Metamorphic Characteristics and Tectonic Implications of the Kadui Blueschist in the Central Yarlung Zangbo Suture Zone, Southern Tibet

Guangming Sun , Xu-Ping Li , Wenyong Duan , Shuang Chen , Zeli Wang , Lingquan Zhao , Qingda Feng

Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (5) : 1026 -1039.

PDF
Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (5) : 1026 -1039. DOI: 10.1007/s12583-018-0854-9
Metamorphism, Magmatism and Tectonic Evolution of the Himalayan Orogen and Tianshan Orogen

Metamorphic Characteristics and Tectonic Implications of the Kadui Blueschist in the Central Yarlung Zangbo Suture Zone, Southern Tibet

Author information +
History +
PDF

Abstract

The Kadui blueschist is located in the central section of Yarlung Zangbo suture zone (YZSZ), southern Tibet, and has been subjected to the subduction of the Neo-Tethyan Ocean below the Asian Plate and provides important clues for better understanding the evolution of the India-Asia convergence zone. In this paper, the systematical petrographic and mineral chemical studies were carried out on the Kadui blueschist, which reveal a mineral assemblage of sodic amphibole, chlorite, epidote, albite and quartz with accessory minerals of titanite, calcite and zircon. Electron microprobe analyses demonstrate that amphibole shows zoned from actinolite core to ferrowinchite/riebeckite rim composition indicating that the sodic amphibole has formed during a prograde metamorphic event. The protolith of the blueschist is an intermediate-basic pyroclastic rock. The calculated pseudosection indicates a clockwise P-T path and constrains peak metamorphic conditions of about 5.9 kbar at 345 °C. This condition is transitional between pumpellyite-actinolite, greenschist and blueschist facies with a burial depth of 20–22 km and a thermal gradient of 15–16 °C/km. This thermal gradient belongs to high pressure intermediate P/T facies series and is possibly related to a warm subduction setting of young oceanic slabs. Our new findings indicate that the Kadui blueschist in the central part of YZSZ experienced a rapid subduction and exhumation process as a response to a northward subduction of the Neo-Tethyan oceanic lithosphere during the initial India-Asia collision stage.

Keywords

Kadui blueschist / metamorphism / P-T conditions / accretionary complex / southern Tibet

Cite this article

Download citation ▾
Guangming Sun, Xu-Ping Li, Wenyong Duan, Shuang Chen, Zeli Wang, Lingquan Zhao, Qingda Feng. Metamorphic Characteristics and Tectonic Implications of the Kadui Blueschist in the Central Yarlung Zangbo Suture Zone, Southern Tibet. Journal of Earth Science, 2018, 29(5): 1026-1039 DOI:10.1007/s12583-018-0854-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ague J. J., Carlson W. D. Metamorphism as Garnet Sees It: The Kinetics of Nucleation and Growth, Equilibration, and Diffusional Relaxation. Elements, 2013, 9(6): 439-445.

[2]

Aitchison J. C., Badengzhu D. A. M., . Remnants of a Cretaceous Intra-Oceanic Subduction System within the Yarlung-Zangbo Suture (Southern Tibet). Earth and Planetary Science Letters, 2000, 183(1/2): 231-244.

[3]

An W., Hu X. M., Garzanti E., . Xigaze Forearc Basin Revisited (South Tibet): Provenance Changes and Origin of the Xigaze Ophiolite. Geological Society of America Bulletin, 2014, 126(11/12): 1595-1613.

[4]

Ao A., Bhowmik S. K. Cold Subduction of the Neotethys: The Metamorphic Record from Finely Banded Lawsonite and Epidote Blueschists and Associated Metabasalts of the Nagaland Ophiolite Complex, India. Journal of Metamorphic Geology, 2014, 32(8): 829-860.

[5]

Aoki K., Itaya T., Shibuya T., . The Youngest Blueschist Belt in SW Japan: Implication for the Exhumation of the Cretaceous Sanbagawa High-P/T Metamorphic Belt. Journal of Metamorphic Geology, 2008, 26(5): 583-602.

