High-Temperature Metamorphism, Anataxis and Tectonic Evolution of a Mafic Granulite from the Eastern Himalayan Orogen

Zeming Zhang , Huixia Ding , Xin Dong , Zuolin Tian , Dongyan Kang , Hongchen Mu , Shengkai Qin , Yuanyuan Jiang , Mengmei Li

Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (5) : 1010 -1025.

PDF
Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (5) : 1010 -1025. DOI: 10.1007/s12583-018-0852-y
Metamorphism, Magmatism and Tectonic Evolution of the Himalayan Orogen and Tianshan Orogen

High-Temperature Metamorphism, Anataxis and Tectonic Evolution of a Mafic Granulite from the Eastern Himalayan Orogen

Author information +
History +
PDF

Abstract

The Himalayan Orogen, resulting from the Tertiary collision of Indian and Asian continents, is a natural laboratory for studying metamorphism, partial melting and granite formation of collisional orogens. However, metamorphic and anatectic conditions and timescales of meta-mafic rocks in the Greater Himalayan Sequences (GHS) in the east-central Himalaya remain controversial. In this paper, we conduct a study of petrology and geochronology of mafic granulite from the Eastern Himalayan Syntaxis (EHS). The mafic granulite with abundant leucosome bands occurs as layers within felsic granulites and is well deformed. The granulite consists of garnet, plagioclase, amphibole and quartz with minor clinopyroxene, orthopyroxene, biotite, rutile, titanite and ilmenite. The garnet has growth compositional zoning and contains abundant mineral inclusions in its core. Peak metamorphic mineral assemblage of the granulite is garnet, amphibole, plagioclase, quartz, clinopyroxene and rutile, recording a high-pressure (HP) and high-temperature (HT) peak-metamorphism under conditions of 14–15.5 kbar and 780–790 °C in the presence of melt. The reconstructed clockwise P-T path is characterized by an early heating and burial prograde metamorphism, and late isothermal and cooling decompression retrogression. The granulite witnessed a long lasting HT metamorphism, partial melting and melt crystallization process which began at ca. 39 Ma and lasted to ca. 11 Ma. The present study shows that various high-grade rocks of the GHS in the EHS core experienced similar metamorphic conditions and P-T-t paths, indicating that they occurred as a coherent slab during the subduction and exhumation of Indian lithosphere. The significant melts generated during the prograde metamorphism of the GHS rocks not only contributed to the formation of the Himalayan leucogranite, but also resulted in the rheological weakening and ductile flow of the thickened lower crust of the Himalayan Orogen.

Keywords

granulite / HT metamorphism / partial melting / timescale / collisional orogeny

Cite this article

Download citation ▾
Zeming Zhang, Huixia Ding, Xin Dong, Zuolin Tian, Dongyan Kang, Hongchen Mu, Shengkai Qin, Yuanyuan Jiang, Mengmei Li. High-Temperature Metamorphism, Anataxis and Tectonic Evolution of a Mafic Granulite from the Eastern Himalayan Orogen. Journal of Earth Science, 2018, 29(5): 1010-1025 DOI:10.1007/s12583-018-0852-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ai Y. A Revision of the Garnet-Clinopyroxene Fe2+-Mg Exchange Geothermometer. Contributions to Mineralogy and Petrology, 1994, 115(4): 467-473.

[2]

Ali A., Yar M., Khan M. A., . Interrelationships between Deformation and Metamorphic Events across the Western Hinterland Zone, NW Pakistan. Journal of Earth Science, 2016, 27(4): 584-598.

[3]

Ambrose T. K., Larson K. P., Guilmette C., . Lateral Extrusion, Underplating, and Out-of-Sequence Thrusting within the Himalayan Metamorphic Core, Kanchenjunga, Nepal. Lithosphere, 2015, 7(4): 441-464.

