Tectonothermal Records in Migmatite-Like Rocks of the Guandi Complex in Zhoukoudian, Beijing: Implications for Late Neoarchean to Proterozoic Tectonics of the North China Craton

Yating Zhong , Chuan He , Neng-Song Chen , Bin Xia , Zhiqiang Zhou , Binghan Chen , Guoqing Wang

Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (5) : 1254 -1275.

PDF
Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (5) : 1254 -1275. DOI: 10.1007/s12583-018-0856-7
Precambrian Metamorphism-Magmatism and Tectonics of the North China Craton and Erguna Massif

Tectonothermal Records in Migmatite-Like Rocks of the Guandi Complex in Zhoukoudian, Beijing: Implications for Late Neoarchean to Proterozoic Tectonics of the North China Craton

Author information +
History +
PDF

Abstract

Migmatite-like rocks transformed from strongly metamorphosed and deformed enclavebearing felsic plutons usually make people confuse with the true migmatites and mistake in interpretation of their petrogenesis and tectonic implications. Here we report a suite of rocks that have long been called as migmatites from the Guandi complex in Zhoukoudian region, southwest of Beijing. The rocks are dominated by felsic gneisses with garnet-free amphibolites. Field occurrence, petrography and geochemistry indicate that the felsic gneisses and amphibolites were metamorphosed from protoliths of intermediate-acid and basic igneous rocks, respectively. New LA-ICP-MS zircon U-Pb dating and geothermobarometry study further reveal that precursor magmas of the two types of rocks were emplaced at 2.54–2.56 Ga and the rocks subsequently underwent medium P/T-type metamorphism with upper amphibolite facies conditions of 0.55–0.90 GPa and 670–730 °C at ~2.48–2.50 Ga. Geochemically, precursor magmas of the amphibolites were suggested to be derived from an enriched lithospheric mantle source in continental arc setting, and those of the felsic gneisses are characterized by tonalitic to trondhjemitic magmas that are usually considered to be generated by partial melting of hydrated, thickened metamorphosed mafic crust with garnet as residues, suggesting that the rock associations are not of true migmatites but migmatite-like rocks. Our study reveal that protoliths of the migmatite-like rocks from the Guandi complex, were likely formed via magmatism in a continental arc setting, followed by accretion and collision of the continental arc as well as the intro-oceanic arc terranes to the Eastern Block of the North China Craton in the transition from the Late Neoarchean to Early Paleoproterozoic.

Keywords

Zhoukoudian / migmatite-like rocks / magmatism and metamorphism / tectonic evolution / Late Neoarchean to Early Paleoproterozoic transition / North China Craton

Cite this article

Download citation ▾
Yating Zhong, Chuan He, Neng-Song Chen, Bin Xia, Zhiqiang Zhou, Binghan Chen, Guoqing Wang. Tectonothermal Records in Migmatite-Like Rocks of the Guandi Complex in Zhoukoudian, Beijing: Implications for Late Neoarchean to Proterozoic Tectonics of the North China Craton. Journal of Earth Science, 2018, 29(5): 1254-1275 DOI:10.1007/s12583-018-0856-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anderson J. L., Smith D. R. The Effects of Temperature and f O2 on the Al-in-Hornblende Barometer. American Mineralogist, 1995, 80(5/6): 549-559.

[2]

Arth J. G. Some Trace Elements in Trondhjemites—Their Implications to Magma Genesis and Paleotectonic Setting, 1979, 123-132.

[3]

Ashwal L. D., Wooden J. L., Emslie R. F. Sr, Nd and Pb Isotopes in Proterozoic Intrusives Astride the Grenville Front in Labrador: Implications for Crustal Contamination and Basement Mapping. Geochimica et Cosmochimica Acta, 1986, 50(12): 2571-2585.

[4]

Ashworth J. R. Migmatites, 1985

[5]

Atherton M. P., Petford N. Generation of Sodium-Rich Magmas from newly Underplated Basaltic Crust. Nature, 1993, 362(6416): 144-146.

[6]

Bai X., Liu S. W., Guo R. R., . A Neoarchean Arc-Back-Arc System in Eastern Hebei, North China Craton: Constraints from Zircon U-Pb-Hf Isotopes and Geochemistry of Dioritic-Tonalitic-Trondhjemitic-Granodioritic (DTTG) Gneisses and Felsic Paragneisses. Precambrian Research, 2016, 273: 90-111.

[7]

Barbarin B. Field Evidence for Successive Mixing and Mingling between the Piolard Diorite and the Saint-Julien-La-Vêtre Monzogranite (Nord-Forez, Massif Central, France). Canadian Journal of Earth Sciences, 1988, 25(1): 49-59.

[8]

Barker F. Trondhjemite: Definition, Environment and Hypotheses of Origin, 1979, 1-12.

[9]

Barker F., Arth J. G. Generation of Trondhjemitic-Tonalitic Liquids and Archean Bimodal Trondhjemite-Basalt Suites. Geology, 1976, 4(10): 596-600.

[10]

Bédard J. H. A Catalytic Delamination-Driven Model for Coupled Genesis of Archaean Crust and Sub-Continental Lithospheric Mantle. Geochimica et Cosmochimica Acta, 2006, 70(5): 1188-1214.

[11]

Bohlen S. R. Pressure-Temperature-Time Paths and a Tectonic Model for the Evolution of Granulites. The Journal of Geology, 1987, 95(5): 617-632.

[12]

Braun I., Kriegsman L. M. Partial Melting in Crustal Xenoliths and Anatectic Migmatites: A Comparison. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 2001, 26(4/5): 261-266.

