Tectonothermal Records in Migmatite-Like Rocks of the Guandi Complex in Zhoukoudian, Beijing: Implications for Late Neoarchean to Proterozoic Tectonics of the North China Craton

Yating Zhong, Chuan He, Neng-Song Chen, Bin Xia, Zhiqiang Zhou, Binghan Chen, Guoqing Wang

Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (5) : 1254-1275.

Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (5) : 1254-1275. DOI: 10.1007/s12583-018-0856-7
Precambrian Metamorphism-Magmatism and Tectonics of the North China Craton and Erguna Massif

Tectonothermal Records in Migmatite-Like Rocks of the Guandi Complex in Zhoukoudian, Beijing: Implications for Late Neoarchean to Proterozoic Tectonics of the North China Craton

Author information +
History +

Abstract

Migmatite-like rocks transformed from strongly metamorphosed and deformed enclavebearing felsic plutons usually make people confuse with the true migmatites and mistake in interpretation of their petrogenesis and tectonic implications. Here we report a suite of rocks that have long been called as migmatites from the Guandi complex in Zhoukoudian region, southwest of Beijing. The rocks are dominated by felsic gneisses with garnet-free amphibolites. Field occurrence, petrography and geochemistry indicate that the felsic gneisses and amphibolites were metamorphosed from protoliths of intermediate-acid and basic igneous rocks, respectively. New LA-ICP-MS zircon U-Pb dating and geothermobarometry study further reveal that precursor magmas of the two types of rocks were emplaced at 2.54–2.56 Ga and the rocks subsequently underwent medium P/T-type metamorphism with upper amphibolite facies conditions of 0.55–0.90 GPa and 670–730 °C at ~2.48–2.50 Ga. Geochemically, precursor magmas of the amphibolites were suggested to be derived from an enriched lithospheric mantle source in continental arc setting, and those of the felsic gneisses are characterized by tonalitic to trondhjemitic magmas that are usually considered to be generated by partial melting of hydrated, thickened metamorphosed mafic crust with garnet as residues, suggesting that the rock associations are not of true migmatites but migmatite-like rocks. Our study reveal that protoliths of the migmatite-like rocks from the Guandi complex, were likely formed via magmatism in a continental arc setting, followed by accretion and collision of the continental arc as well as the intro-oceanic arc terranes to the Eastern Block of the North China Craton in the transition from the Late Neoarchean to Early Paleoproterozoic.

Keywords

Zhoukoudian / migmatite-like rocks / magmatism and metamorphism / tectonic evolution / Late Neoarchean to Early Paleoproterozoic transition / North China Craton

Cite this article

Download citation ▾
Yating Zhong, Chuan He, Neng-Song Chen, Bin Xia, Zhiqiang Zhou, Binghan Chen, Guoqing Wang. Tectonothermal Records in Migmatite-Like Rocks of the Guandi Complex in Zhoukoudian, Beijing: Implications for Late Neoarchean to Proterozoic Tectonics of the North China Craton. Journal of Earth Science, 2018, 29(5): 1254‒1275 https://doi.org/10.1007/s12583-018-0856-7

References

Anderson J. L., Smith D. R. The Effects of Temperature and f O2 on the Al-in-Hornblende Barometer. American Mineralogist, 1995, 80(5/6): 549-559.
CrossRef Google scholar
Arth J. G. Some Trace Elements in Trondhjemites—Their Implications to Magma Genesis and Paleotectonic Setting, 1979, 123-132.
Ashwal L. D., Wooden J. L., Emslie R. F. Sr, Nd and Pb Isotopes in Proterozoic Intrusives Astride the Grenville Front in Labrador: Implications for Crustal Contamination and Basement Mapping. Geochimica et Cosmochimica Acta, 1986, 50(12): 2571-2585.
CrossRef Google scholar
Ashworth J. R. Migmatites, 1985
CrossRef Google scholar
Atherton M. P., Petford N. Generation of Sodium-Rich Magmas from newly Underplated Basaltic Crust. Nature, 1993, 362(6416): 144-146.
CrossRef Google scholar
Bai X., Liu S. W., Guo R. R., . A Neoarchean Arc-Back-Arc System in Eastern Hebei, North China Craton: Constraints from Zircon U-Pb-Hf Isotopes and Geochemistry of Dioritic-Tonalitic-Trondhjemitic-Granodioritic (DTTG) Gneisses and Felsic Paragneisses. Precambrian Research, 2016, 273: 90-111.
CrossRef Google scholar
Barbarin B. Field Evidence for Successive Mixing and Mingling between the Piolard Diorite and the Saint-Julien-La-Vêtre Monzogranite (Nord-Forez, Massif Central, France). Canadian Journal of Earth Sciences, 1988, 25(1): 49-59.
CrossRef Google scholar
Barker F. Trondhjemite: Definition, Environment and Hypotheses of Origin, 1979, 1-12.
Barker F., Arth J. G. Generation of Trondhjemitic-Tonalitic Liquids and Archean Bimodal Trondhjemite-Basalt Suites. Geology, 1976, 4(10): 596-600.
CrossRef Google scholar
Bédard J. H. A Catalytic Delamination-Driven Model for Coupled Genesis of Archaean Crust and Sub-Continental Lithospheric Mantle. Geochimica et Cosmochimica Acta, 2006, 70(5): 1188-1214.
CrossRef Google scholar
Bohlen S. R. Pressure-Temperature-Time Paths and a Tectonic Model for the Evolution of Granulites. The Journal of Geology, 1987, 95(5): 617-632.
CrossRef Google scholar
Braun I., Kriegsman L. M. Partial Melting in Crustal Xenoliths and Anatectic Migmatites: A Comparison. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 2001, 26(4/5): 261-266.