[6]

Bédard, Hébert R., Guilmette C., . Petrology and Geochemistry of the Saga and Sangsang Ophiolitic Massifs, Yarlung Zangbo Suture Zone, Southern Tibet: Evidence for an Arc-Back-Arc Origin. Lithos, 2009, 113(1/2): 48-67.

[7]

Bhowmik S. K., Ao A. Subduction Initiation in the Neo-Tethys: Constraints from Counterclockwise P-T Paths in Amphibolite Rocks of the Nagaland Ophiolite Complex, India. Journal of Metamorphic Geology, 2016, 34(1): 17-44.

[8]

Cai F. L., Ding L., Leary R. J., . Tectonostratigraphy and Provenance of an Accretionary Complex within the Yarlung-Zangpo Suture Zone, Southern Tibet: Insights into Subduction-Accretion Processes in the Neo-Tethys. Tectonophysics, 2012, 181-192.

[9]

Connolly J. A. D. Computation of Phase Equilibria by Linear Programming: A Tool for Geodynamic Modeling and Its Application to Subduction Zone Decarbonation. Earth and Planetary Science Letters, 2005, 236(1/2): 524-541.

[10]

Cui Y., Wang G., Yao Y., . Polyphase Deformation and Fluid Inclusion Characteristic of Pervasive Syntectonic Quartz Veins in the Mayer Kangri Indosinian Accretionary Complex, Tibet. Acta Geologica Sinica, 2017, 91(2): 384-399.

[11]

Dai J. G., Wang C. S., Hébert R., . Petrology and Geochemistry of Peridotites in the Zhongba Ophiolite, Yarlung Zangbo Suture Zone: Implications for the Early Cretaceous Intra-Oceanic Subduction Zone within the Neo-Tethys. Chemical Geology, 2011, 288(3/4): 133-148.

[12]

Dai J. G., Wang C. S., Li Y. L. Relicts of the Early Cretaceous Seamounts in the Central-Western Yarlung Zangbo Suture Zone, Southern Tibet. Journal of Asian Earth Sciences, 2012, 53: 25-37.

[13]

Diener J. F. A., Powell R., White R. W., . A New Thermodynamic Model for Clino-and Orthoamphiboles in the System Na2O-CaO-FeOMgO-Al2O3-SiO2-H2O-O. Journal of Metamorphic Geology, 2007, 25(6): 631-656.

[14]

Ding L., Kapp P., Wan X. Q. Paleocene–Eocene Record of Ophiolite Obduction and Initial India-Asia Collision, South Central Tibet, 2005.

[15]

Dong S. B. The General Features and Distributions of the Glaucophane Schist Belts of China. Acta Geologica Sinica, 1989, 13(1): 101-114.

[16]

Ernst W. G. Occurrence and Mineralogic Evolution of Blueschist Belts with Time. American Journal of Science, 1972, 272(7): 657-668.

[17]

Geng Q. R., Pan G. T., Wang L. Q., . Isotopic Geochronology of the Volcanic Rocks from the Yeba Formation in the Gangdise Zone, Xizang. Sedimentary Geology and Tethyan Geology, 2006, 16(1): 1-7.

[18]

Ghose N. C., Singh R. N. Occurrence of Blueschist Facies in the Ophiolite Belt of Naga Hills, East of Kiphire, N.E. India. Geologische Rundschau, 1980, 69(1): 41-48.

[19]

Groppo C., Rolfo F., Sachan H. K., . Petrology of Blueschist from the Western Himalaya (Ladakh, NW India): Exploring the Compl.xBehavior of a Lawsonite-Bearing System in a Paleo-Accretionary Setting. Lithos, 2016, 41-56.