[13]

Brown M. Metamorphic Conditions in Orogenic Belts: A Record of Secular Change. International Geology Review, 2007, 49(3): 193-234.

[14]

Brown M. P-T-t Paths of Orogenic Belts and the Causes of Regional Metamorphism. Geological Society, London, Memoirs, 1995, 16: 67-81.

[15]

Chen H.-X., Wang H. Y. C., Peng T., . Petrogenesis and Geochronology of the Neoarchean-Paleoproterozoic Granitoid and Monzonitic Gneisses in the Taihua Complex: Episodic Magmatism of the Southwestern Trans-North China Orogen. Precambrian Research, 2016, 287: 31-47.

[16]

Chen N.-S., Liao F. X., Wang L., . Late Paleoproterozoic Multiple Metamorphic Events in the Quanji Massif: Links with Tarim and North China Cratons and Implications for Assembly of the Columbia Supercontinent. Precambrian Research, 2013, 228: 102-116.

[17]

Chen N.-S., Wang R. J., Shan W. R., . Isobaric Cooling P-T-t Path of the Western Section of the Miyun Complex and Its Tectonic Implications. Scientia Geologica Sinica, 1994, 29: 354-364.

[18]

Chen N.-S., Wang F. Z. Single-Grain Evaporation Zircon Pb-Pb Ages of Guandi Complex, Zhoukoudian Area, Western Hills of Beijing: Archean Genesis and Cratonization Events of the North China Craton. Geological Science and Technology Information, 2006, 25: 41-44.

[19]

Cheng S. H., Kusky T. M. Komatiites from West Shandong, North China Craton: Implications for Plume Tectonics. Gondwana Research, 2007, 12(1/2): 77-83.

[20]

Condie K. C. TTGs and Adakites: Are They both Slab Melts?. Lithos, 2005, 80(1/2/3/4): 33-44.

[21]

Condie K. C. Trace-Element Geochemistry of Archean Greenstone Belts. Earth Science Reviews, 1976, 12(4): 393-417.

[22]

Corfu F., Hanchar J. M., Hoskin P. W., . Atlas of Zircon Textures. In: Hanchar, J. M., Hoskin, P. W. O., eds., Zircon. Reviews in Mineralogy and Geochemistry, 2003, 53: 469-500.

[23]

De la Roche H., Leterrier J., Grandclaude P., . A Classification of Volcanic and Plutonic Rocks Using R1-R2-diagram and Major-Element Analyses—Its Relationships with Current Nomenclature. Chemical Geology, 1980, 29(1/2/3/4): 183-210.

[24]

Deng H., Kusky T. M., Polat A., . Magmatic Record of Neoarchean Arc-Polarity Reversal from the Dengfeng Segment of the Central Orogenic Belt, North China Craton, 2018.

[25]

Deng H., Kusky T. M., Polat A., . A 2.5Ga Fore-Arc Subduction-Accretion Complex in the Dengfeng Granite-Greenstone Belt, Southern North China Craton. Precambrian Research, 2016, 275: 241-264.

[26]

Diwu C. R., Sun Y., Guo A. L., . Crustal Growth in the North China Craton at ~2.5 Ga: Evidence from in situ Zircon U-Pb Ages, Hf Isotopes and Whole-Rock Geochemistry of the Dengfeng Complex. Gondwana Research, 2011, 20(1): 149-170.

[27]

Dharma Rao C. V., Vijay Kumar T., Bhaskar Rao Y. J. The Pangidi Anorthosite Complex, Eastern Ghats Granulite Belt, India: Mesoproterozoic Sm-Nd Isochron Age and Evidence for Significant Crustal Contamination. Current Science, 2004, 89: 1614-1618.

[28]

Droop G. T. R. A General Equation for Estimating Fe3+ Concentrations in Ferromagnesian Silicates and Oxides from Microprobe Analyses, Using Stoichiometric Criteria. Mineralogical Magazine, 1987, 51(361): 431-435.

[29]

Drummond M. S., Defant M. J. A Model for Trondhjemite-Tonalite-Dacite Genesis and Crustal Growth via Slab Melting: Archean to Modern Comparisons. Journal of Geophysical Research, 1990, 95 B13 21503

[30]

Duan Z. Z., Wei C. J., Rehman H. U. Metamorphic Evolution and Zircon Ages of Pelitic Granulites in Eastern Hebei, North China Craton: Insights into the Regional Archean P-T-t History. Precambrian Research, 2017, 292: 240-257.

[31]

Fershtater G. B. Empirical Hornblende-Plagioclase Geobarometer. Geokhimiya, 1990, 3: 328-335.

[32]

Foley S., Tiepolo M., Vannucci R. Growth of Early Continental Crust Controlled by Melting of Amphibolite in Subduction Zones. Nature, 2002, 417(6891): 837-840.

[33]

Ge W. C., Zhao G. C., Sun D. Y., . Metamorphic P-T Path of the Southern Jilin Complex: Implications for Tectonic Evolution of the Eastern Block of the North China Craton. International Geology Review, 2003, 45(11): 1029-1043.

[34]

Ge W. C., Sun D. Y., Wu F. Y., . The Metamorphic P-T-t Path of Archean Granulites in Huadian Area, Jilin Province. Acta Petrologica et Mineralogica, 1994, 13: 232-238.

[35]

Geng Y. S., Du L. L., Ren L. D. Growth and Reworking of the Early Precambrian Continental Crust in the North China Craton: Constraints from Zircon Hf Isotopes. Gondwana Research, 2012, 21(2/3): 517-529.