[4]

Anczkiewicz R., Chakraborty S., Dasgupta S., . Timing, Duration and Inversion of Prograde Barrovian Metamorphism Constrained by High Resolution Lu-Hf Garnet Dating: A Case Study from the Sikkim Himalaya, NE India. Earth and Planetary Science Letters, 2014, 407: 70-81.

[5]

Beaumont C., Jamieson R. A., Nguyen M. H., . Crustal Channel Flows: 1, 2004.

[6]

Beaumont C., Jamieson R., Nguyen M. Models of Large, Hot Orogens Containing a Collage of Reworked and Accreted Terranes. Canadian Journal of Earth Sciences, 2010, 47(4): 485-515.

[7]

Beaumont C., Nguyen M. H., Jamieson R. A., . Crustal Flow Modes in Large Hot Orogens. Geological Society, London, Special Publications, 2006, 268(1): 91-145.

[8]

Booth A. L., Chamberlain C. P., Kidd W. S. F., . Constraints on the Metamorphic Evolution of the Eastern Himalayan Syntaxis from Geochronologic and Petrologic Studies of Namche Barwa. Geological Society of America Bulletin, 2009, 121(3/4): 385-407.

[9]

Booth A. L., Zeitler P. K., Kidd W. S. F., . U-Pb Zircon Constraints on the Tectonic Evolution of Southeastern Tibet, Namche Barwa Area. American Journal of Science, 2004, 304(10): 889-929.

[10]

Burg J.-P., Nievergelt P., Oberli F., . The Namche Barwa Syntaxis: Evidence for Exhumation Related to Compressional Crustal Folding. Journal of Asian Earth Sciences, 1998, 16(2/3): 239-252.

[11]

Corfu F., Hanchar J. M., Hoskin P. W. O., . Atlas of Zircon Textures. Reviews in Mineralogy and Geochemistry, 2003, 53: 469-500.

[12]

Cottle J. M., Searle M. P., Horstwood M. S. A., . Timing of Midcrustal Metamorphism, Melting, and Deformation in the Mount Everest Region of Southern Tibet Revealed by U(-Th)-Pb Geochronology. The Journal of Geology, 2009, 117(6): 643-664.

[13]

Dale J., Holland T. J. B., Powell R. Hornblende-Garnet-Plagioclase Thermobarometry: A Natural Assemblage Calibration of the Thermodynamics of Hornblende. Contributions to Mineralogy and Petrology, 2000, 140(3): 353-362.

[14]

Ding H. X., Zhang Z. M., Dong X., . Early Eocene (c. 50 Ma) Collision of the Indian and Asian Continents: Constraints from the North Himalayan Metamorphic Rocks, Southeastern Tibet. Earth and Planetary Science Letters, 2016, 435: 64-73.

[15]

Ding L., Zhong D. L., Yin A., . Cenozoic Structural and Metamorphic Evolution of the Eastern Himalayan Syntaxis (Namche Barwa). Earth and Planetary Science Letters, 2001, 192(3): 423-438.

[16]

Eckert J. O., Newton R. C., Kleppa O. J. The ΔH of Reaction and Recalibration of Garnet-Pyroxene-Plagioclase-Quartz Geobarometers in the CMAS System by Solution Calorimetry. American Mineralogist, 1991, 76: 148-160.

[17]

Gao L. E., Zeng L. S. Fluxed Melting of Metapelite and the Formation of Miocene High-CaO Two-Mica Granites in the Malashan Gneiss Dome, Southern Tibet. Geochimica et Cosmochimica Acta, 2014, 130: 136-155.

[18]

Gao L. E., Zeng L. S., Asimow P. D. Contrasting Geochemical Signatures of Fluid-Absent Versus Fluid-Fluxed Melting of Muscovite in Metasedimentary Sources: The Himalayan Leucogranites. Geology, 2017, 45(1): 39-42.

[19]

Green E. C. R., White R. W., Diener J. F. A., . Activity-Composition Relations for the Calculation of Partial Melting Equilibria in Metabasic Rocks. Journal of Metamorphic Geology, 2016, 34(9): 845-869.

