Metapelitic Garnet-Muscovite-Al2SiO5-Quartz (GMAQ) Geothermobarometry

Chun-Ming Wu

Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (5) : 977 -988.

PDF
Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (5) : 977 -988. DOI: 10.1007/s12583-018-0851-z
P-T Conditions, Chemistry and Physics of Metamorphic Minerals

Metapelitic Garnet-Muscovite-Al2SiO5-Quartz (GMAQ) Geothermobarometry

Author information +
History +
PDF

Abstract

The garnet-muscovite geothermometer and garnet-muscovite-Al2SiO5-quartz (GMAQ) geobarometer have been empirically calibrated under P-T conditions of 1–12 kbar and 460–760 ºC using natural metapelitic rocks. The chemical compositions of the calibrant muscovite are in the ranges of Fe=0.03–0.21 atoms, Mg=0.02–0.32 atoms and AlVI=1.62–1.96 atoms, respectively, on the 11-oxygen basis per formula unit. The garnet-muscovite thermometer yields similar temperature estimates to the well calibrated garnet-biotite thermometer within error of ±55 °C, and successfully discriminates the systematic temperature change of the different zones of either the prograde or inverted metamorphic terranes or thermal contact aureoles. The six formulations of GMAQ barometry yield similar pressure estimates to the well calibrated GASP barometer within error of ±1.2 kbar, and plot the Al2SiO5-bearing metapelite into the correct stability field of the Al2SiO5 polymorphs. Moreover, the GMAQ thermobarometers show that the pressure is almost constant for every thermal contact aureole within limited geographic region, which reflects geological condition. The random errors are estimated to be of ca. ±60 °C and ±1.4 kbar for the geothermometer and geobarometer, respectively. A spreadsheet for applying GMAQ geothermobarometry is supplied in the Electronic Supplementary Materials.

Keywords

Al2SiO5 / application / calibration / garnet / geothermobarometry / muscovite

Cite this article

Download citation ▾
Chun-Ming Wu. Metapelitic Garnet-Muscovite-Al2SiO5-Quartz (GMAQ) Geothermobarometry. Journal of Earth Science, 2018, 29(5): 977-988 DOI:10.1007/s12583-018-0851-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ali A., Yar M., Khan M. A., . Interrelationships between Deformation and Metamorphic Events across the Western Hinterland Zone, NW Pakistan. Journal of Earth Science, 2016, 27(4): 584-598.

[2]

Ashworth J. R., Evirgen M. M. Plagioclase Relations in Pelites, Central Menderes Massif, Turkey. I. the Peristerite Gap with Coexisting Kyanite. Journal of Metamorphic Geology, 1985, 3(3): 207-218.

[3]

Ashworth J. R., Evirgen M. M. Plagioclase Relations in Pelites, Central Menderes Massif, Turkey. II. Perturbation of Garnet-Plagioclase Geobarometers. Journal of Metamorphic Geology, 1985, 3(3): 219-229.

[4]

Bell T. H., Johnson S. E., Davis B., . Porphyroblast Inclusion-Trail Orientation Data: Eppure Non Son Girate!. Journal of Metamorphic Geology, 1992, 10(3): 295-307.

[5]

Bell T. H., Mares V. M. Correlating Deformation and Metamorphism around Orogenic Arcs. American Mineralogist, 1999, 84(11/12): 1727-1740.

[6]

Berman R. G. Thermobarometry Using Multi-Equilibrium Calculations: A New Technique, with Petrological Applications. Canadian Mineralogist, 1991, 29 833.

[7]

Berman R. G., Aranovich L. Y. Optimized Standard State and Solution Properties of Minerals. I. Calibration for Olivine, Orthopyroxene, Cordierite, Garnet, and Ilmenite in the System FeO-MgO-CaO-Al2O3-TiO2-SiO2. Contributions to Mineralogy and Petrology, 1996, 126: 1-24.

[8]

Bohlen S. R., Liotta J. J. A Barometer for Garnet Amphibolites and Garnet Granulites. Journal of Petrology, 1986, 27(5): 1025-1034.

[9]

Bohlen S. R., Wall V. J., Boettcher A. L. Experimental Investigations and Geological Applications of Equilibria in the System FeO-TiO2-Al2O3-SiO2-H2O. American Mineralogist, 1983, 68: 1049-1058.

[10]

Chatterjee N. Constraints from Monazite and Xenotime Growth Modelling in the MnCKFMASH-PYCe System on the P-T Path of a Metapelite from Shillong-Meghalaya Plateau: Implications for the Indian Shield Assembly. Journal of Metamorphic Geology, 2016, 35(4): 393-412.