[36]

Graham C. M. Metabasite Amphiboles of the Scottish Dalradian. Contributions to Mineralogy and Petrology, 1974, 47(3): 165-185.

[37]

Grant M. L., Wilde S. A., Wu F. Y., . The Application of Zircon Cathodoluminescence Imaging, Th-U-Pb Chemistry and U-Pb Ages in Interpreting Discrete Magmatic and High-Grade Metamorphic Events in the North China Craton at the Archean/Proterozoic Boundary. Chemical Geology, 2009, 261(1/2): 155-171.

[38]

Gribble R. F., Stern R. J., Bloomer S. H., . MORB Mantle and Subduction Components Interact to Generate Basalts in the Southern Mariana Trough Back-Arc Basin. Geochimica et Cosmochimica Acta, 1996, 60(12): 2153-2166.

[39]

Gill R. Igneous Rocks and Process: A Practical Guide, 2010.

[40]

Groppo C., Rolfo F. Counterclockwise P-T Evolution of the Aghil Range: Metamorphic Record of an Accretionary Melange between Kunlun and Karakorum (SW Sinkiang, China). Lithos, 2008, 105(3/4): 365-378.

[41]

Guo B. R., Liu S. W., Santosh M., . Neoarchean Arc Magmatism and Crustal Growth in the North-Eastern North China Craton: Evidence from Granitoid Gneisses in the Southern Jilin Province. Precambrian Research, 2017, 303: 30-53.

[42]

Guo B. R., Liu S. W., Zhang J., . Neoarchean Andean-Type Active Continental Margin in the Northeastern North China Craton: Geochemical and Geochronological Evidence from Metavolcanic Rocks in the Jiapigou Granite-Greenstone Belt, Southern Jilin Province. Precambrian Research, 2016, 285: 147-169.

[43]

Guo H. Q. Petrological Characteristics and Origin of Gneissic Rocks along Northern Flank of Fangshan Intrusion, Beijing. Bulletin of The Institute of Geology Chinese Academy of Geological Science, 1985, 13: 105-130.

[44]

Guo R. R., Liu S. W., Gong E. P., . Arc-Generated Metavolcanic Rocks in the Anshan-Benxi Greenstone Belt, North China Craton: Constraints from Geochemistry and Zircon U-Pb-Hf Isotopic Systematics. Precambrian Research, 2017, 303: 228-250.

[45]

Guo R. R., Liu S. W., Wyman D., . Neoarchean Subduction: A Case Study of Arc Volcanic Rocks in Qinglong-Zhuzhangzi Area of the Eastern Hebei Province, North China Craton. Precambrian Research, 2015, 264: 36-62.

[46]

Hawkesworth C. J., Gallagher K., Hergt J. M., . Mantle and Slab Contributions in Arc Magmas. Annual Review of Earth and Planetary Sciences, 1993, 21(1): 175-204.

[47]

He Z. L. The Study of Granitic Intrusion in Western Mountain, Beijing, and Its Metamorphism. Bulletin of the Chinese Academy of Geological Sciences, 1936, 5: 24-50.

[48]

He B., Xu Y. G., Wang Y. M., . Magmatic Diapir of Fangshan Pluton in the Western Hills, Beijing and Its Geological Significance. Earth Science—Journal of China University of Geosciences, 2005, 30(3): 298-308.

[49]

Hietanen A. Amphibole Pairs, Epidote Minerals, Chlorite, and Plagioclase in Metamorphic Rocks, Northern Sierra Nevada, California. American Mineralogist, 1974, 59: 22-40.

[50]

Hinchey A. M., Carr S. D. The S-Type Ladybird Leucogranite Suite of Southeastern British Columbia: Geochemical and Isotopic Evidence for a Genetic Link with Migmatite Formation in the North American Basement Gneisses of the Monashee Complex. Lithos, 2006, 90(3/4): 223-248.

[51]

Holland T., Blundy J. Non-Ideal Interactions in Calcic Amphiboles and Their Bearing on Amphibole-Plagioclase Thermometry. Contributions to Mineralogy and Petrology, 1994, 116(4): 433-447.

[52]

Hollings P., Kerrich R. Geochemical Systematics of Tholeiites from the 2.86 Ga Pickle Crow Assemblage, Northwestern Ontario: Arc Basalts with Positive and Negative Nb-Hf Anomalies. Precambrian Research, 2004, 134(1/2): 1-20.

[53]

Hopgood A. M. Determination of Structural Successions in Migmatites and Gneisses, 1999, 197-214

[54]

Hoskin P. W. O., Schaltegger U. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. In: Hanchar, J. M., Hoskin, P. W. O., eds., Zircon. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 27-62.

[55]

Hu Z. C., Liu Y. S., Gao S., . Improved in Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 2012, 27(9): 1391-1399.

[56]

Humphris S. E., Thompson G. Trace Element Mobility during Hydrothermal Alteration of Oceanic Basalts. Geochimica et Cosmochimica Acta, 1978, 42(1): 127-136.

[57]

Jahn B. M., Liu D. H., Wan Y. S., . Archean Crustal Evolution of the Jiaodong Peninsula, China, as Revealed by Zircon SHRIMP Geochronology, Elemental and Nd-Isotope Geochemistry. American Journal of Science, 2008, 308(3): 232-269.

[58]

Jia X. L., Zhu X. Y., Zhai M. G., . Late Mesoarchean Crust Growth Event: Evidence from the ca. 2.8 Ga Granodioritic Gneisses of the Xiaoqinling Area, Southern North China Craton. Science Bulletin, 2016, 61(12): 974-990.