CrossRef Google scholar
Brown M. Metamorphic Conditions in Orogenic Belts: A Record of Secular Change. International Geology Review, 2007, 49(3): 193-234.
CrossRef Google scholar
Brown M. P-T-t Paths of Orogenic Belts and the Causes of Regional Metamorphism. Geological Society, London, Memoirs, 1995, 16: 67-81.
CrossRef Google scholar
Chen H.-X., Wang H. Y. C., Peng T., . Petrogenesis and Geochronology of the Neoarchean-Paleoproterozoic Granitoid and Monzonitic Gneisses in the Taihua Complex: Episodic Magmatism of the Southwestern Trans-North China Orogen. Precambrian Research, 2016, 287: 31-47.
CrossRef Google scholar
Chen N.-S., Liao F. X., Wang L., . Late Paleoproterozoic Multiple Metamorphic Events in the Quanji Massif: Links with Tarim and North China Cratons and Implications for Assembly of the Columbia Supercontinent. Precambrian Research, 2013, 228: 102-116.
CrossRef Google scholar
Chen N.-S., Wang R. J., Shan W. R., . Isobaric Cooling P-T-t Path of the Western Section of the Miyun Complex and Its Tectonic Implications. Scientia Geologica Sinica, 1994, 29: 354-364.
Chen N.-S., Wang F. Z. Single-Grain Evaporation Zircon Pb-Pb Ages of Guandi Complex, Zhoukoudian Area, Western Hills of Beijing: Archean Genesis and Cratonization Events of the North China Craton. Geological Science and Technology Information, 2006, 25: 41-44.
Cheng S. H., Kusky T. M. Komatiites from West Shandong, North China Craton: Implications for Plume Tectonics. Gondwana Research, 2007, 12(1/2): 77-83.
CrossRef Google scholar
Condie K. C. TTGs and Adakites: Are They both Slab Melts?. Lithos, 2005, 80(1/2/3/4): 33-44.
CrossRef Google scholar
Condie K. C. Trace-Element Geochemistry of Archean Greenstone Belts. Earth Science Reviews, 1976, 12(4): 393-417.
CrossRef Google scholar
Corfu F., Hanchar J. M., Hoskin P. W., . Atlas of Zircon Textures. In: Hanchar, J. M., Hoskin, P. W. O., eds., Zircon. Reviews in Mineralogy and Geochemistry, 2003, 53: 469-500.
De la Roche H., Leterrier J., Grandclaude P., . A Classification of Volcanic and Plutonic Rocks Using R1-R2-diagram and Major-Element Analyses—Its Relationships with Current Nomenclature. Chemical Geology, 1980, 29(1/2/3/4): 183-210.
CrossRef Google scholar
Deng H., Kusky T. M., Polat A., . Magmatic Record of Neoarchean Arc-Polarity Reversal from the Dengfeng Segment of the Central Orogenic Belt, North China Craton, 2018.
Deng H., Kusky T. M., Polat A., . A 2.5Ga Fore-Arc Subduction-Accretion Complex in the Dengfeng Granite-Greenstone Belt, Southern North China Craton. Precambrian Research, 2016, 275: 241-264.
CrossRef Google scholar
Diwu C. R., Sun Y., Guo A. L., . Crustal Growth in the North China Craton at ~2.5 Ga: Evidence from in situ Zircon U-Pb Ages, Hf Isotopes and Whole-Rock Geochemistry of the Dengfeng Complex. Gondwana Research, 2011, 20(1): 149-170.
CrossRef Google scholar
Dharma Rao C. V., Vijay Kumar T., Bhaskar Rao Y. J. The Pangidi Anorthosite Complex, Eastern Ghats Granulite Belt, India: Mesoproterozoic Sm-Nd Isochron Age and Evidence for Significant Crustal Contamination. Current Science, 2004, 89: 1614-1618.
Droop G. T. R. A General Equation for Estimating Fe3+ Concentrations in Ferromagnesian Silicates and Oxides from Microprobe Analyses, Using Stoichiometric Criteria. Mineralogical Magazine, 1987, 51(361): 431-435.
CrossRef Google scholar
Drummond M. S., Defant M. J. A Model for Trondhjemite-Tonalite-Dacite Genesis and Crustal Growth via Slab Melting: Archean to Modern Comparisons. Journal of Geophysical Research, 1990, 95 B13 21503
CrossRef Google scholar
Duan Z. Z., Wei C. J., Rehman H. U. Metamorphic Evolution and Zircon Ages of Pelitic Granulites in Eastern Hebei, North China Craton: Insights into the Regional Archean P-T-t History. Precambrian Research, 2017, 292: 240-257.
CrossRef Google scholar
Fershtater G. B. Empirical Hornblende-Plagioclase Geobarometer. Geokhimiya, 1990, 3: 328-335.
Foley S., Tiepolo M., Vannucci R. Growth of Early Continental Crust Controlled by Melting of Amphibolite in Subduction Zones. Nature, 2002, 417(6891): 837-840.
CrossRef Google scholar
Ge W. C., Zhao G. C., Sun D. Y., . Metamorphic P-T Path of the Southern Jilin Complex: Implications for Tectonic Evolution of the Eastern Block of the North China Craton. International Geology Review, 2003, 45(11): 1029-1043.
CrossRef Google scholar
Ge W. C., Sun D. Y., Wu F. Y., . The Metamorphic P-T-t Path of Archean Granulites in Huadian Area, Jilin Province. Acta Petrologica et Mineralogica, 1994, 13: 232-238.
Geng Y. S., Du L. L., Ren L. D. Growth and Reworking of the Early Precambrian Continental Crust in the North China Craton: Constraints from Zircon Hf Isotopes. Gondwana Research, 2012, 21(2/3): 517-529.
