Phase Equilibria Modeling and P-T Evolution of the Mafic Lower-Crustal Xenoliths from the Southeastern Margin of the North China Craton

Jiazhen Nie , Yican Liu , Yang Yang

Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (5) : 1236 -1253.

PDF
Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (5) : 1236 -1253. DOI: 10.1007/s12583-018-0849-6
Precambrian Metamorphism-Magmatism and Tectonics of the North China Craton and Erguna Massif

Phase Equilibria Modeling and P-T Evolution of the Mafic Lower-Crustal Xenoliths from the Southeastern Margin of the North China Craton

Author information +
History +
PDF

Abstract

The Precambrian lower crust rocks at the southeastern margin of the North China Craton (NCC) are mainly exposed as granulite xenoliths hosted by Mesozoic dioritic porphyry and metamorphic terrains in the Xuzhou-Suzhou area. Garnet amphibolites and garnet granulites are two kinds of typical lower-crustal xenoliths and were selected to reconstruct different stages of the metamorphic process. In this study, in view of multistage metamorphic evolution and reworking, phase equilibria modeling was used for the first time to better constrain peak P-T conditions of the xenoliths. Some porphyroblastic garnets have a weak zonal structure in composition with homogeneous cores and were surrounded by thin rims with an increase in X Mg and a decrease in X Ca (or X Mg). Clinopyroxene contain varying amounts of Na2O and Al2O3 as well as amphibole of TiO2, while plagioclases are different in calcium contents. Peak metamorphic P-T conditions are calculated by the smallest garnet x(g) (Fe2+/(Fe2++Mg)) contours and the smallest plagioclase ca(pl) (Ca/(Ca+Na)) contours in NCFMASHTO (Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3) system, which are consistent with those estimated by conventional geothermobarometry. The new results show that the peak and decompressional P-T conditions for the rocks are 850–900 °C/ 1.4–1.6 GPa and 820–850 °C/0.9–1.3 GPa, respectively, suggestive of high and middle-low pressure granulite-facies metamorphism. Combined with previous zircon U-Pb dating and conventional geothermobarometry data, it is indicated that the xenoliths experienced a clockwise P-T-t evolution with nearisothermal decompressional process, suggestive of the Paleoproterozoic subduction-collision setting. In this regard, the studied region together with Jiao-Liao-Ji belt is further documented to make up a Paleoproterozoic collisional orogen in the eastern block of the NCC.

Keywords

southeastern margin of the North China Craton / mafic lower-crustal xenoliths / granulite facies / phase equilibria modeling / P-T path

Cite this article

Download citation ▾
Jiazhen Nie, Yican Liu, Yang Yang. Phase Equilibria Modeling and P-T Evolution of the Mafic Lower-Crustal Xenoliths from the Southeastern Margin of the North China Craton. Journal of Earth Science, 2018, 29(5): 1236-1253 DOI:10.1007/s12583-018-0849-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ague J. J., Eckert J. O. Jr.. Precipitation of Rutile and Ilmenite Needles in Garnet: Implications for Extreme Metamorphic Conditions in the Acadian Orogen, U.S.A.. American Mineralogist, 2012, 97(5/6): 840-855.

[2]

Ague J. J., Eckert J. O. Jr., Chu X., . Discovery of Ultrahigh-Temperature Metamorphism in the Acadian Orogen, Connecticut, USA. Geology, 2013, 41(2): 271-274.

[3]

Bhadra S., Bhattacharya A. The Barometer Tremolite+Tschermakite+ 2Albite=2Pargasite+8Quartz: Constraints from Experimental Data at Unit Silica Activity, with Application to Garnet-Free Natural Assemblages. American Mineralogist, 2007, 92(4): 491-502.

[4]

Bohlen S. R. On the Formation of Granulites. Journal of Metamorphic Geology, 1991, 9(3): 223-229.

[5]

Brown M. P-T-t Evolution of Orogenic Belts and the Causes of Regional Metamorphism. Journal of the Geological Society, 1993, 150(2): 227-241.

[6]

Brown M. Metamorphic Patterns in Orogenic Systems and the Geological Record. The Geological Society, London, Special Publications, 2009, 318(1): 37-74.

[7]

Brown M. The Contribution of Metamorphic Petrology to Understanding Lithosphere Evolution and Geodynamics. Geoscience Frontiers, 2014, 5(4): 553-569.

[8]

Carswell D. A., O’Brien P. J. Thermobarometry and Geotectonic Significance of High-Pressure Granulites: Examples from the Moldanubian Zone of the Bohemian Massif in Lower Austria. Journal of Petrology, 1993, 34(3): 427-459.

[9]

Chen N.-S., Sun M., Yang Y., . Metamorphic Garnet’s Compositional Zoning and Metamorphism Process. Earth Science Frontiers, 2003, 10(3): 315-320.

[10]

Connolly J. A. D. Multivariable Phase Diagrams: An Algorithm Based on Generalized Thermodynamics. American Journal of Science, 1990, 290(6): 666-718.