[59]

Kay R. W., Kay S. M. Delamination and Delamination Magmatism. Tectonophysics, 1993, 219(1/2/3): 177-189.

[60]

Koshida K., Ishikawa A., Iwamori H., . Petrology and Geochemistry of Mafic Rocks in the Acasta Gneiss Complex: Implications for the Oldest Mafic Rocks and Their Origin. Precambrian Research, 2016, 283: 190-207.

[61]

Kriegsman L. M. Partial Melting, Partial Melt Extraction and Partial Back Reaction in Anatectic Migmatites. Lithos, 2001, 56(1): 75-96.

[62]

Kusky T. M., Polat A., Windley B. F., . Insights into the Tectonic Evolution of the North China Craton through Comparative Tectonic Analysis: A Record of Outward Growth of Precambrian Continents. Earth-Science Reviews, 2016, 162: 387-432.

[63]

Kusky T. M., Zhai M. G. The Neoarchean Ophiolite in the North China Craton: Early Precambrian Plate Tectonics and Scientific Debate. Journal of Earth Science, 2012, 23(3): 277-284.

[64]

Kusky T. M., Li J. H. Origin and Emplacement of Archean Ophiolites of the Central Orogenic Belt, North China Craton. Journal of Earth Science, 2010, 21(5): 744-781.

[65]

La Flèche M. R., Camiré G., Jenner G. A. Geochemistry of Post-Acadian, Carboniferous Continental Intraplate Basalts from the Maritimes Basin, Magdalen Islands, Québec, Canada. Chemical Geology, 1998, 148(3/4): 115-136.

[66]

Lassiter J. C., Depaolo D. J. Plume-Lithosphere Interaction in the Generation of Continental and Oceanic Flood Basalts: Chemical and Isotope Constraints, 1997, 335-355.

[67]

Leake B. E., Woolley A. R., Arps C. E. S., . Nomenclature of Amphiboles Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names. European Journal of Mineralogy, 1997, 9(3): 623-651.

[68]

Li Y. L., Brouwer F. M., Xiao W. J., . Subduction-Related Metasomatic Mantle Source in the Eastern Central Asian Orogenic Belt: Evidence from Amphibolites in the Xilingol Complex, Inner Mongolia, China. Gondwana Research, 2017, 43: 193-212.

[69]

Li Z., Wei C. J. Two Types of Neoarchean Basalts from Qingyuan Greenstone Belt, North China Craton: Petrogenesis and Tectonic Implications. Precambrian Research, 2017, 292: 175-193.

[70]

Li Z. L. Metamorphic P-T-t Path of the Archaean Rocks in the Eastern Shandong Province and Its Implications. Shandong Geology, 1993, 9: 31-41.

[71]

Liu B., Jin B., Zhang L., . Zircon LA-ICP-MS U-Pb Dating of Metamorphism and Anatexis of the Guandi Complex, Zhoukoudian Area, Beijing. Geological Science and Technology Information, 2008, 27: 37-42.

[72]

Liu D. Y., Wilde S. A., Wan Y. S., . Combined U-Pb, Hafnium and Oxygen Isotope Analysis of Zircons from Meta-Igneous Rocks in the Southern North China Craton Reveal Multiple Events in the Late Mesoarchean–Early Neoarchean. Chemical Geology, 2009, 261(1/2): 140-154.

[73]

Liu G. H., Wu J. S. Metamorphic Zones of the Fangshan Area in Beijing. Bulletin of the Chinese Academy of Geological Sciences, 1987, 16: 113-137.

[74]

Liu J. H., Liu F. L., Ding Z. J., . Early Precambrian Major Magmatic Events, and Growth and Evolution of Continental Crust in the Jiaobei Terrane, North China Craton. Acta Petrologica Sinica, 2015, 31: 2942-2958.

[75]

Liu S. J., Jahn B. M., Wan Y. S., . Neoarchean to Paleoproterozoic High-Pressure Mafic Granulite from the Jiaodong Terrain, North China Craton: Petrology, Zircon Age Determination and Geological Implications. Gondwana Research, 2015, 28(2): 493-508.

[76]

Liu S. W., Wang W., Bai X., . Lithological Assemblages of Archean Meta-Igneous Rocks in Eastern Hebei-Western Liaoning Provinces of North China Craton, and Their Geodynamic Implications. Earth Science—Journal of China University of Geosciences, 2018, 43: 44-56.

[77]

Liu S. W., Y. J., Feng Y. G., . Geology and Zircon U-Pb Isotopic Chronology of Dantazi Complex, Northern Hebei Province. Earth Science—Journal of China University of Geosciences, 2007, 13: 484-497.

[78]

Liu S. W., Pan Y. M., Xie Q. L., . Archean Geodynamics in the Central Zone, North China Craton: Constraints from Geochemistry of Two Contrasting Series of Granitoids in the Fuping and Wutai Complexes. Precambrian Research, 2004, 130(1/2/3/4): 229-249.

[79]

Liu S. W., Pan Y. M., Li J. H., . Geological and Isotopic Geochemical Constraints on the Evolution of the Fuping Complex, North China Craton. Precambrian Research, 2002, 117(1/2): 41-56.

[80]

Liu Y. S., Hu Z. C., Gao S., . In situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 2008, 257(1/2): 34-43.

[81]

Liu Y. S., Hu Z. C., Zong K. Q., . Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 2010, 55(15): 1535-1546.

[82]

Lu J. S., Zhai M. G., Lu L. S., . P-T-t Evolution of Neoarchaean to Paleoproterozoic Pelitic Granulites from the Jidong Terrane, Eastern North China Craton. Precambrian Research, 2017, 290: 1-15.