CrossRef Google scholar
Graham C. M. Metabasite Amphiboles of the Scottish Dalradian. Contributions to Mineralogy and Petrology, 1974, 47(3): 165-185.
CrossRef Google scholar
Grant M. L., Wilde S. A., Wu F. Y., . The Application of Zircon Cathodoluminescence Imaging, Th-U-Pb Chemistry and U-Pb Ages in Interpreting Discrete Magmatic and High-Grade Metamorphic Events in the North China Craton at the Archean/Proterozoic Boundary. Chemical Geology, 2009, 261(1/2): 155-171.
CrossRef Google scholar
Gribble R. F., Stern R. J., Bloomer S. H., . MORB Mantle and Subduction Components Interact to Generate Basalts in the Southern Mariana Trough Back-Arc Basin. Geochimica et Cosmochimica Acta, 1996, 60(12): 2153-2166.
CrossRef Google scholar
Gill R. Igneous Rocks and Process: A Practical Guide, 2010.
Groppo C., Rolfo F. Counterclockwise P-T Evolution of the Aghil Range: Metamorphic Record of an Accretionary Melange between Kunlun and Karakorum (SW Sinkiang, China). Lithos, 2008, 105(3/4): 365-378.
CrossRef Google scholar
Guo B. R., Liu S. W., Santosh M., . Neoarchean Arc Magmatism and Crustal Growth in the North-Eastern North China Craton: Evidence from Granitoid Gneisses in the Southern Jilin Province. Precambrian Research, 2017, 303: 30-53.
CrossRef Google scholar
Guo B. R., Liu S. W., Zhang J., . Neoarchean Andean-Type Active Continental Margin in the Northeastern North China Craton: Geochemical and Geochronological Evidence from Metavolcanic Rocks in the Jiapigou Granite-Greenstone Belt, Southern Jilin Province. Precambrian Research, 2016, 285: 147-169.
CrossRef Google scholar
Guo H. Q. Petrological Characteristics and Origin of Gneissic Rocks along Northern Flank of Fangshan Intrusion, Beijing. Bulletin of The Institute of Geology Chinese Academy of Geological Science, 1985, 13: 105-130.
Guo R. R., Liu S. W., Gong E. P., . Arc-Generated Metavolcanic Rocks in the Anshan-Benxi Greenstone Belt, North China Craton: Constraints from Geochemistry and Zircon U-Pb-Hf Isotopic Systematics. Precambrian Research, 2017, 303: 228-250.
CrossRef Google scholar
Guo R. R., Liu S. W., Wyman D., . Neoarchean Subduction: A Case Study of Arc Volcanic Rocks in Qinglong-Zhuzhangzi Area of the Eastern Hebei Province, North China Craton. Precambrian Research, 2015, 264: 36-62.
CrossRef Google scholar
Hawkesworth C. J., Gallagher K., Hergt J. M., . Mantle and Slab Contributions in Arc Magmas. Annual Review of Earth and Planetary Sciences, 1993, 21(1): 175-204.
CrossRef Google scholar
He Z. L. The Study of Granitic Intrusion in Western Mountain, Beijing, and Its Metamorphism. Bulletin of the Chinese Academy of Geological Sciences, 1936, 5: 24-50.
He B., Xu Y. G., Wang Y. M., . Magmatic Diapir of Fangshan Pluton in the Western Hills, Beijing and Its Geological Significance. Earth Science—Journal of China University of Geosciences, 2005, 30(3): 298-308.
Hietanen A. Amphibole Pairs, Epidote Minerals, Chlorite, and Plagioclase in Metamorphic Rocks, Northern Sierra Nevada, California. American Mineralogist, 1974, 59: 22-40.
Hinchey A. M., Carr S. D. The S-Type Ladybird Leucogranite Suite of Southeastern British Columbia: Geochemical and Isotopic Evidence for a Genetic Link with Migmatite Formation in the North American Basement Gneisses of the Monashee Complex. Lithos, 2006, 90(3/4): 223-248.
CrossRef Google scholar
Holland T., Blundy J. Non-Ideal Interactions in Calcic Amphiboles and Their Bearing on Amphibole-Plagioclase Thermometry. Contributions to Mineralogy and Petrology, 1994, 116(4): 433-447.
CrossRef Google scholar
Hollings P., Kerrich R. Geochemical Systematics of Tholeiites from the 2.86 Ga Pickle Crow Assemblage, Northwestern Ontario: Arc Basalts with Positive and Negative Nb-Hf Anomalies. Precambrian Research, 2004, 134(1/2): 1-20.
CrossRef Google scholar
Hopgood A. M. Determination of Structural Successions in Migmatites and Gneisses, 1999, 197-214
CrossRef Google scholar
Hoskin P. W. O., Schaltegger U. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. In: Hanchar, J. M., Hoskin, P. W. O., eds., Zircon. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 27-62.
Hu Z. C., Liu Y. S., Gao S., . Improved in Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 2012, 27(9): 1391-1399.
CrossRef Google scholar
Humphris S. E., Thompson G. Trace Element Mobility during Hydrothermal Alteration of Oceanic Basalts. Geochimica et Cosmochimica Acta, 1978, 42(1): 127-136.
CrossRef Google scholar
Jahn B. M., Liu D. H., Wan Y. S., . Archean Crustal Evolution of the Jiaodong Peninsula, China, as Revealed by Zircon SHRIMP Geochronology, Elemental and Nd-Isotope Geochemistry. American Journal of Science, 2008, 308(3): 232-269.
CrossRef Google scholar
Jia X. L., Zhu X. Y., Zhai M. G., . Late Mesoarchean Crust Growth Event: Evidence from the ca. 2.8 Ga Granodioritic Gneisses of the Xiaoqinling Area, Southern North China Craton. Science Bulletin, 2016, 61(12): 974-990.