[20]

Groppo C., Rolfo F., Indares A. Partial Melting in the Higher Himalayan Crystallines of Eastern Nepal: The Effect of Decompression and Implications for the ‘Channel Flow’ Model. Journal of Petrology, 2012, 53(5): 1057-1088.

[21]

Groppo C., Rubatto D., Rolfo F., . Early Oligocene Partial Melting in the Main Central Thrust Zone (Arun Valley, Eastern Nepal Himalaya). Lithos, 2010, 118(3/4): 287-301.

[22]

Guillot S., Mahéo G., de Sigoyer J., . Tethyan and Indian Subduction Viewed from the Himalayan High-to Ultrahigh-Pressure Metamorphic Rocks. Tectonophysics, 2008, 225-241.

[23]

Guilmette C., Indares A., Hébert R. High-Pressure Anatectic Paragneisses from the Namche Barwa, Eastern Himalayan Syntaxis: Textural Evidence for Partial Melting, Phase Equilibria Modeling and Tectonic Implications. Lithos, 2011, 124(1/2): 66-81.

[24]

Guo Z. F., Wilson M. The Himalayan Leucogranites: Constraints on the Nature of Their Crustal Source Region and Geodynamic Setting. Gondwana Research, 2012, 22(2): 360-376.

[25]

Harris N. B. W., Caddick M., Kosler J., . The Pressure-Temperature-Time Path of Migmatites from the Sikkim Himalaya. Journal of Metamorphic Geology, 2004, 22(3): 249-264.

[26]

Harris N. B. W., Massey J. Decompression and Anatexis of Himalayan Metapelites. Tectonics, 1994, 13(6): 1537-1546.

[27]

Holland T. J. B., Blundy J. Non-Ideal Interactions in Calcic Amphiboles and Their Bearing on Amphibole-Plagioclase Thermometry. Contributions to Mineralogy and Petrology, 1994, 116(4): 433-447.

[28]

Holland T. J. B., Powell R. An Improved and Extended Internally Consistent Thermodynamic Dataset for Phases of Petrological Interest, Involving a New Equation of State for Solids. Journal of Metamorphic Geology, 2011, 29(3): 333-383.

[29]

Hoskin P. W. O., Schaltegger U. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 27-62.

[30]

Hou Z. Q., Zheng Y. C., Zeng L. S., . Eocene–Oligocene Granitoids in Southern Tibet: Constraints on Crustal Anatexis and Tectonic Evolution of the Himalayan Orogen. Earth and Planetary Science Letters, 2012, 38-52.

[31]

Hu Z. C., Zhang W., Liu Y. S., . “Wave” Signal-Smoothing and Mercury-Removing Device for Laser Ablation Quadrupole and Multiple Collector ICP-MS Analysis: Application to Lead Isotope Analysis. Analytical Chemistry, 2015, 87(2): 1152-1157.

[32]

Huangfu P. P., Wang Y. J., Li Z. H., . Effects of Crustal Eclogitization on Plate Subduction/Collision Dynamics: Implications for India-Asia Collision. Journal of Earth Science, 2016, 27(5): 727-739.

[33]

Iaccarino S., Montomoli C., Carosi R., . Pressure-Temperature-Time-Deformation Path of Kyanite-Bearing Migmatitic Paragneiss in the Kali Gandaki Valley (Central Nepal): Investigation of Late Eocene–Early Oligocene Melting Processes. Lithos, 2015, 231: 103-121.

[34]

Imayama T., Takeshita T., Yi K., . Two-Stage Partial Melting and Contrasting Cooling History within the Higher Himalayan Crystalline Sequence in the Far-Eastern Nepal Himalaya. Lithos, 2012, 1-22.

[35]

Jamieson R. A., Beaumont C., Medvedev S., . Crustal Channel Flows: 2, 2004.