[20]

Guillot S., Mahéo G., de Sigoyer J., . Tethyan and Indian Subduction Viewed from the Himalayan High-to Ultrahigh-Pressure Metamorphic Rocks. Tectonophysics, 2008, 225-241.

[21]

He S. D., Kapp P., DeCelles P. G., . Cretaceous–Tertiary Geology of the Gangdese Arc in the Linzhou Area, Southern Tibet. Tectonophysics, 2007, 433: 15-37.

[22]

Hébert R., Bezard R., Guilmette C., . The Indus-Yarlung Zangbo Ophiolites from Nanga Parbat to Namche Barwa Syntaxes, Southern Tibet: First Synthesis of Petrology, Geochemistry, and Geochronology with Incidences on Geodynamic Reconstructions of Neo-Tethys. Gondwana Research, 2012, 22(2): 377-397.

[23]

Hey M. H. A New Review of the Chlorites. Mineralogical Magazine, 1954, 30: 277-292.

[24]

Holland T. J. B., Baker J., Powell R. Mixing Properties and Activity-Composition Relationships of Chlorites in the System MgO-FeOAl2O3-SiO2-H2O. European Journal of Mineralogy, 1998, 10(3): 395-406.

[25]

Holland T. J. B., Powell R. An Internally Consistent Thermodynamic Data Set for Phases of Petrological Interest. Journal of Metamorphic Geology, 1998, 16(3): 309-343.

[26]

Honegger K. L. F. P. M. G., . The Blueschists along the Indus Suture Zone in Ladakh, NW Himalaya. Journal of Metamorphic Geology, 1989, 7(1): 57-72.

[27]

Hu J. R., Sun Z. L., Chen G. J. New Results and Major Progress in Regional Geological Survey of the Xigaze City Sheet. Geological Bulletin of China, 2004, 23: 463-470.

[28]

Hu X. M., Wang J. G., An W., . Constraining the Timing of the India-Asia Continental Collision by the Sedimentary Record. Science China Earth Sciences, 2017, 60(4): 603-625.

[29]

Hu X. M., Wang J. G., BouDagher-Fadel M., . New Insights into the Timing of the India-Asia Collision from the Paleogene Quxia and Jialazi Formations of the Xigaze Forearc Basin, South Tibet. Gondwana Research, 2016, 32: 76-92.

[30]

Huot F., Hébert R., Varfalvy V., . The Beimarang Mélange (Southern Tibet) Brings Additional Constraints in Assessing the Origin, Metamorphic Evolution and Obduction Processes of the Yarlung Zangbo Ophiolite. Journal of Asian Earth Sciences, 2002, 21(3): 307-322.

[31]

Isozaki Y., Aoki K., Nakama T., . New Insight into a Subduction-Related Orogen: A Reappraisal of the Geotectonic Framework and Evolution of the Japanese Islands. Gondwana Research, 2010, 18: 82-105.

[32]

Kabir M. F., Takasu A. Jadeite-Garnet Glaucophane Schists in the Bizan Area, Sambagawa Metamorphic Belt, Eastern Shikoku, Japan: Significance and Extent of Eclogite Facies Metamorphism. Journal of Metamorphic Geology, 2016, 34(9): 893-916.

[33]

Kang Z. Q., Xu J. F., Wilde S. A., . Geochronology and Geochemistry of the Sangri Group Volcanic Rocks, Southern Lhasa Terrane: Implications for the Early Subduction History of the Neo-Tethys and Gangdese Magmatic Arc. Lithos, 2014, 200/201: 157-168.

[34]

Leake B. F., Woolley A. R., Arps C. E. S., . Nomenclature of Amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. The Canadian Mineralogist, 1997, 35: 219-246.

[35]

Lee H. Y., Chung S. L., Wang Y. B., . Age, Petrogenesis and Geological Significance of the Linzizong Volcanic Successions in the Linzhou Basin, Southern Tibet: Evidence from Zircon U-Pb Dates and Hf Isotopes. Acta Petrologica Sinica, 2007, 23(2): 493-500.