[11]

Chen N.-S. The P-T Paths of Qinling Group and Their Implications for the Evolution of Metamorphic Environment, Tectonism and Magmatism. Earth Science—Journal of China University of Geosciences, 1990, 15: 145-155.

[12]

Chen N.-S., Gong S. L., Sun M., . Precambrian Evolution of the Quanji Block, Northeastern Margin of Tibet: Insights from Zircon U-Pb and Lu-Hf Isotope Compositions. Journal of Asian Earth Sciences, 2009, 35(3/4): 367-376.

[13]

Chen N.-S., Sun M., You Z. D., . Well-Preserved Garnet Growth Zoning in Granulite from the Dabie Mountains, Central China. Journal of Metamorphic Geology, 1998, 16(2): 213-222.

[14]

Cheng S. H., Lai X. Y., You Z. D. P-T Paths Derived from Garnet Growth Zoning in Danba Domal Metamorphic Terrain, Sichuan Province, West China. Journal of Earth Science, 2009, 20(2): 219-240.

[15]

Ferry J. M., Spear F. S. Experimental Calibration of the Partitioning of Fe and Mg between Biotite and Garnet. Contributions to Mineralogy and Petrology, 1978, 66(2): 113-117.

[16]

Ferry J. M., Watson E. B. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contributions to Mineralogy and Petrology, 2007, 154(4): 429-437.

[17]

Ganguly J., Cheng W. J., Tirone M. Thermodynamics of Aluminosilicate Garnet Solid Solution: New Experimental Data, an Optimized Model, and Thermometric Applications. Contributions to Mineralogy and Petrology, 1996, 126(1/2): 137-151.

[18]

Green T. H., Hellman P. L. Fe-Mg Partitioning between Coexisting Garnet and Phengite at High Pressure, and Comments on a Garnet-Phengite Geothermometer. Lithos, 1982, 15(4): 253-266.

[19]

Hodges K. V., Crowley P. D. Error Estimation and Empirical Geothermobarometry for Pelitic Systems. American Mineralogist, 1985, 70(7/8): 702-709.

[20]

Holdaway M. J. Application of New Experimental and Garnet Margules Data to the Garnet-Biotite Geothermometer. American Mineralogist, 2000, 85(7/8): 881-892.

[21]

Holdaway M. J. Recalibration of the GASP Geobarometer in Light of Recent Garnet and Plagioclase Activity Models and Versions of the Garnet-Biotite Geothermometer. American Mineralogist, 2001, 86(10): 1117-1129.

[22]

Holdaway M. J., Dutrow B. L., Hinton R. W. Devonian and Carboniferous Metamorphism in West-Central Maine: The Muscovite-Almandine Geobarometer and the Staurolite Problem Revised. American Mineralogist, 1988, 73 20.

[23]

Holdaway M. J., Mukhopadhyay B. A Re-evaluation of the Stability Relations of Andalusite: Thermochemical Data and Phase Diagram for the Alumino Silicates. American Mineralogist, 1993, 78: 298-315.

[24]

Huang M. H., Buick I. S., Hou L. W. Tectonometamorphic Evolution of the Eastern Tibet Plateau: Evidence from the Central Songpan-Garze Orogenic Belt, Western China. Journal of Petrology, 2003, 44(2): 255-278.

[25]

Hynes A., Forest R. C. Empirical Garnet-Muscovite Geothermometry in Low-Grade Metapelites, Selwyn Range (Canadian Rockies). Journal of Metamorphic Geology, 1988, 6(3): 297-309.

[26]

Johnson S. E. Porphyroblast Microstructures: A Review of Current and Future Trends. American Mineralogist, 1999, 84(11/12): 1711-1726.

[27]

Jones K. A. Progressive Metamorphism in a Crustal-Scale Shear Zone: An Example from the Léon Region, North-West Brittany, France. Journal of Metamorphic Geology, 1994, 12(1): 69-88.

[28]

Keller L. M., de Capitani C., Abart R. A Quaternary Solution Model for White Micas Based on Natural Coexisting Phengite-Paragonite Pairs. Journal of Petrology, 2005, 46(10): 2129-2144.

[29]

Kleemann U., Reinhardt J. Garnet-Biotite Thermometry Revisited: The Effect of AlVI and Ti in Biotite. European Journal of Mineralogy, 1994, 6(6): 925-942.

[30]

Kohn M. J., Spear F. S. Error Propagation for Barometers: 2. Application to Rocks. American Mineralogist, 1991, 76 138.