CrossRef Google scholar
Kay R. W., Kay S. M. Delamination and Delamination Magmatism. Tectonophysics, 1993, 219(1/2/3): 177-189.
CrossRef Google scholar
Koshida K., Ishikawa A., Iwamori H., . Petrology and Geochemistry of Mafic Rocks in the Acasta Gneiss Complex: Implications for the Oldest Mafic Rocks and Their Origin. Precambrian Research, 2016, 283: 190-207.
CrossRef Google scholar
Kriegsman L. M. Partial Melting, Partial Melt Extraction and Partial Back Reaction in Anatectic Migmatites. Lithos, 2001, 56(1): 75-96.
CrossRef Google scholar
Kusky T. M., Polat A., Windley B. F., . Insights into the Tectonic Evolution of the North China Craton through Comparative Tectonic Analysis: A Record of Outward Growth of Precambrian Continents. Earth-Science Reviews, 2016, 162: 387-432.
CrossRef Google scholar
Kusky T. M., Zhai M. G. The Neoarchean Ophiolite in the North China Craton: Early Precambrian Plate Tectonics and Scientific Debate. Journal of Earth Science, 2012, 23(3): 277-284.
CrossRef Google scholar
Kusky T. M., Li J. H. Origin and Emplacement of Archean Ophiolites of the Central Orogenic Belt, North China Craton. Journal of Earth Science, 2010, 21(5): 744-781.
CrossRef Google scholar
La Flèche M. R., Camiré G., Jenner G. A. Geochemistry of Post-Acadian, Carboniferous Continental Intraplate Basalts from the Maritimes Basin, Magdalen Islands, Québec, Canada. Chemical Geology, 1998, 148(3/4): 115-136.
CrossRef Google scholar
Lassiter J. C., Depaolo D. J. Plume-Lithosphere Interaction in the Generation of Continental and Oceanic Flood Basalts: Chemical and Isotope Constraints, 1997, 335-355.
Leake B. E., Woolley A. R., Arps C. E. S., . Nomenclature of Amphiboles Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. European Journal of Mineralogy, 1997, 9(3): 623-651.
CrossRef Google scholar
Li Y. L., Brouwer F. M., Xiao W. J., . Subduction-Related Metasomatic Mantle Source in the Eastern Central Asian Orogenic Belt: Evidence from Amphibolites in the Xilingol Complex, Inner Mongolia, China. Gondwana Research, 2017, 43: 193-212.
CrossRef Google scholar
Li Z., Wei C. J. Two Types of Neoarchean Basalts from Qingyuan Greenstone Belt, North China Craton: Petrogenesis and Tectonic Implications. Precambrian Research, 2017, 292: 175-193.
CrossRef Google scholar
Li Z. L. Metamorphic P-T-t Path of the Archaean Rocks in the Eastern Shandong Province and Its Implications. Shandong Geology, 1993, 9: 31-41.
Liu B., Jin B., Zhang L., . Zircon LA-ICP-MS U-Pb Dating of Metamorphism and Anatexis of the Guandi Complex, Zhoukoudian Area, Beijing. Geological Science and Technology Information, 2008, 27: 37-42.
Liu D. Y., Wilde S. A., Wan Y. S., . Combined U-Pb, Hafnium and Oxygen Isotope Analysis of Zircons from Meta-Igneous Rocks in the Southern North China Craton Reveal Multiple Events in the Late Mesoarchean–Early Neoarchean. Chemical Geology, 2009, 261(1/2): 140-154.
CrossRef Google scholar
Liu G. H., Wu J. S. Metamorphic Zones of the Fangshan Area in Beijing. Bulletin of the Chinese Academy of Geological Sciences, 1987, 16: 113-137.
Liu J. H., Liu F. L., Ding Z. J., . Early Precambrian Major Magmatic Events, and Growth and Evolution of Continental Crust in the Jiaobei Terrane, North China Craton. Acta Petrologica Sinica, 2015, 31: 2942-2958.
Liu S. J., Jahn B. M., Wan Y. S., . Neoarchean to Paleoproterozoic High-Pressure Mafic Granulite from the Jiaodong Terrain, North China Craton: Petrology, Zircon Age Determination and Geological Implications. Gondwana Research, 2015, 28(2): 493-508.
CrossRef Google scholar
Liu S. W., Wang W., Bai X., . Lithological Assemblages of Archean Meta-Igneous Rocks in Eastern Hebei-Western Liaoning Provinces of North China Craton, and Their Geodynamic Implications. Earth Science—Journal of China University of Geosciences, 2018, 43: 44-56.
CrossRef Google scholar
Liu S. W., Y. J., Feng Y. G., . Geology and Zircon U-Pb Isotopic Chronology of Dantazi Complex, Northern Hebei Province. Earth Science—Journal of China University of Geosciences, 2007, 13: 484-497.
Liu S. W., Pan Y. M., Xie Q. L., . Archean Geodynamics in the Central Zone, North China Craton: Constraints from Geochemistry of Two Contrasting Series of Granitoids in the Fuping and Wutai Complexes. Precambrian Research, 2004, 130(1/2/3/4): 229-249.
CrossRef Google scholar
Liu S. W., Pan Y. M., Li J. H., . Geological and Isotopic Geochemical Constraints on the Evolution of the Fuping Complex, North China Craton. Precambrian Research, 2002, 117(1/2): 41-56.
CrossRef Google scholar
Liu Y. S., Hu Z. C., Gao S., . In situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 2008, 257(1/2): 34-43.
CrossRef Google scholar
Liu Y. S., Hu Z. C., Zong K. Q., . Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 2010, 55(15): 1535-1546.