[36]

Li C., Hu J. R., Zhai Q. G., . New Evidence of India-Eurasia Collision and Its Timing: Ar-Ar Dating of the Kardoi Blueschist in Xigaze, Tibet, China. Geological Bulletin of China, 2007, 26(10): 1299-1303.

[37]

Li X.-P., Chen H. K., Wang Z. L., . Spinel Peridotite, Olivine Websterite and the Textural Evolution of the Purang Ophiolite Complex, Western Tibet. Journal of Asian Earth Sciences, 2015, 110: 55-71.

[38]

Li X.-P., Kong F. M., Chen H. K., . Rodingite in the Purang Ophiolite and Its Geological Implication, Southwest Tibet. Acta Geologica Sinica—English Edition, 2015, 41-42.

[39]

Li X.-P., Duan W. Y., Zhao L. Q., . Rodingites from the Xigaze Ophiolite, Southern Tibet—New Insights into the Processes of Rodingitization. European Journal of Mineralogy, 2017, 29(5): 821-837.

[40]

Liou J. G., Tsujimori T., Zhang R. Y., . Global UHP Metamorphism and Continental Subduction/Collision: The Himalayan Model. International Geology Review, 2004, 46(1): 1-27.

[41]

Liou J. G., Wang X. M., Coleman R. G., . Blueschists in Major Suture Zones of China. Tectonics, 1989, 8(3): 609-619.

[42]

Liu C. Z., Zhang C., Yang L. Y., . Formation of Gabbronorites in the Purang Ophiolite (SW Tibet) through Melting of Hydrothermally Altered Mantle along a Detachment Fault. Lithos, 2014, 205: 127-141.

[43]

Liu T., Wu F. Y., Zhang L. L., . Zircon U-Pb Geochronological Constraints on Rapid Exhumation of the Mantle Peridotite of the Xigaze Ophiolite, Southern Tibet. Chemical Geology, 2016, 443: 67-86.

[44]

Ma X. X., Xu Z. Q., Chen X. J., . The Origin and Tectonic Significance of the Volcanic Rocks of the Yeba Formation in the Gangdese Magmatic Belt, South Tibet. Journal of Earth Science, 2017, 28(2): 265-282.

[45]

Mahéo G., Fayoux X., Guillot S., . Relicts of an Intra-Oceanic Arc in the Sapi-Shergol Mélange Zone (Ladakh, NW Himalaya, India): Implications for the Closure of the Neo-Tethys Ocean. Journal of Asian Earth Sciences, 2006, 26(6): 695-707.

[46]

Maruyama S. Pacific-Type Orogeny Revisited: Miyashiro-Type Orogeny Proposed. The Island Arc, 1997, 6(1): 91-120.

[47]

Maruyama S., Cho M., Liou J. G. Experimental Investigation of Blueschist-Greenschist Transition Equilibria: Pressure Dependence of Al2O3 Contents in Sodic Amphiboles—A New Geobarometer. Geological Society of America Memoir, 1986, 164: 1-16.

[48]

Maruyama S., Liou J. G. Initiation of Ultrahigh-Pressure Metamorphism and Its Significance on the Proterozoic-Phanerozoic Boundary. The Island Arc, 1998, 7(1/2): 6-35.

[49]

Maruyama S., Liou J. G., Terabayashi M. Blueschists and Eclogites of the World and Their Exhumation. International Geology Review, 1996, 38(6): 485-594.

[50]

Maruyama S., Kadarusman A., Kaneko Y., . On-Going Exhumation of A-Type Blueschist Belt, Timor-Tanimbar Region, Eastern Indonesia. EOS Transaction of American Geophysical Union, 1996, 77 7.

[51]

Miao L. C., Zhang F., Jiao S. J. Age, Protoliths and Tectonic Implications of the Toudaoqiao Blueschist, Inner Mongolia, China. Journal of Asian Earth Sciences, 2015, 105: 360-373.