[31]

Koziol A. M., Newton R. C. Redetermination of the Anorthite-Breakdown Reaction and Improvement of the Plagioclase-Garnet-Al2SiO5-Quartz Geobarometer. American Mineralogist, 1988, 73: 216-233.

[32]

Krogh E. J., Råheim A. Temperature and Pressure Dependence of Fe-Mg Partitioning between Garnet and Phengite, with Particular Reference to Eclogites. Contributions to Mineralogy and Petrology, 1978, 66(1): 75-80.

[33]

Lang H. M. Quantitative Interpretation of Within-Outcrop Variation in Metamorphic Assemblages in Staurolite-Kyanite-Grade Metapelite, Baltimore, Maryland. Canadian Mineralogist, 1991, 29 655.

[34]

Lang H. M., Rice J. M. Regression Modelling of Metamorphic Reactions in Metapelites, Snow Peak, Northern Idaho. Journal of Petrology, 1985, 26(4): 857-887.

[35]

Li S. Z., Zhao G. C., Santosh M., . Palaeoproterozoic Tectonothermal Evolution and Deep Crustal Processes in the Jiao-Liao-Ji Belt, North China Craton: A Review. Geological Journal, 2011, 46(6): 525-543.

[36]

Li S. Z., Zhao G. C., Sun M., . Deformation History of the Paleoproterozoic Liaohe Assemblage in the Eastern Block of the North China Craton. Journal of Asian Earth Sciences, 2005, 24(5): 659-674.

[37]

Li S. Z., Zhao G. C., Wilde S. A., . Deformation History of the Hengshan-Wutai-Fuping Complexes: Implications for the Evolution of the Trans-North China Orogen. Gondwana Research, 2010, 18(4): 611-631.

[38]

Likhanov I. I., Reverdatto V. V., Sheplev V. S., . Contact Metamorphism of Fe-and Al-Rich Graphitic Metapelites in the Transangarian Region of the Yenisei Ridge, Eastern Siberia, Russia. Lithos, 2001, 58(1/2): 55-80.

[39]

Maldonado R., Weber B., Ortega-Gutiérrez F., . High-Pressure Metamorphic Evolution of Eclogite and Associated Metapelite from the Chuacús Complex (Guatemala Suture Zone): Constraints from Phase Equilibria Modelling Coupled with Lu-Hf and U-Pb Geochronology. Journal of Metamorphic Geology, 2018, 36(1): 95-124.

[40]

Massonne H.-J., Szpurka Z. Thermodynamic Properties of White Micas on the Basis of High-Pressure Experiments in the Systems K2O-MgO-A12O3-SiO2-H2O and K2O-FeO-A12O3-SiO2-H2O. Lithos, 1997, 229-250.

[41]

Mukhopadhyay B., Basu S., Holdaway M. J. A Discussion of Margules-Type Formulations for Multicomponent Solutions with a Generalized Approach. Geochimica et Cosmochimica Acta, 1993, 57(2): 277-283.

[42]

Mukhopadhyay B., Holdaway M. J., Koziol A. M. A Statistical Model of Thermodynamic Mixing Properties of Ca-Mg-Fe2+ Garnets. American Mineralogist, 1997, 82(1/2): 165-181.

[43]

Novak J. M., Holdaway M. J. Metamorphic Petrology, Mineral Equilibria, and Polymetamorphism in the Augusta Quadrangle, South-Central Maine. American Mineralogist, 1981, 66 51.

[44]

Parra T., Vidal O., Agard P. A Thermodynamic Model for Fe-Mg Dioctahedral K White Micas Using Data from Phase-Equilibrium Experiments and Natural Pelitic Assemblages. Contributions to Mineralogy and Petrology, 2003, 143(6): 706-732.

[45]

Pattison D. R. M. Stability of Andalusite and Sillimanite and the Al2SiO5 Triple Point: Constraints from the Ballachulish Aureole, Scotland. The Journal of Geology, 1992, 100(4): 423-446.

[46]

Perchuk L. L., Lavrentʼeva I. V. Experimental Investigation of Exchange Equilibria in the System Cordierite-Garnet-Biotite, 1983, 199-239.

[47]

Powell R., Holland T. J. B., Worley B. Calculating Phase Diagrams Involving Solid Solutions via Non-Linear Equations, with Examples Using THERMOCALC. Journal of Metamorphic Geology, 1998, 16(4): 577-588.

[48]

Rı́os C., Garcı́a C., Takasu A. Tectono-Metamorphic Evolution of the Silgará Formation Metamorphic Rocks in the Southwestern Santander Massif, Colombian Andes. Journal of South American Earth Sciences, 2003, 16(2): 133-154.