[11]

Cooke R. A. High-Pressure/Temperature Metamorphism in the St. Leonhard Granulite Massif, Austria: Evidence from Intermediate Pyroxene-Bearing Granulites. International Journal of Earth Sciences, 2000, 89(3): 631-651.

[12]

Dale J., Holland T., Powell R. Hornblende-Garnet-Plagioclase Thermobarometry: A Natural Assemblage Calibration of the Thermodynamics of Hornblende. Contributions to Mineralogy and Petrology, 2000, 140(3): 353-362.

[13]

Eckert J. O. Jr., Newton R. C., Kleppa O. J. The ΔH of Reaction and Recalibration of Garnet-Pyroxene-Plagioclase-Quartz Geobameters in the CMAS System by Solution Calorimertry. American Mineralogist, 1991, 76(1/2): 148-160.

[14]

England P. C., Thompson A. B. Pressure-Temperature-Time Paths of Regional Metamorphism I. Heat Transfer during the Evolution of Regions of Thickened Continental Crust. Journal of Petrology, 1984, 25(4): 894-928.

[15]

Frost B. R., Chacko T. The Granulite Uncertainty Principle: Limitations on Thermobarometry in Granulites. The Journal of Geology, 1989, 97(4): 435-450.

[16]

Fuhrman M. L., Frost B. R., Lindsley D. H. Crystallization Conditions of the Sybille Monzosyenite, Laramie Anorthosite Complex, Wyoming. Journal of Petrology, 1988, 29(3): 699-729.

[17]

Ganguly J., Cheng W. J., Tirone M. Thermodynamics of Aluminosilicate Garnet Solid Solution: New Experimental Data, an Optimized Model, and Thermometric Applications. Contributions to Mineralogy and Petrology, 1996, 126(1/2): 137-151.

[18]

Guo J. H., OʼBrien P. J., Zhai M. High-Pressure Granulites in the Sanggan Area, North China Craton: Metamorphic Evolution, P-T Paths and Geotectonic Significance. Journal of Metamorphic Geology, 2002, 20(8): 741-756.

[19]

Guo J. H., Sun M., Chen F. K., . Sm-Nd and SHRIMP U-Pb Zircon Geochronology of High-Pressure Granulites in the Sanggan Area, North China Craton: Timing of Paleoproterozoic Continental Collision. Journal of Asian Earth Sciences, 2005, 24(5): 629-642.

[20]

Guo S. S., Li S. G. SHRIMP Zircon U-Pb Ages for the Paleoproterozoic Metamorphic-Magmatic Events in the Southeast Margin of the North China Craton. Science in China Series D: Earth Sciences, 2009, 52(8): 1039-1045.

[21]

Hammarstrom J. M., Zen E. A. Aluminum in Hornblende: An Empirical Igneous Geobarometer. America Mineralogist, 1986, 71(11/12): 1297-1313.

[22]

Harley S. L. The Origins of Granulites: A Metamorphic Perspective. Geological Magazine, 1989, 126(3): 215-247.

[23]

Harley S. L. On the Occurrence and Characterization of Ultrahigh-Temperature Crustal Metamorphism. Geological Society, London, Special Publications, 1998, 138(1): 81-107.

[24]

Harley S. L. Refining the P-T Records of UHT Crustal Metamorphism. Journal of Metamorphic Geology, 2008, 26(2): 125-154.

[25]

Hermann J., Rubatto D. Relating Zircon and Monazite Domains to Garnet Growth Zones: Age and Duration of Granulite Facies Metamorphism in the Val Malenco Lower Crust. Journal of Metamorphic Geology, 2003, 21(9): 833-852.

[26]

Holland T. J. B., Blundy J. Non-Ideal Interactions in Calcic Amphiboles and their Bearing on Amphibole-Plagioclase Thermometry. Contributions to Mineralogy and Petrology, 1994, 116(4): 433-447.

[27]

Holland T. J. B., Powell R. An Internally Consistent Thermodynamic Data Set for Phases of Petrological Interest. Journal of Metamorphic Geology, 1998, 16(3): 309-343.

[28]

Holland T. J. B., Powell R. Calculation of Phase Relations Involving Haplogranitic Melts Using an Internally Consistent Thermodynamic Dataset. Journal of Petrology, 2001, 42(4): 673-683.

[29]

Hollister L. S., Grissom G. C., Peters E. K., . Confirmation of the Empirical Correlation of Al in Hornblende with Pressure of Solidification of Calc-Alkaline Plutons. American Mineralogist, 1987, 72(3/4): 231-239.

[30]

Hou G. T., Liu Y. L., Li J. H. Evidence for ~1.8Ga Extension of the Eastern Block of the North China Craton from SHRIMP U-Pb Dating of Mafic Dyke Swarms in Shandong Province. Journal of Asian Earth Sciences, 2006, 27(4): 392-401.

[31]

Hou G. T., Li J. H., Yang M. H., . Geochemical Constraints on the Tectonic Environment of the Late Paleoproterozoic Mafic Dyke Swarms in the North China Craton. Gondwana Research, 2008, 13(1): 103-116.