[52]

Miyashiro A. Evolution of Metamorphic Belts. Journal of Petrology, 1961, 2(3): 277-311.

[53]

Nakajima T., Banno S., Suzuki T. Reactions Leading to the Disappearance of Pumpellyite in Low-Grade Metamorphic Rocks of the Sanbagawa Metamorphic Belt in Central Shikoku, Japan. Journal of Petrology, 1977, 18(2): 263-284.

[54]

Newton R. C., Charlu T. V., Kleppa O. J. Thermochemistry of the High Structural State Plagioclases. Geochimica et Cosmochimica Acta, 1980, 44(7): 933-941.

[55]

Oh C. W., Liou J. G. A Petrogenetic Grid for Eclogite and Related Facies under High-Pressure Metamorphism. The Island Arc, 1998, 7(1/2): 36-51.

[56]

Okay A. I. Sodic Amphiboles as Oxygen Fugacity Indicators in Metamorphism. The Journal of Geology, 1980, 88(2): 225-232.

[57]

Omori S., Kita S., Maruyama S., . Pressure-Temperature Conditions of Ongoing Regional Metamorphism beneath the Japanese Islands. Gondwana Research, 2009, 16(3/4): 458-469.

[58]

Orme D. A., Carrapa B., Kapp P. Sedimentology, Provenance and Geochronology of the Upper Cretaceous–Lower Eocene Western Xigaze Forearc Basin, Southern Tibet. Basin Research, 2015, 27(4): 387-411.

[59]

Ota T., Kaneko Y. Blueschists, Eclogites, and Subduction Zone Tectonics: Insights from a Review of Late Miocene Blueschists and Eclogites, and Related Young High-Pressure Metamorphic Rocks. Gondwana Research, 2010, 18(1): 167-188.

[60]

Ota T., Terabayashi M., Katayama I. Thermobaric Structure and Metamorphic Evolution of the Iratsu Eclogite Body in the Sanbagawa Belt, Central Shikoku, Japan. Lithos, 2004, 73(1/2): 95-126.

[61]

Pan G. T., Ding J., Wang L. Q. Geological Map of Qinghai-Tibet Plateau and Adjacent Regions, 2004.

[62]

Pan G. T., Wang L. Q., Li R. S., . Tectonic Evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 2012, 53: 3-14.

[63]

Peacock S. M., Rushmer T., Thompson A. B. Partial Melting of Subducting Oceanic Crust. Earth and Planetary Science Letters, 1994, 121(1/2): 227-244.

[64]

Peacock S. M., Wang K. Seismic Consequences of Warm versus Cool Subduction Metamorphism: Examples from Southwest and Northeast Japan. Science, 1999, 286(5441): 937-939.

[65]

Phillips G., Hand M., Offler R. P-T-X Controls on Phase Stability and Composition in LTMP Metabasite Rocks—A Thermodynamic Evaluation. Journal of Metamorphic Geology, 2010, 28(5): 459-476.

[66]

Platt J. P. Exhumation of High-Pressure Rocks: A Review of Concepts and Processes. Terra Nova, 1993, 5(2): 119-133.

[67]

Ratschbacher L., Frisch W., Liu G. H., . Distributed Deformation in Southern and Western Tibet during and after the India-Asia Collision, 1994, 19917-19945.

[68]

Rolland Y., Pêcher A., Picard C. Middle Cretaceous Back-Arc Formation and Arc Evolution along the Asian Margin: The Shyok Suture Zone in Northern Ladakh (NW Himalaya). Tectonophysics, 2000, 325(1/2): 145-173.

[69]

Searle M. P., Windley B. F., Coward M. P., . The Closing of Tethys and the Tectonics of the Himalaya. Geological Society of America Bulletin, 1987, 98(6): 678-701.

[70]

Shen Q. H., Geng Y. S. The Tempo-Spatial Distribution, Geological Characteristics and Gensis of Blueschist Belts in China. Acta Geologica Sinica, 2012, 86: 1407-1446.