[36]

Kali E., Leloup P. H., Arnaud N., . Exhumation History of the Deepest Central Himalayan Rocks, Ama Drime Range: Key Pressure-Temperature-Deformation-Time Constraints on Orogenic Models, 2010.

[37]

Knesel K. M., Davidson J. P. Insights into Collisional Magmatism from Isotopic Fingerprints of Melting Reactions. Science, 2002, 296(5576): 2206-2208.

[38]

Kohn M. J. Himalayan Metamorphism and Its Tectonic Implications. Annual Review of Earth and Planetary Sciences, 2014, 42(1): 381-419.

[39]

Kohn M. J., Corrie S. L. Preserved Zr-Temperatures and U-Pb Ages in High-Grade Metamorphic Titanite: Evidence for a Static Hot Channel in the Himalayan Orogen. Earth and Planetary Science Letters, 2011, 311(1/2): 136-143.

[40]

Liu F. L., Zhang L. F. High-Pressure Granulites from Eastern Himalayan Syntaxis: P-T Path, Zircon U-Pb Dating and Geological Implications. Acta Petrologica Sinica, 2014, 30(10): 2808-2820.

[41]

Liu Y. S., Gao S., Hu Z. C., . Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 2010, 51(1/2): 537-571.

[42]

Liu Y. S., Hu Z. C., Gao S., . In situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 2008, 257(1/2): 34-43.

[43]

Liu Y., Yang Z. Q., Wang M. History of Zircon Growth in a High-Pressure Granulite within the Eastern Himalayan Syntaxis, and Tectonic Implications. International Geology Review, 2007, 49(9): 861-872.

[44]

Liu Y., Zhong D. Petrology of High-Pressure Granulites from the Eastern Himalayan Syntaxis. Journal of Metamorphic Geology, 1997, 15(4): 451-466.

[45]

Liu Z. C., Wu F. Y., Ji W. Q., . Petrogenesis of the Ramba Leucogranite in the Tethyan Himalaya and Constraints on the Channel Flow Model. Lithos, 2014, 118-136.

[46]

Ludwig K. R. Isoplot/.x Version 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication, Berkeley, 2003, 1-73.

[47]

Najman Y., Appel E., Boudagher-Fadel M., . Timing of India-Asia Collision: Geological, Biostratigraphic, and Palaeomagnetic Constraints, 2010.

[48]

Palin R. M., White R. W., Green E. C. R. Partial Melting of Metabasic Rocks and the Generation of Tonalitic-Trondhjemitic-Granodioritic (TTG) Crust in the Archaean: Constraints from Phase Equilibrium Modelling. Precambrian Research, 2016, 287: 73-90.

[49]

Powell R., Holland T. J. B. An Internally Consistent Dataset with Uncertainties and Correlations: 3. Applications to Geobarometry, Worked Examples and a Computer Program. Journal of Metamorphic Geology, 1988, 6(2): 173-204.

[50]

Rubatto D. Zircon Trace Element Geochemistry: Partitioning with Garnet and the Link between U-Pb Ages and Metamorphism. Chemical Geology, 2002, 184(1/2): 123-138.

[51]

Rubatto D., Chakraborty S., Dasgupta S. Timescales of Crustal Melting in the Higher Himalayan Crystallines (Sikkim, Eastern Himalaya) Inferred from Trace Element-Constrained Monazite and Zircon Chronology. Contributions to Mineralogy and Petrology, 2013, 165(2): 349-372.

[52]

Rubatto D., Hermann J. Zircon Behaviour in Deeply Subducted Rocks. Elements, 2007, 3(1): 31-35.

[53]

Searle M. P., Simpson R. L., Law R. D., . The Structural Geometry, Metamorphic and Magmatic Evolution of the Everest Massif, High Himalaya of Nepal-South Tibet. Journal of the Geological Society, 2003, 160(3): 345-366.

[54]

Spear F. S. On the Interpretation of Peak Metamorphic Temperatures in Light of Garnet Diffusion during Cooling. Journal of Metamorphic Geology, 1991, 9(4): 379-388.