CrossRef Google scholar
Lu J. S., Zhai M. G., Lu L. S., . P-T-t Evolution of Neoarchaean to Paleoproterozoic Pelitic Granulites from the Jidong Terrane, Eastern North China Craton. Precambrian Research, 2017, 290: 1-15.
CrossRef Google scholar
Lu Y. J., Loucks R. R., Fiorentini M. L., . Fluid Fl.xMelting Generated Postcollisional High Sr/Y Copper Ore-Forming Water-Rich Magmas in Tibet. Geology, 2015, 43(7): 583-586.
CrossRef Google scholar
Ludwig K. R. User’s Manual for Isoplot 3.00: A Geochronological Toolkit for Microft Excel. Berkeley Geochronology Center Special Publication, Berkeley., 2003, 4: 25-39.
B., Zhai M. G., Li T. S., . Zircon U-Pb Ages and Geochemistry of the Qinglong Volcano-Sedimentary Rock Series in Eastern Hebei: Implication for ~2.500Ma Intra-Continental Rifting in the North China Craton. Precambrian Research, 2012, 208–211: 145-160.
Martin H., Moyen J. F., Rapp R. The Sanukitoid Series: Magmatism at the Archaean–Proterozoic Transition. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2009, 100(1/2): 15-33.
CrossRef Google scholar
Martin H., Smithies R. H., Rapp R., . An Overview of Adakite, Tonalite-Trondhjemite-Granodiorite (TTG), and Sanukitoid: Relationships and Some Implications for Crustal Evolution. Lithos, 2005, 79(1/2): 1-24.
CrossRef Google scholar
Martin H. Adakitic Magmas: Modern Analogues of Archaean Granitoids. Lithos, 1999, 46(3): 411-429.
CrossRef Google scholar
Martin H. The Archean Grey Gneisses and the Genesis of the Continental Crust, 1994, 205-259.
Martin L. A. J., Duchêne S., Deloule E., . Mobility of Trace Elements and Oxygen in Zircon during Metamorphism: Consequences for Geochemical Tracing. Earth and Planetary Science Letters, 2008, 267(1/2): 161-174.
CrossRef Google scholar
Mason G. H. The Mineralogy and Textures of the Coastal Batholith, Peru, 1985, 156-166.
McCulloch M. T., Gamble J. A. Geochemical and Geodynamical Constraints on Subduction Zone Magmatism. Earth and Planetary Science Letters, 1991, 102(3/4): 358-374.
CrossRef Google scholar
McDonough W. F. Compositional Model for the Earth’s Core. In: Carlson, R. W., ed., The Mantle and Core, Treatise on Geochemistry. Elsevier, Amsterdam., 2003, 2: 547-568.
McDonough W. F., Sun S. S. The Composition of the Earth. Chemical Geology, 1995, 120(3/4): 223-253.
CrossRef Google scholar
Mehnert K. R. Migmatites and the Origin of Granitic Rocks. Elsevier, Amsterdam, 1968.
Middlemost E. A. K. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 1994, 37(3/4): 215-224.
CrossRef Google scholar
Miyashiro A. Metamorphic Petrology, 1994.
Miyashiro A. Metamorphic Facies and Facies Series: Metamorphism and Metamorphic Belts, 1973, 72-243
CrossRef Google scholar
Molina J. F., Moreno J. A., Castro A., . Calcic Amphibole Thermobarometry in Metamorphic and Igneous Rocks: New Calibrations Based on Plagioclase/Amphibole Al-Si Partitioning and Amphibole/Liquid Mg Partitioning. Lithos, 2015, 232: 286-305.
CrossRef Google scholar
Moyen J. F., Martin H. Forty Years of TTG Research. Lithos, 2012, 148: 312-336.
CrossRef Google scholar
Mullen E. D. MnO/TiO2/P2O5: A Minor Element Discriminant for Basaltic Rocks of Oceanic Environments and Its Implications for Petrogenesis. Earth and Planetary Science Letters, 1983, 62(1): 53-62.
CrossRef Google scholar
Nehring F., Foley S. F., Hölttä P., . Internal Differentiation of the Archean Continental Crust: Fluid-Controlled Partial Melting of Granulites and TTG—Amphibolite Associations in Central Finland. Journal of Petrology, 2009, 50(1): 3-35.
CrossRef Google scholar
Nutman A. P., Wan Y. S., Du L. L., . Multistage Late Neoarchean Crustal Evolution of the North China Craton, Eastern Hebei. Precambrian Research, 2011, 189(1/2): 43-65.
CrossRef Google scholar
Palme H., O’Nell H. S. C. Cosmochemical Estimates of Mantle Composition. In: Carlson, R. W., ed., The Mantle and Core, Treatise on Geochemistry. Elsevier, Amesterdam., 2003, 2: 1-28.
Pearce J. A. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 2008, 100(1/2/3/4): 14-48.
CrossRef Google scholar
Pearce J. A. An Userʼs Guide to Basalt Discrimination Diagrams. In: Wyman, D. A., ed., Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Exploration. Geological Association of Canada, Short Course Notes., 1996, 12: 79-113.
Pearce J. A., Peate D. W. Tectonic Implications of the Composition of Volcanic Arc Magmas. Annual Review of Earth and Planetary Sciences, 1995, 23(1): 251-285.
CrossRef Google scholar
Pearce J. A., Cann J. R. Tectonic Setting of Basic Volcanic Rocks Determined Using Trace Element Analyses. Earth and Planetary Science Letters, 1973, 19(2): 290-300.
CrossRef Google scholar
Peng P., Wang C., Wang X. P., . Qingyuan High-Grade Granite-Greenstone Terrain in the Eastern North China Craton: Root of a Neoarchaean Arc. Tectonophysics, 2015, 662: 7-21.