[71]

Stern R. J. Evidence from Ophiolites, Blueschists, and Ultrahigh-Pressure Metamorphic Terranes that the Modern Episode of Subduction Tectonics Began in Neoproterozoic Time. Geology, 2005, 33: 557-560.

[72]

Ukar E. Tectonic Significance of Low-Temperature Blueschist Blocks in the Franciscan Mélange at San Simeon. California, 2012, 154-169.

[73]

Ukar E., Cloos M. Low-Temperature Blueschist-Facies Mafic Blocks in the Franciscan Mélange, San Simeon, California: Field Relations, Petrology, and Counterclockwise P-T Paths. Geological Society of America Bulletin, 2014, 126(5/6): 831-856.

[74]

Wan X. Q., Jansa L. F., Sarti M. Cretaceous and Paleogene Boundary Strata in Southern Tibet and Their Implication for the India-Eurasia Collision. Lethaia, 2002, 35(2): 131-146.

[75]

Wang H. Q., Ding L., Cai F. L., . Early Tertiary Deformation of the Zhongba-Gyangze Thrust in Central Southern Tibet. Gondwana Research, 2017, 41: 235-248.

[76]

Wang X. B., Bao P. S., Deng W. M., . Xizang (Tibet) Ophiolites. Geological Publishing House, 1987.

[77]

Wei C. J., Li Y. J., Yu Y., . Phase Equilibria and Metamorphic Evolution of Glaucophane-Bearing UHP Eclogites from the Western Dabieshan Terrane, Central China. Journal of Metamorphic Geology, 2010, 28(6): 647-666.

[78]

Wei C. J., Song S. G. Chloritoid-Glaucophane Schist in the North Qilian Orogen, NW China: Phase Equilibria and P-T Path from Garnet Zonation. Journal of Metamorphic Geology, 2008, 26(3): 301-316.

[79]

Wei C. J., Wang W., Clarke G. L., . Metamorphism of High/Ultrahigh-Pressure Pelitic-Felsic Schist in the South Tianshan Orogen, NW China: Phase Equilibria and P-T Path. Journal of Petrology, 2009, 50(10): 1973-1991.

[80]

Wei C. J., Yang Y., Su X. L., . Metamorphic Evolution of Low-T Eclogite from the North Qilian Orogen, NW China: Evidence from Petrology and Calculated Phase Equilibria in the System NCKFMASHO. Journal of Metamorphic Geology, 2009, 27(1): 55-70.

[81]

White R. W., Pomroy N. E., Powell R. An in situ Metatexite-Diatexite Transition in Upper Amphibolite Facies Rocks from Broken Hill, Australia. Journal of Metamorphic Geology, 2005, 23(7): 579-602.

[82]

White R. W., Powell R., Holland T. J. B. Progress Relating to Calculation of Partial Melting Equilibria for Metapelites. Journal of Metamorphic Geology, 2007, 25(5): 511-527.

[83]

White R. W., Powell R., Holland T. J. B., . The Effect of TiO2 and Fe2O3 on Metapelitic Assemblages at Greenschist and Amphibolite Facies Conditions: Mineral Equilibria Calculations in the System K2O-FeO-MgOAl2O3-SiO2-H2O-TiO2-Fe2O3. Journal of Metamorphic Geology, 2000, 18(5): 497-511.

[84]

Whitney D. L., Evans B. W. Abbreviations for Names of Rock-Forming Minerals. American Mineralogist, 2010, 95(1): 185-187.

[85]

Winkler H. G. F. Petrogenesis of Metamorphic Rocks, 1979, 1-347

[86]

Wu F. Y., Ji W. Q., Wang J. G., . Zircon U-Pb and Hf Isotopic Constraints on the Onset Time of India-Asia Collision. American Journal of Science, 2014, 314(2): 548-579.