[83]

Lu Y. J., Loucks R. R., Fiorentini M. L., . Fluid Fl.xMelting Generated Postcollisional High Sr/Y Copper Ore-Forming Water-Rich Magmas in Tibet. Geology, 2015, 43(7): 583-586.

[84]

Ludwig K. R. User’s Manual for Isoplot 3.00: A Geochronological Toolkit for Microft Excel. Berkeley Geochronology Center Special Publication, Berkeley., 2003, 4: 25-39.

[85]

B., Zhai M. G., Li T. S., . Zircon U-Pb Ages and Geochemistry of the Qinglong Volcano-Sedimentary Rock Series in Eastern Hebei: Implication for ~2.500Ma Intra-Continental Rifting in the North China Craton. Precambrian Research, 2012, 208–211: 145-160.

[86]

Martin H., Moyen J. F., Rapp R. The Sanukitoid Series: Magmatism at the Archaean–Proterozoic Transition. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 2009, 100(1/2): 15-33.

[87]

Martin H., Smithies R. H., Rapp R., . An Overview of Adakite, Tonalite-Trondhjemite-Granodiorite (TTG), and Sanukitoid: Relationships and Some Implications for Crustal Evolution. Lithos, 2005, 79(1/2): 1-24.

[88]

Martin H. Adakitic Magmas: Modern Analogues of Archaean Granitoids. Lithos, 1999, 46(3): 411-429.

[89]

Martin H. The Archean Grey Gneisses and the Genesis of the Continental Crust, 1994, 205-259.

[90]

Martin L. A. J., Duchêne S., Deloule E., . Mobility of Trace Elements and Oxygen in Zircon during Metamorphism: Consequences for Geochemical Tracing. Earth and Planetary Science Letters, 2008, 267(1/2): 161-174.

[91]

Mason G. H. The Mineralogy and Textures of the Coastal Batholith, Peru, 1985, 156-166.

[92]

McCulloch M. T., Gamble J. A. Geochemical and Geodynamical Constraints on Subduction Zone Magmatism. Earth and Planetary Science Letters, 1991, 102(3/4): 358-374.

[93]

McDonough W. F. Compositional Model for the Earth’s Core. In: Carlson, R. W., ed., The Mantle and Core, Treatise on Geochemistry. Elsevier, Amsterdam., 2003, 2: 547-568.

[94]

McDonough W. F., Sun S. S. The Composition of the Earth. Chemical Geology, 1995, 120(3/4): 223-253.

[95]

Mehnert K. R. Migmatites and the Origin of Granitic Rocks. Elsevier, Amsterdam, 1968.

[96]

Middlemost E. A. K. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 1994, 37(3/4): 215-224.

[97]

Miyashiro A. Metamorphic Petrology, 1994.

[98]

Miyashiro A. Metamorphic Facies and Facies Series: Metamorphism and Metamorphic Belts, 1973, 72-243

[99]

Molina J. F., Moreno J. A., Castro A., . Calcic Amphibole Thermobarometry in Metamorphic and Igneous Rocks: New Calibrations Based on Plagioclase/Amphibole Al-Si Partitioning and Amphibole/Liquid Mg Partitioning. Lithos, 2015, 232: 286-305.

[100]

Moyen J. F., Martin H. Forty Years of TTG Research. Lithos, 2012, 148: 312-336.

[101]

Mullen E. D. MnO/TiO2/P2O5: A Minor Element Discriminant for Basaltic Rocks of Oceanic Environments and Its Implications for Petrogenesis. Earth and Planetary Science Letters, 1983, 62(1): 53-62.

[102]

Nehring F., Foley S. F., Hölttä P., . Internal Differentiation of the Archean Continental Crust: Fluid-Controlled Partial Melting of Granulites and TTG—Amphibolite Associations in Central Finland. Journal of Petrology, 2009, 50(1): 3-35.

[103]

Nutman A. P., Wan Y. S., Du L. L., . Multistage Late Neoarchean Crustal Evolution of the North China Craton, Eastern Hebei. Precambrian Research, 2011, 189(1/2): 43-65.

[104]

Palme H., O’Nell H. S. C. Cosmochemical Estimates of Mantle Composition. In: Carlson, R. W., ed., The Mantle and Core, Treatise on Geochemistry. Elsevier, Amesterdam., 2003, 2: 1-28.

[105]

Pearce J. A. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 2008, 100(1/2/3/4): 14-48.

[106]

Pearce J. A. An Userʼs Guide to Basalt Discrimination Diagrams. In: Wyman, D. A., ed., Trace Element Geochemistry of Volcanic Rocks: Applications for Massive Sulphide Exploration. Geological Association of Canada, Short Course Notes., 1996, 12: 79-113.

[107]

Pearce J. A., Peate D. W. Tectonic Implications of the Composition of Volcanic Arc Magmas. Annual Review of Earth and Planetary Sciences, 1995, 23(1): 251-285.

[108]

Pearce J. A., Cann J. R. Tectonic Setting of Basic Volcanic Rocks Determined Using Trace Element Analyses. Earth and Planetary Science Letters, 1973, 19(2): 290-300.

[109]

Peng P., Wang C., Wang X. P., . Qingyuan High-Grade Granite-Greenstone Terrain in the Eastern North China Craton: Root of a Neoarchaean Arc. Tectonophysics, 2015, 662: 7-21.