[55]

Spear F. S., Kohn M. J., Florence F. P., . A Model for Garnet and Plagioclase Growth in Pelitic Schists: Implications for Thermobarometry and P-T Path Determinations. Journal of Metamorphic Geology, 1990, 8(6): 683-696.

[56]

Streule M. J., Searle M. P., Waters D. J., . Metamorphism, Melting, and Channel Flow in the Greater Himalayan Sequence and Makalu Leucogranite: Constraints from Thermobarometry, Metamorphic Modeling, and U-Pb Geochronology, 2010, Tectonics, 29(5): TC5011

[57]

Su W., Zhang M., Liu X. H., . Exact Timing of Granulite Metamorphism in the Namche-Barwa, Eastern Himalayan Syntaxis: New Constrains from SIMS U-Pb Zircon Age. International Journal of Earth Sciences, 2012, 101(1): 239-252.

[58]

Thompson A. B., England P. C. Pressure-Temperature-Time Paths of Regional Metamorphism II. Their Inference and Interpretation Using Mineral Assemblages in Metamorphic Rocks. Journal of Petrology, 1984, 25(4): 929-955.

[59]

Tian Z. L., Kang D. Y., Mu H. C. Metamorphic P-T-t Path of Gar net Amphibolite from the Eastern Himalaya Syntaxis: Phase Equilibria and Zircon Chronology. Acta Petrologica Sinica, 2017, 38: 2467-2478.

[60]

Tian Z. L., Zhang Z. M., Dong X. Metamorphism of High-P Metagreywacke from the Eastern Himalayan Syntaxis: Phase Equilibria and P-T Path. Journal of Metamorphic Geology, 2016, 34(7): 697-718.

[61]

Viskupic K., Hodges K. V., Bowring S. A. Timescales of Melt Generation and the Thermal Evolution of the Himalayan Metamorphic Core, Everest Region, Eastern Nepal. Contributions to Mineralogy and Petrology, 2005, 149(1): 1-21.

[62]

Wang J. M., Rubatto D., Zhang J. J. Timing of Partial Melting and Cooling across the Greater Himalayan Crystalline Complex (Nyalam, Central Himalaya): In-Sequence Thrusting and Its Implications. Journal of Petrology, 2015, 56(9): 1677-1702.

[63]

Wang J. M., Wu F. Y., Rubatto D., . Monazite Behaviour during Isothermal Decompression in Pelitic Granulites: A Case Study from Dinggye, Tibetan Himalaya. Contributions to Mineralogy and Petrology, 2017, 172 10 81

[64]

Wang J. M., Zhang J. J., Liu K., . Spatial and Temporal Evolution of Tectonometamorphic Discontinuities in the Central Himalaya: Constraints from P-T Paths and Geochronology. Tectonophysics, 2016, 679: 41-60.

[65]

Wang J. M., Zhang J. J., Wang X. X. Structural Kinematics, Metamorphic P-T Profiles and Zircon Geochronology across the Greater Himalayan Crystalline Complex in South-Central Tibet: Implication for a Revised Channel Flow. Journal of Metamorphic Geology, 2013, 31(6): 607-628.

[66]

Weinberg R. F. Himalayan Leucogranites and Migmatites: Nature, Timing and Duration of Anatexis. Journal of Metamorphic Geology, 2016, 34(8): 821-843.

[67]

Wu F. Y., Liu Z. C., Liu X. C., . Himalayan Leucogranite: Petrogenesis and Implications to Orogenesis and Plateau Uplift. Acta Petrologica Sinica, 2015, 31: 1-36.

[68]

Wu Y. B., Zheng Y. F. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 2004, 49(15): 1554-1569.

[69]

Xiang H., Zhang Z. M., Dong X., . High-Pressure Metamorphism and Anatexis during the Subduction of Indian Continent: Phase Equilibria Modeling of the Namche Barwa Complex, Eastern Himalayan Syntaxis. Acta Petrologica Sinica, 2013, 29: 3792-3802.