[87]

Wu Y. W., Li C., Xu M. J., . Zircon U-Pb Age, Geochemical Data: Constraints on the Origin and Tectonic Evolution of the Metamafic Rocks from Longmuco-Shuanghu-Lancang Suture Zone, Tibet. Journal of Earth Science, 2017, 28(3): 422-432.

[88]

Xiao X. C., Gao Y. L. Some New Observations on the High P/T Metamorphic Belt along the Southern Boundary of Yarlung Zangbo (Tsangpo) Ophiolite Zone, Xizang (Tibet). Himalaya Geology (II), 1984, 1-16.

[89]

Xiao X. C., Li T. D., Li G. C., . Pandect of Himalayan Lithosphere Tectonic Evolution, 1988, 1-236.

[90]

Xiao X. C., Wan Z. Y., Li G. C., . On the Tectonic Evolution of the Yarlung Zangbo (Tsangpo) Suture Zone and the Adjecent Areas. Acta Geologica Sinica, 1983, 2: 205-212.

[91]

Xu B., Charvet J., Zhang F. Q. Primary Study on Petrology and Geochronology of the Blueschist in Sunidzuoqi, Northern Inner Mongolia. Chinese Journal of Geology, 2001, 36: 424-434.

[92]

Zhang J. R., Wei C. J., Chu H. Blueschist Metamorphism and Its Tectonic Implication of Late Paleozoic–Early Mesozoic Metabasites in the Mélange Zones, Central Inner Mongolia, China. Journal of Asian Earth Sciences, 2015, 97: 352-364.

[93]

Zhang X., Li X. P., Wang Z. L., . Mineralogical and Petrogeochemical Characteristics of the Garnet Amphibolites in the Xigaze Ophiolite, Tibet. Acta Petrologica Sinica, 2016, 32(12): 3685-3702.

[94]

Zhao L. M., Takasu A., Liu Y. J., . Blueschist from the Toudaoqiao Area, Inner Mongolia, NE China: Evidence for the Suture between the Ergun and the Xing’an Blocks. Journal of Earth Science, 2017, 28(2): 241-248.

[95]

Zheng Y. F., Chen Y. X., Dai L. Q., . Developing Plate Tectonics Theory from Oceanic Subduction Zones to Collisional Orogens. Science China Earth Sciences, 2015, 58(7): 1045-1069.

[96]

Zhu D. C., Wang Q., Zhao Z. D. Constraining Quantitatively the Timing and Process of Continent-Continent Collision Using Magmatic Record: Method and Examples. Science China Earth Sciences, 2017, 60(6): 1040-1056.

[97]

Zhu D. C., Wang Q., Zhao Z. D., . Corrigendum: Magmatic Record of India-Asia Collision. Scientific Reports, 2015, 5 1 14289

[98]

Zhu D. C., Zhao Z. D., Niu Y. L., . The Lhasa Terrane: Record of a Microcontinent and Its Histories of Drift and Growth. Earth and Planetary Science Letters, 2011, 301(1/2): 241-255.

[99]

Zhu D. C., Zhao Z. D., Niu Y. L., . The Origin and Pre-Cenozoic Evolution of the Tibetan Plateau. Gondwana Research, 2013, 23(4): 1429-1454.

[100]

Zhu J., Du Y. S., Liu Z. X., . Mesozoic Radiolarian Chert from the Middle Sector of the Yarlung Zangbo Suture Zone, Tibet and Its Tectonic Implications. Science in China Series D: Earth Sciences, 2006, 49(4): 348-357.

[101]

Ziabrev S. V., Aitchison J. C., Abrajevitch A. V., . Bainang Terrane, Yarlung-Tsangpo Suture, Southern Tibet (Xizang, China): A Record of Intra-Neotethyan Subduction-Accretion Processes Preserved on the Roof of the World. Journal of the Geological Society, 2004, 161(3): 523-539.

AI Summary AI Mindmap
PDF

116

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/