[110]

Polat A., Li J., Fryer B., . Geochemical Characteristics of the Neoarchean (2 800–2.700Ma) Taishan Greenstone Belt, North China Craton: Evidence for Plume-Craton Interaction. Chemical Geology, 2006, 230(1/2): 60-87.

[111]

Plyusnina L. P. Geothermometry and Geobarometry of Plagioclase-Hornblende Bearing Assemblages. Contributions to Mineralogy and Petrology, 1982, 80(2): 140-146.

[112]

Rapp R. P., Shimizu N., Norman M. D. Growth of Early Continental Crust by Partial Melting of Eclogite. Nature, 2003, 425(6958): 605-609.

[113]

Rapp R. P., Shimizu N., Norman M. D., . Reaction between Slab-Derived Melts and Peridotite in the Mantle Wedge: Experimental Constraints at 3.8 GPa. Chemical Geology, 1999, 160(4): 335-356.

[114]

Ross P. S., Bédard J. H. Magmatic Affinity of Modern and Ancient Subalkaline Volcanic Rocks Determined from Trace-Element Discriminant Diagrams. Canadian Journal of Earth Sciences, 2009, 46(11): 823-839.

[115]

Rubatto D. Zircon Trace Element Geochemistry: Partitioning with Garnet and the Link between U-Pb Ages and Metamorphism. Chemical Geology, 2002, 184(1/2): 123-138.

[116]

Sajona F. G., Maury R. C., Bellon H., . High Field Strength Element Enrichment of Pliocene–Pleistocene Island Arc Basalts, Zamboanga Peninsula, Western Mindanao (Philippines). Journal of Petrology, 1996, 37(3): 693-726.

[117]

Sang L. K., Ma C. Q. Petrology. Second Edition. Geological Publishing House, Beijing, 2012, 441-449.

[118]

Saunders A. D., Norry M. J., Tarney J. Fluid Influence on the Trace Element Compositions of Subduction Zone Magmas. Philosophical Transactions of the Royal Society of London Series A: Physical and Engineering Sciences, 1991, 335(1638): 377-392.

[119]

Sawyer E. W. Atlas of Migmatites. The Canadian Mineralogist, Special Publication 9, 2008.

[120]

Sawyer E. W. Nomenclature for the Constituent Parts, 2008, 1-24.

[121]

Sawyer E. W. Criteria for the Recognition of Partial Melting. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 1999, 24(3): 269-279.

[122]

Sawyer E. W. Formation and Evolution of Granite Magmas during Crustal Reworking: The Significance of Diatexites. Journal of Petrology, 1998, 39(6): 1147-1167.

[123]

Sederholm J. J. On Granite and Gneiss: Their Origin, Relations and Occurrence in the Precambrian Complex of Fennoxcandia, 1907.

[124]

Shan H. X., Zhai M. G., Oliveira E. P., . Convergent Margin Magmatism and Crustal Evolution during Archean–Proterozoic Transition in the Jiaobei Terrane: Zircon U-Pb Ages, Geochemistry, and Nd Isotopes of Amphibolites and Associated Grey Gneisses in the Jiaodong Complex, North China Craton. Precambrian Research, 2015, 264: 98-118.

[125]

Siivola J., Schmid R. List of Mineral Abbreviations, 2007, 93-110.

[126]

Smithies R. H. The Archaean Tonalite-Trondhjemite-Granodiorite (TTG) Series is not an Analogue of Cenozoic Adakite. Earth and Planetary Science Letters, 2000, 182(1): 115-125.

[127]

Spandler C., Pirard C. Element Recycling from Subducting Slabs to Arc Crust: A Review. Lithos, 2013, 208-223.

[128]

Stern C. R., Kilian R. Role of the Subducted Slab, Mantle Wedge and Continental Crust in the Generation of Adakites from the Andean Austral Volcanic Zone. Contributions to Mineralogy and Petrology, 1996, 123(3): 263-281.

[129]

Sun S. S., McDonough W. F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 1989, 42(1): 313-345.

[130]

Tang L., Santosh M., Tsunogae T., . Late Neoarchean Arc Magmatism and Crustal Growth Associated with Microblock Amalgamation in the North China Craton: Evidence from the Fuping Complex. Lithos, 2016, 248–251: 324-338.

[131]

Tarney J. Geochemistry of Archaean High-Grade Gneisses, with Implications as to the Origin and Evolution of the Precambrian Crust, 1976, 405-417.

[132]

Taylor S. R., McLennan S. M. The Continental Crust: Its Composition and Evolution, 1985.

[133]

Vavra G., Schmid R., Gebauer D. Internal Morphology, Habit and U-Th-Pb Microanalysis of Amphibolite-to-Granulite Facies Zircons: Geochronology of the Ivrea Zone (Southern Alps). Contributions to Mineralogy and Petrology, 1999, 134(4): 380-404.

[134]

Vernon R. H., Clarke G. L. Principles of Metamorphic Petrology, 2008.

[135]

Walker K. R., Joplin G. A., Lovering J. F., . Metamorphic and Metasomatic Convergence of Basic Igneous Rocks and Lime—Magnesia Sediments of the Precambrian of North-Western Queensland. Journal of the Geological Society of Australia, 1959, 6(2): 149-177.

[136]

Wan Y. S., Dong C. Y., Xie H. Q., . Formation Age of BIF-Bearing Anshan Group Supracrustal Rocks in Anshan-Benxi Area: New Evidence from SHRIMP U-Pb Zircon Dating. Earth Science—Journal of China University of Geosciences, 2018, 43: 57-81.

[137]

Wan Y. S., Wang S. J., Reng P., . Neoarchean Magmatism in the Culaishan Area, Western Shandong: Evidence from SHRIMP Zircon U-Pb Dating. Acta Geoscientica Sinica, 2015, 36: 634-646.