[49]

Şengün F., Zack T. Trace Element Composition of Rutile and Zr-in-Rutile Thermometry in Meta-Ophiolitic Rocks from the Kazdağ Massif, NW Turkey. Mineralogy and Petrology, 2016, 110(4): 547-560.

[50]

Spear F. S., Selverstone J., Hickmott D., . P-T Paths from Garnet Zoning: A New Technique for Deciphering Tectonic Processes in Crystalline Terranes. Geology, 1984, 12(2): 87-90.

[51]

Stephenson B. J., Waters D. J., Searle M. P. Inverted Metamorphism and the Main Central Thrust: Field Relations and Thermobarometric Constraints from the Kishtwar Window, NW Indian Himalaya. Journal of Metamorphic Geology, 2000, 18(5): 571-590.

[52]

Tomkins H. S., Powell R., Ellis D. J. The Pressure Dependence of the Zirconium-in-Rutile Thermometer. Journal of Metamorphic Geology, 2007, 25(6): 703-713.

[53]

Vannay J.-C., Grasemann B. Inverted Metamorphism in the High Himalaya of Himachal Pradesh (NW India): Phase Equilibria versus Thermometry. Schweizerische Mineralogische und Petrographische Mitteilungen, 1998, 78 107.

[54]

Weller O. M., St-Onge M. R., Waters D. J., . Quantifying Barrovian Metamorphism in the Danba Structural Culmination of Eastern Tibet. Journal of Metamorphic Geology, 2013, 31(9): 909-935.

[55]

Whitney D. L., Evans B. W. Abbreviations for Names of Rock-Forming Minerals. American Mineralogist, 2010, 95(1): 185-187.

[56]

Whitney D. L., Mechum T. A., Kuehner S. M., . Progressive Metamorphism of Pelitic Rocks from Protolith to Granulite Facies, Dutchess County, New York, USA: Constraints on the Timing of Fluid Infiltration during Regional Metamorphism. Journal of Metamorphic Geology, 1996, 14(2): 163-181.

[57]

Wu C.-M. Revised Empirical Garnet-Biotite-Muscovite-Plagioclase Geobarometer in Metapelites. Journal of Metamorphic Geology, 2015, 33(2): 167-176.

[58]

Wu C.-M. Calibration of the Garnet-Biotite-Al2SiO5-Quartz Geobarometer for Metapelites. Journal of Metamorphic Geology, 2017, 35(9): 983-998.

[59]

Wu C.-M., Cheng B. H. Valid Garnet-Biotite (GB) Geothermometry and Garnet-Aluminum Silicate-Plagioclase-Quartz (GASP) Geobarometry in Metapelitic Rocks. Lithos, 2006, 89(1/2): 1-23.

[60]

Wu C.-M., Wang X. S., Yang C. H., . Empirical Garnet-Muscovite Geothermometry in Metapelites. Lithos, 2002, 62(1/2): 1-13.

[61]

Wu C.-M., Zhao G. C. Recalibration of the Garnet-Muscovite (GM) Geothermometer and the Garnet-Muscovite-Plagioclase-Quartz (GMPQ) Geobarometer for Metapelitic Assemblages. Journal of Petrology, 2006, 47(12): 2357-2368.

[62]

Wu C.-M., Zhao G. C. The Applicability of the GRIPS Geobarometry in Metapelitic Assemblages. Journal of Metamorphic Geology, 2006, 24(4): 297-307.

[63]

You Z. D., Han Y. J., Suo S. T., . Metamorphic History and Tectonic Evolution of the Qinling Complex, Eastern Qinling Mountains, China. Journal of Metamorphic Geology, 1993, 11(4): 549-560.

[64]

Zhang J., Zhao G. C., Li S. Z., . Polyphase Deformation of the Fuping Complex, Trans-North China Orogen: Structures, SHRIMP U-Pb Zircon Ages and Tectonic Implications. Journal of Structural Geology, 2009, 31(2): 177-193.

[65]

Zhang J., Zhao G. C., Li S. Z., . Structural Pattern of the Wutai Complex and Its Constraints on the Tectonic Framework of the Trans-North China Orogen. Precambrian Research, 2012, 222/223: 212-229.

[66]

Zwart H. J. On the Determination of Polymetamorphic Mineral Associations, and Its Application to the Bosost Area (Central Pyrenees). Geologische Rundschau, 1962, 52(1): 38-65.

AI Summary AI Mindmap
PDF

166

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/