CrossRef Google scholar
Polat A., Li J., Fryer B., . Geochemical Characteristics of the Neoarchean (2 800–2.700Ma) Taishan Greenstone Belt, North China Craton: Evidence for Plume-Craton Interaction. Chemical Geology, 2006, 230(1/2): 60-87.
CrossRef Google scholar
Plyusnina L. P. Geothermometry and Geobarometry of Plagioclase-Hornblende Bearing Assemblages. Contributions to Mineralogy and Petrology, 1982, 80(2): 140-146.
CrossRef Google scholar
Rapp R. P., Shimizu N., Norman M. D. Growth of Early Continental Crust by Partial Melting of Eclogite. Nature, 2003, 425(6958): 605-609.
CrossRef Google scholar
Rapp R. P., Shimizu N., Norman M. D., . Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge: Experimental Constraints at 3.8 GPa. Chemical Geology, 1999, 160(4): 335-356.
CrossRef Google scholar
Ross P. S., Bédard J. H. Magmatic Affinity of Modern and Ancient Subalkaline Volcanic Rocks Determined from Trace-Element Discriminant Diagrams. Canadian Journal of Earth Sciences, 2009, 46(11): 823-839.
CrossRef Google scholar
Rubatto D. Zircon Trace Element Geochemistry: Partitioning with Garnet and the Link between U-Pb Ages and Metamorphism. Chemical Geology, 2002, 184(1/2): 123-138.
CrossRef Google scholar
Sajona F. G., Maury R. C., Bellon H., . High Field Strength Element Enrichment of Pliocene–Pleistocene Island Arc Basalts, Zamboanga Peninsula, Western Mindanao (Philippines). Journal of Petrology, 1996, 37(3): 693-726.
CrossRef Google scholar
Sang L. K., Ma C. Q. Petrology. Second Edition. Geological Publishing House, Beijing, 2012, 441-449.
Saunders A. D., Norry M. J., Tarney J. Fluid Influence on the Trace Element Compositions of Subduction Zone Magmas. Philosophical Transactions of the Royal Society of London Series A: Physical and Engineering Sciences, 1991, 335(1638): 377-392.
CrossRef Google scholar
Sawyer E. W. Atlas of Migmatites. The Canadian Mineralogist, Special Publication 9, 2008.
Sawyer E. W. Nomenclature for the Constituent Parts, 2008, 1-24.
Sawyer E. W. Criteria for the Recognition of Partial Melting. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 1999, 24(3): 269-279.
CrossRef Google scholar
Sawyer E. W. Formation and Evolution of Granite Magmas during Crustal Reworking: The Significance of Diatexites. Journal of Petrology, 1998, 39(6): 1147-1167.
CrossRef Google scholar
Sederholm J. J. On Granite and Gneiss: Their Origin, Relations and Occurrence in the Precambrian Complex of Fennoxcandia, 1907.
Shan H. X., Zhai M. G., Oliveira E. P., . Convergent Margin Magmatism and Crustal Evolution during Archean–Proterozoic Transition in the Jiaobei Terrane: Zircon U-Pb Ages, Geochemistry, and Nd Isotopes of Amphibolites and Associated Grey Gneisses in the Jiaodong Complex, North China Craton. Precambrian Research, 2015, 264: 98-118.
CrossRef Google scholar
Siivola J., Schmid R. List of Mineral Abbreviations, 2007, 93-110.
Smithies R. H. The Archaean Tonalite-Trondhjemite-Granodiorite (TTG) Series is not an Analogue of Cenozoic Adakite. Earth and Planetary Science Letters, 2000, 182(1): 115-125.
CrossRef Google scholar
Spandler C., Pirard C. Element Recycling from Subducting Slabs to Arc Crust: A Review. Lithos, 2013, 208-223.
Stern C. R., Kilian R. Role of the Subducted Slab, Mantle Wedge and Continental Crust in the Generation of Adakites from the Andean Austral Volcanic Zone. Contributions to Mineralogy and Petrology, 1996, 123(3): 263-281.
CrossRef Google scholar
Sun S. S., McDonough W. F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 1989, 42(1): 313-345.
CrossRef Google scholar
Tang L., Santosh M., Tsunogae T., . Late Neoarchean Arc Magmatism and Crustal Growth Associated with Microblock Amalgamation in the North China Craton: Evidence from the Fuping Complex. Lithos, 2016, 248–251: 324-338.
CrossRef Google scholar
Tarney J. Geochemistry of Archaean High-Grade Gneisses, with Implications as to the Origin and Evolution of the Precambrian Crust, 1976, 405-417.
Taylor S. R., McLennan S. M. The Continental Crust: Its Composition and Evolution, 1985.
Vavra G., Schmid R., Gebauer D. Internal Morphology, Habit and U-Th-Pb Microanalysis of Amphibolite-to-Granulite Facies Zircons: Geochronology of the Ivrea Zone (Southern Alps). Contributions to Mineralogy and Petrology, 1999, 134(4): 380-404.
CrossRef Google scholar
Vernon R. H., Clarke G. L. Principles of Metamorphic Petrology, 2008.
Walker K. R., Joplin G. A., Lovering J. F., . Metamorphic and Metasomatic Convergence of Basic Igneous Rocks and Lime—Magnesia Sediments of the Precambrian of North-Western Queensland. Journal of the Geological Society of Australia, 1959, 6(2): 149-177.
CrossRef Google scholar
Wan Y. S., Dong C. Y., Xie H. Q., . Formation Age of BIF-Bearing Anshan Group Supracrustal Rocks in Anshan-Benxi Area: New Evidence from SHRIMP U-Pb Zircon Dating. Earth Science—Journal of China University of Geosciences, 2018, 43: 57-81.
CrossRef Google scholar
Wan Y. S., Wang S. J., Reng P., . Neoarchean Magmatism in the Culaishan Area, Western Shandong: Evidence from SHRIMP Zircon U-Pb Dating. Acta Geoscientica Sinica, 2015, 36: 634-646.