[138]

Wan Y. S., Xie S. W., Yang C. H., . Early Neoarchean (~2.7 Ga) Tectono-Thermal Events in the North China Craton: A Synthesis. Precambrian Research, 2014, 247: 45-63.

[139]

Wan Y. S., Dong C. Y., Wang S. J., . Middle Neoarchean Magmatism in Western Shandong, North China Craton: SHRIMP Zircon Dating and LA-ICP-MS Hf Isotope Analysis. Precambrian Research, 2014, 255: 865-884.

[140]

Wan Y. S., Dong C. Y., Liu D. Y., . Zircon Ages and Geochemistry of Late Neoarchean Syenogranites in the North China Craton: A Review. Precambrian Research, 2012, 222/223: 265-289.

[141]

Wan Y. S., Liu D. Y., Wang S. J., . Juvenile Magmatism and Crustal Recycling at the End of the Neoarchean in Western Shandong Province, North China Craton: Evidence from SHRIMP Zircon Dating. American Journal of Science, 2010, 310(10): 1503-1552.

[142]

Wang F., Xiao L., Xiao W. S. The Petrological and Geochemical Evidences for the Archean Origin of Guandi Complex near Zhoukoudian, Beijing. Earth Science—Journal of China University of Geosciences, 1990, 15: 530-538.

[143]

Wang F. Z., Chen N.-S. Field Trip Guide T208-Regional and Thermodynamic Metamorphism of the Western Hills, Beijing, 1996.

[144]

Wang J. P., Kusky T. M., Wang L., . A Neoarchean Subduction Polarity Reversal Event in the North China Craton. Lithos, 2015, 220–223: 133-146.

[145]

Wang Q., Wyman D. A., Xu J. F., . Partial Melting of Thickened or Delaminated Lower Crust in the Middle of Eastern China: Implications for Cu-Au Mineralization. The Journal of Geology, 2007, 115(2): 149-161.

[146]

Wang R. M., Wan Y. S., Cheng S. H., . Modern-Style Subduction Processes in the Archean: Evidence from the Shangyi Complex in North China Craton. Acta Geologica Sinica—English Edition, 2009, 83(3): 535-543.

[147]

Wang R. M., He G. P., Chen Z. Z., . Discrimination Diagrams for Protoliths of Metamorphic Rocks. Geological Publishing House, 1987.

[148]

Wang W., Liu S. W., Cawood P. A., . Late Neoarchean Subduction-Related Crustal Growth in the Northern Liaoning Region of the North China Craton: Evidence from ~2.55 to 2.50 Ga Granitoid Gneisses. Precambrian Research, 2016, 281: 200-223.

[149]

Wang W., Liu S. W., Santosh M., . Neoarchean Intra-Oceanic Arc System in the Western Liaoning Province: Implications for Early Precambrian Crustal Evolution in the Eastern Block of the North China Craton. Earth-Science Reviews, 2015, 150: 329-364.

[150]

Wang W., Zhai M. G., Li T. S., . Archean–Paleoproterozoic Crustal Evolution in the Eastern North China Craton: Zircon U-Th-Pb and Lu-Hf Evidence from the Jiaobei Terrane. Precambrian Research, 2014, 241: 146-160.

[151]

Wang W., Liu S. W., Santosh M., . Zircon U-Pb-Hf Isotopes and Whole-Rock Geochemistry of Granitoid Gneisses in the Jianping Gneissic Terrane, Western Liaoning Province: Constraints on the Neoarchean Crustal Evolution of the North China Craton. Precambrian Research, 2013, 224: 184-221.

[152]

Wang W., Liu S. W., Wilde S. A., . Petrogenesis and Geochronology of Precambrian Granitoid Gneisses in Western Liaoning Province: Constraints on Neoarchean to Early Paleoproterozoic Crustal Evolution of the North China Craton. Precambrian Research, 2012, 222/223: 290-311.

[153]

Wang Y., Zhou L. Y., Li J. Y. Intracontinental Superimposed Tectonics—A Case Study in the Western Hills of Beijing, Eastern China. Geological Society of America Bulletin, 2011, 123(5/6): 1033-1055.

[154]

Wei C. J., Guan X., Dong J. HT-UHT Metamorphism of Metabasites and the Petrogenesis of TTGs. Acta Petrologica Sinica, 2017, 33: 1381-1404.

[155]

Whitehouse M. J., Kamber B. S. A Rare Earth Element Study of Compl.x Zircons from Early Archaean Amı̂tsoq Gneisses, Godthåbsfjord, South-West Greenland. Precambrian Research, 2003, 126(3/4): 363-377.

[156]

Whitehouse M. J., Platt J. P. Dating High-Grade Metamorphism—Constraints from Rare-Earth Elements in Zircon and Garnet. Contributions to Mineralogy and Petrology, 2003, 145(1): 61-74.

[157]

Winter J. D. An Introduction of Igneous and Metamorphic Petrology (Second Edition), 2010.

[158]

Wu M. L. Ages, Geochemistry and Metamorphism of Neoarchean Basement in Shandong Province: Implications for the Evolution of the North China Craton, 2015, 146-165.

[159]

Wu M. L., Zhao G. C., Sun M., . Zircon U-Pb Geochronology and Hf Isotopes of Major Lithologies from the Yishui Terrane: Implications for the Crustal Evolution of the Eastern Block, North China Craton. Lithos, 2013, 170/171: 164-178.

