Ore Geology Reviews, 2017, 88: 739-752.

AI Summary AI Mindmap
PDF

153

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/