[70]

Xu W. C., Zhang H. F., Parrish R., . Timing of Granulite-Facies Metamorphism in the Eastern Himalayan Syntaxis and Its Tectonic Implications. Tectonophysics, 2010, 231-244.

[71]

Yin A., Harrison T. M. Geologic Evolution of the Himalayan-Tibetan Orogen. Annual Review of Earth and Planetary Sciences, 2000, 28(1): 211-280.

[72]

Zeiger K., Gordon S. M., Long S. P., . Timing and Conditions of Metamorphism and Melt Crystallization in Greater Himalayan Rocks, Eastern and Central Bhutan: Insight from U-Pb Zircon and Monazite Geochronology and Trace-Element Analyses. Contributions to Mineralogy and Petrology, 2015, 169 5 47

[73]

Zeng L. S., Gao L. E. Cenozoic Crustal Anatexis and the Leucogranites in the Himalayan Collisional Orogenic Belt. Acta Petrologica Sinica, 2017, 33(5): 1420-1444.

[74]

Zeng L. S., Gao L. E., Xie K. J., . Mid-Eocene High Sr/Y Granites in the Northern Himalayan Gneiss Domes: Melting Thickened Lower Continental Crust. Earth and Planetary Science Letters, 2011, 303(3/4): 251-266.

[75]

Zhang H. F., Harris N. B. W., Parrish R. R., . Causes and Consequences of Protracted Melting of the Mid-Crust Exposed in the North Himalayan Antiform. Earth and Planetary Science Letters, 2004, 228(1/2): 195-212.

[76]

Zhang Z. M., Dong X., Ding H. X., . Metamorphism and Partial Melting of the Himalayan Orogen. Acta Petrologica Sinica, 2017, 33(8): 2313-2341.

[77]

Zhang Z. M., Xiang H., Dong X., . Oligocene HP Metamorphism and Anatexis of the Higher Himalayan Crystalline Sequence in Yadong Region, East-Central Himalaya. Gondwana Research, 2017, 41: 173-187.

[78]

Zhang Z. M., Xiang H., Ding H. X., . Miocene Orbicular Diorite in East-Central Himalaya: Anatexis, Melt Mixing, and Fractional Crystallization of the Greater Himalayan Sequence. Geological Society of America Bulletin, 2017, 129(7/8): 869-885.

[79]

Zhang Z. M., Dong X., Santosh M., . Petrology and Geochronology of the Namche Barwa Complex in the Eastern Himalayan Syntaxis, Tibet: Constraints on the Origin and Evolution of the North-Eastern Margin of the Indian Craton. Gondwana Research, 2012, 21(1): 123-137.

[80]

Zhang Z. M., Kang D. Y., Ding H. X., . Partial Melting of Himalayan Orogen and Formation Mechanism of Leucogranites. Earth Science, 2018, 43(1): 82-98.

[81]

Zhang Z. M., Xiang H., Dong X., . Long-Lived High-Temperature Granulite-Facies Metamorphism in the Eastern Himalayan Orogen, South Tibet. Lithos, 2015, 212–215: 1-15.

[82]

Zhang Z. M., Zhao G. C., Santosh M., . Two Stages of Granulite Facies Metamorphism in the Eastern Himalayan Syntaxis, South Tibet: Petrology, Zircon Geochronology and Implications for the Subduction of Neo-Tethys and the Indian Continent beneath Asia. Journal of Metamorphic Geology, 2010, 28: 719-733.

[83]

Zong K. Q., Klemd R., Yuan Y., . The Assembly of Rodinia: The Correlation of Early Neoproterozoic (ca. 9.0Ma) High-Grade Metamorphism and Continental Arc Formation in the Southern Beishan Orogen, Southern Central Asian Orogenic Belt (CAOB). Precambrian Research, 2017, 290: 32-48.

AI Summary AI Mindmap
PDF

221

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/