Wan Y. S., Xie S. W., Yang C. H., . Early Neoarchean (~2.7 Ga) Tectono-Thermal Events in the North China Craton: A Synthesis. Precambrian Research, 2014, 247: 45-63.
CrossRef Google scholar
Wan Y. S., Dong C. Y., Wang S. J., . Middle Neoarchean Magmatism in Western Shandong, North China Craton: SHRIMP Zircon Dating and LA-ICP-MS Hf Isotope Analysis. Precambrian Research, 2014, 255: 865-884.
CrossRef Google scholar
Wan Y. S., Dong C. Y., Liu D. Y., . Zircon Ages and Geochemistry of Late Neoarchean Syenogranites in the North China Craton: A Review. Precambrian Research, 2012, 222/223: 265-289.
CrossRef Google scholar
Wan Y. S., Liu D. Y., Wang S. J., . Juvenile Magmatism and Crustal Recycling at the End of the Neoarchean in Western Shandong Province, North China Craton: Evidence from SHRIMP Zircon Dating. American Journal of Science, 2010, 310(10): 1503-1552.
CrossRef Google scholar
Wang F., Xiao L., Xiao W. S. The Petrological and Geochemical Evidences for the Archean Origin of Guandi Complex near Zhoukoudian, Beijing. Earth Science—Journal of China University of Geosciences, 1990, 15: 530-538.
Wang F. Z., Chen N.-S. Field Trip Guide T208-Regional and Thermodynamic Metamorphism of the Western Hills, Beijing, 1996.
Wang J. P., Kusky T. M., Wang L., . A Neoarchean Subduction Polarity Reversal Event in the North China Craton. Lithos, 2015, 220–223: 133-146.
CrossRef Google scholar
Wang Q., Wyman D. A., Xu J. F., . Partial Melting of Thickened or Delaminated Lower Crust in the Middle of Eastern China: Implications for Cu-Au Mineralization. The Journal of Geology, 2007, 115(2): 149-161.
CrossRef Google scholar
Wang R. M., Wan Y. S., Cheng S. H., . Modern-Style Subduction Processes in the Archean: Evidence from the Shangyi Complex in North China Craton. Acta Geologica Sinica—English Edition, 2009, 83(3): 535-543.
CrossRef Google scholar
Wang R. M., He G. P., Chen Z. Z., . Discrimination Diagrams for Protoliths of Metamorphic Rocks. Geological Publishing House, 1987.
Wang W., Liu S. W., Cawood P. A., . Late Neoarchean Subduction-Related Crustal Growth in the Northern Liaoning Region of the North China Craton: Evidence from ~2.55 to 2.50 Ga Granitoid Gneisses. Precambrian Research, 2016, 281: 200-223.
CrossRef Google scholar
Wang W., Liu S. W., Santosh M., . Neoarchean Intra-Oceanic Arc System in the Western Liaoning Province: Implications for Early Precambrian Crustal Evolution in the Eastern Block of the North China Craton. Earth-Science Reviews, 2015, 150: 329-364.
CrossRef Google scholar
Wang W., Zhai M. G., Li T. S., . Archean–Paleoproterozoic Crustal Evolution in the Eastern North China Craton: Zircon U-Th-Pb and Lu-Hf Evidence from the Jiaobei Terrane. Precambrian Research, 2014, 241: 146-160.
CrossRef Google scholar
Wang W., Liu S. W., Santosh M., . Zircon U-Pb-Hf Isotopes and Whole-Rock Geochemistry of Granitoid Gneisses in the Jianping Gneissic Terrane, Western Liaoning Province: Constraints on the Neoarchean Crustal Evolution of the North China Craton. Precambrian Research, 2013, 224: 184-221.
CrossRef Google scholar
Wang W., Liu S. W., Wilde S. A., . Petrogenesis and Geochronology of Precambrian Granitoid Gneisses in Western Liaoning Province: Constraints on Neoarchean to Early Paleoproterozoic Crustal Evolution of the North China Craton. Precambrian Research, 2012, 222/223: 290-311.
CrossRef Google scholar
Wang Y., Zhou L. Y., Li J. Y. Intracontinental Superimposed Tectonics—A Case Study in the Western Hills of Beijing, Eastern China. Geological Society of America Bulletin, 2011, 123(5/6): 1033-1055.
CrossRef Google scholar
Wei C. J., Guan X., Dong J. HT-UHT Metamorphism of Metabasites and the Petrogenesis of TTGs. Acta Petrologica Sinica, 2017, 33: 1381-1404.
Whitehouse M. J., Kamber B. S. A Rare Earth Element Study of Compl.x Zircons from Early Archaean Amı̂tsoq Gneisses, Godthåbsfjord, South-West Greenland. Precambrian Research, 2003, 126(3/4): 363-377.
CrossRef Google scholar
Whitehouse M. J., Platt J. P. Dating High-Grade Metamorphism—Constraints from Rare-Earth Elements in Zircon and Garnet. Contributions to Mineralogy and Petrology, 2003, 145(1): 61-74.
CrossRef Google scholar
Winter J. D. An Introduction of Igneous and Metamorphic Petrology (Second Edition), 2010.
Wu M. L. Ages, Geochemistry and Metamorphism of Neoarchean Basement in Shandong Province: Implications for the Evolution of the North China Craton, 2015, 146-165.
Wu M. L., Zhao G. C., Sun M., . Zircon U-Pb Geochronology and Hf Isotopes of Major Lithologies from the Yishui Terrane: Implications for the Crustal Evolution of the Eastern Block, North China Craton. Lithos, 2013, 170/171: 164-178.
CrossRef Google scholar
Wu Y. B., Zheng Y. F. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 2004, 49(15): 1554-1569.