[160]

Wu Y. B., Zheng Y. F. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 2004, 49(15): 1554-1569.

[161]

Xia B., Zhang L. F., Bader T. Zircon U-Pb Ages and Hf Isotopic Analyses of Migmatite from the ‘Paired Metamorphic Belt’ in Chinese SW Tianshan: Constraints on Partial Melting Associated with Orogeny. Lithos, 2014, 192–195: 158-179.

[162]

Xie Q. L., Kerrich R. Silicate-Perovskite and Majorite Signature Komatiites from the Archean Abitibi Greenstone Belt: Implications for Early Mantle Differentiation and Stratification. Journal of Geophysical Research, 1994, 99(B8): 15799-15812.

[163]

Xiong X. L., Keppler H., Audétat A., . Experimental Constraints on Rutile Saturation during Partial Melting of Metabasalt at the Amphibolite to Eclogite Transition, with Applications to TTG Genesis. American Mineralogist, 2009, 94(8/9): 1175-1186.

[164]

Xu J. F., Shinjo R., Defant M. J., . Origin of Mesozoic Adakitic Intrusive Rocks in the Ningzhen Area of East China: Partial Melting of Delaminated Lower Continental Crust?. Geology, 2002, 30(12): 1111-1114.

[165]

Yakymchuk C. J. A. Anatexis and Crustal Differentiation: Insights from the Fosdick Migmatite—Granite Complex, West Antarctica: [Dissertations], 2014, 1-6.

[166]

Yan D. P., Zhou M. F., Song H. L. A Geochronological Constraint to the Guandi Complex, Western Hills of Beijing, and Its Implications for the Tectonic Evolution. Earth Science Frontiers, 2005, 12: 332-337.

[167]

Yang J. H., Wu F. Y., Wilde S. A., . Petrogenesis and Geodynamics of Late Archean Magmatism in Eastern Hebei, Eastern North China Craton: Geochronological, Geochemical and Nd-Hf Isotopic Evidence. Precambrian Research, 2008, 167(1/2): 125-149.

[168]

Yang Q. Y., Santosh M., Collins A. S., . Microblock Amalgamation in the North China Craton: Evidence from Neoarchaean Magmatic Suite in the Western Margin of the Jiaoliao Block. Gondwana Research, 2016, 31: 96-123.

[169]

Yip N. A Comparative Study on Zircon Hf Isotopes of Neoarchean Tonalite-Trondhjemite-Granodiorite (TTG) in Trans-North China Orogen and Eastern Block of the North China Craton: [Dissertations], 2016

[170]

Yuan D. Y., Li D. W., Chen Q., . Geochronology and Geochemical Characteristics of Amphibolite in Guandi Complex, Zhoukoudian Area and Its Geological Significance. Northwestern Geology, 2016, 49: 149-164.

[171]

Zegers T. E., van Keken P. E. Middle Archean Continent Formation by Crustal Delamination. Geology, 2001, 29(12): 1083-1086.

[172]

Zhai M. G. Multi-Stage Crustal Growth and Cratonization of the North China Craton. Geoscience Frontiers, 2014, 5(4): 457-469.

[173]

Zhai M. G., Santosh M. Metallogeny of the North China Craton: Link with Secular Changes in the Evolving Earth. Gondwana Research, 2013, 24(1): 275-297.

[174]

Zhai M. G., Santosh M. The Early Precambrian Odyssey of the North China Craton: A Synoptic Overview. Gondwana Research, 2011, 20(1): 6-25.

[175]

Zhai M. G., Guo J. H., Liu W. J. Neoarchean to Paleoproterozoic Continental Evolution and Tectonic History of the North China Craton: A Review. Journal of Asian Earth Sciences, 2005, 24(5): 547-561.

[176]

Zhai M. G., Yang R. Y., Lu W. J., . Geochemistry and Evolution of the Qingyuan Archaean Granite—Greenstone Terrain, NE China. Precambrian Research, 1985, 27(1/2/3): 37-62.

[177]

Zhao G. C., Zhai M. G. Lithotectonic Elements of Precambrian Basement in the North China Craton: Review and Tectonic Implications. Gondwana Research, 2013, 23(4): 1207-1240.

[178]

Zhao G. C., Sun M., Wilde S. A., . Late Archean to Paleoproterozoic Evolution of the North China Craton: Key Issues Revisited. Precambrian Research, 2005, 136(2): 177-202.

[179]

Zhao G. C., Wilde S. A., Cawood P. A., . Archean Blocks and Their Boundaries in the North China Craton: Lithological, Geochemical, Structural and P-T Path Constraints and Tectonic Evolution. Precambrian Research, 2001, 107(1/2): 45-73.

[180]

Zhao G. C., Wilde S. A., Cawood P. A., . Thermal Evolution of Archean Basement Rocks from the Eastern Part of the North China Craton and Its Bearing on Tectonic Setting. International Geology Review, 1998, 40(8): 706-721.

[181]

Zhao W. X. Geology and Field Work in Zhoukoudian and High-Tech Application, 2003.

[182]

Zhang R. S., Si R., Song B. Komatiite in Sujiagou Village of Mengyin Country. Shandong Geology, 1998, 14: 26-33.

[183]

Zhou Y. Y., Zhao T. P., Sun Q. Y., . Geochronological and Geochemical Constraints on the Petrogenesis of the 2.6–2.5 Ga Amphibolites, Low-and High-Al TTGs in the Wangwushan Area, Southern North China Craton: Implications for the Neoarchean Crustal Evolution. Precambrian Research, 2018, 307: 93-114.

AI Summary AI Mindmap
PDF

153

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/