CrossRef Google scholar
Xia B., Zhang L. F., Bader T. Zircon U-Pb Ages and Hf Isotopic Analyses of Migmatite from the ‘Paired Metamorphic Belt’ in Chinese SW Tianshan: Constraints on Partial Melting Associated with Orogeny. Lithos, 2014, 192–195: 158-179.
CrossRef Google scholar
Xie Q. L., Kerrich R. Silicate-Perovskite and Majorite Signature Komatiites from the Archean Abitibi Greenstone Belt: Implications for Early Mantle Differentiation and Stratification. Journal of Geophysical Research, 1994, 99(B8): 15799-15812.
CrossRef Google scholar
Xiong X. L., Keppler H., Audétat A., . Experimental Constraints on Rutile Saturation during Partial Melting of Metabasalt at the Amphibolite to Eclogite Transition, with Applications to TTG Genesis. American Mineralogist, 2009, 94(8/9): 1175-1186.
CrossRef Google scholar
Xu J. F., Shinjo R., Defant M. J., . Origin of Mesozoic Adakitic Intrusive Rocks in the Ningzhen Area of East China: Partial Melting of Delaminated Lower Continental Crust?. Geology, 2002, 30(12): 1111-1114.
CrossRef Google scholar
Yakymchuk C. J. A. Anatexis and Crustal Differentiation: Insights from the Fosdick Migmatite—Granite Complex, West Antarctica: [Dissertations], 2014, 1-6.
Yan D. P., Zhou M. F., Song H. L. A Geochronological Constraint to the Guandi Complex, Western Hills of Beijing, and Its Implications for the Tectonic Evolution. Earth Science Frontiers, 2005, 12: 332-337.
Yang J. H., Wu F. Y., Wilde S. A., . Petrogenesis and Geodynamics of Late Archean Magmatism in Eastern Hebei, Eastern North China Craton: Geochronological, Geochemical and Nd-Hf Isotopic Evidence. Precambrian Research, 2008, 167(1/2): 125-149.
CrossRef Google scholar
Yang Q. Y., Santosh M., Collins A. S., . Microblock Amalgamation in the North China Craton: Evidence from Neoarchaean Magmatic Suite in the Western Margin of the Jiaoliao Block. Gondwana Research, 2016, 31: 96-123.
CrossRef Google scholar
Yip N. A Comparative Study on Zircon Hf Isotopes of Neoarchean Tonalite-Trondhjemite-Granodiorite (TTG) in Trans-North China Orogen and Eastern Block of the North China Craton: [Dissertations], 2016
CrossRef Google scholar
Yuan D. Y., Li D. W., Chen Q., . Geochronology and Geochemical Characteristics of Amphibolite in Guandi Complex, Zhoukoudian Area and Its Geological Significance. Northwestern Geology, 2016, 49: 149-164.
Zegers T. E., van Keken P. E. Middle Archean Continent Formation by Crustal Delamination. Geology, 2001, 29(12): 1083-1086.
CrossRef Google scholar
Zhai M. G. Multi-Stage Crustal Growth and Cratonization of the North China Craton. Geoscience Frontiers, 2014, 5(4): 457-469.
CrossRef Google scholar
Zhai M. G., Santosh M. Metallogeny of the North China Craton: Link with Secular Changes in the Evolving Earth. Gondwana Research, 2013, 24(1): 275-297.
CrossRef Google scholar
Zhai M. G., Santosh M. The Early Precambrian Odyssey of the North China Craton: A Synoptic Overview. Gondwana Research, 2011, 20(1): 6-25.
CrossRef Google scholar
Zhai M. G., Guo J. H., Liu W. J. Neoarchean to Paleoproterozoic Continental Evolution and Tectonic History of the North China Craton: A Review. Journal of Asian Earth Sciences, 2005, 24(5): 547-561.
CrossRef Google scholar
Zhai M. G., Yang R. Y., Lu W. J., . Geochemistry and Evolution of the Qingyuan Archaean Granite—Greenstone Terrain, NE China. Precambrian Research, 1985, 27(1/2/3): 37-62.
CrossRef Google scholar
Zhao G. C., Zhai M. G. Lithotectonic Elements of Precambrian Basement in the North China Craton: Review and Tectonic Implications. Gondwana Research, 2013, 23(4): 1207-1240.
CrossRef Google scholar
Zhao G. C., Sun M., Wilde S. A., . Late Archean to Paleoproterozoic Evolution of the North China Craton: Key Issues Revisited. Precambrian Research, 2005, 136(2): 177-202.
CrossRef Google scholar
Zhao G. C., Wilde S. A., Cawood P. A., . Archean Blocks and Their Boundaries in the North China Craton: Lithological, Geochemical, Structural and P-T Path Constraints and Tectonic Evolution. Precambrian Research, 2001, 107(1/2): 45-73.
CrossRef Google scholar
Zhao G. C., Wilde S. A., Cawood P. A., . Thermal Evolution of Archean Basement Rocks from the Eastern Part of the North China Craton and Its Bearing on Tectonic Setting. International Geology Review, 1998, 40(8): 706-721.
CrossRef Google scholar
Zhao W. X. Geology and Field Work in Zhoukoudian and High-Tech Application, 2003.
Zhang R. S., Si R., Song B. Komatiite in Sujiagou Village of Mengyin Country. Shandong Geology, 1998, 14: 26-33.
Zhou Y. Y., Zhao T. P., Sun Q. Y., . Geochronological and Geochemical Constraints on the Petrogenesis of the 2.6–2.5 Ga Amphibolites, Low-and High-Al TTGs in the Wangwushan Area, Southern North China Craton: Implications for the Neoarchean Crustal Evolution. Precambrian Research, 2018, 307: 93-114.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/