[32]

Hou Z., Wang C. Determination of 35 Trace Elements in Geological Samples by Inductively Coupled Plasma Mass Spectrometry. Journal of University of Science and Technology of China, 2007, 37: 940-944.

[33]

Ji W. Q., Xu W. L., Wang Q. H., . Structural, Mineralogical and Genetic Significance of Hornblende from Eclogites in Xuzhou-Suzhou Area. Journal of Mineralogy and Petrology, 2005, 25(4): 11-16.

[34]

Jiao S. J., Guo J. H., Mao Q., . Application of Zr-in-Rutile Thermometry: A Case Study from Ultrahigh-Temperature Granulites of the Khondalite Belt, North China Craton. Contributions to Mineralogy and Petrology, 2011, 162: 379-393.

[35]

Johnson M. C., Rutherford M. J. Experimental Calibration of the Aluminum-in-Hornblende Geobarometer with Application to Long Valley Caldera (California) Volcanic Rocks. Geology, 1989, 17(9): 837-841.

[36]

Kelsey D. E. On Ultrahigh-Temperature Crustal Metamorphism. Gondwana Research, 2008, 13(1): 1-29.

[37]

Kelsey D. E., Hand M. On Ultrahigh Temperature Crustal Metamorphism: Phase Equilibria, Trace Element Thermometry, Bulk Composition, Heat Sources, Timescales and Tectonic Settings. Geoscience Frontiers, 2015, 6(3): 311-356.

[38]

Kempton P. D., Downes H., Embey-Isztin A. Mafic Granulite Xenoliths in Neogene Alkali Basalts from the Western Pannonian Basin: Insights into the Lower Crust of a Collapsed Orogen. Journal of Petrology, 1997, 38(7): 941-970.

[39]

Klaver M., de Roever E. W. F., Nanne J. A. M., . Charnockites and UHT Metamorphism in the Bakhuis Granulite Belt, Western Suriname: Evidence for Two Separate UHT Events. Precambrian Research, 2015, 262: 1-19.

[40]

Kotková J., Harley S. L. Anatexis during High-Pressure Crustal Metamorphism: Evidence from Garnet-Whole-Rock REE Relationships and Zircon-Rutile Ti-Zr Thermometry in Leucogranulites from the Bohemian Massif. Journal of Petrology, 2010, 51(10): 1967-2001.

[41]

Li S. Z., Zhao G. C., Santosh M., . Paleoproterozoic Structural Evolution of the Southern Segment of the Jiao-Liao-Ji Belt, North China Craton, 2012, 200–203: 59-73.

[42]

Liu D. Y., Nutman A. P., Compston W., . Remnants of ≥3.800 Ma Crust in the Chinese Part of the Sino-Korean Craton. Geology, 1992, 20 4 339

[43]

Liu P. H., Liu F. L., Liu C. H., . Petrogenesis, P-T-t Path, and Tectonic Significance of High-Pressure Mafic Granulites from the Jiaobei Terrane, North China Craton. Precambrian Research, 2013, 233: 237-258.

[44]

Liu P. H., Liu F. L., Wang F. P-T-t Paths of the Multiple Metamorphic Events of the Jiaobei Terrane in the Southeastern Segment of the Jiao-Liao-Ji Belt (JLJB), in the North China Craton: Implication for Formation and Evolution of the JLJB. Acta Petrologica Sinica, 2015, 31(10): 2889-2941.

[45]

Liu S. W., Zhang J., Li Q. G., . Geochemistry and U-Pb Zircon Ages of Metamorphic Volcanic Rocks of the Paleoproterozoic Lüliang Complex and Constraints on the Evolution of the Trans-North China Orogen, North China Craton. Precambrian Research, 2012, 222/223: 173-190.

[46]

Liu S. W., Zhao G. C., Wilde S. A., . Th-U-Pb Monazite Geochronology of the Lüliang and Wutai Complexes: Constraints on the Tectonothermal Evolution of the Trans-North China Orogen. Precambrian Research, 2006, 148(3/4): 205-224.

[47]

Liu Y. C., Deng L. P., Gu X. F., . Application of Ti-in-Zircon and Zr-in-Rutile Thermometers to Constrain High-Temperature Metamorphism in Eclogites from the Dabie Orogen, Central China. Gondwana Research, 2015, 27(1): 410-423.

[48]

Liu Y. C., Wang C. C., Zhang P. G., . Growth and Metamorphic Evolution of the Precambrian Lower Crust at the Southeastern Margin of the North China Block. Acta Petrologica Sinica, 2015, 31: 2847-2862.

[49]

Liu Y. C., Gu X. F., Rolfo F., . Ultrahigh-Pressure Metamorphism and Multistage Exhumation of Eclogite of the Luotian Dome, North Dabie Compl.xZone (Central China): Evidence from Mineral Inclusions and Decompression Textures. Journal of Asian Earth Sciences, 2011, 42(4): 607-617.

[50]

Liu Y. C., Wang A. D. Episodic Growth and Multiple Modification of Precambrian Lower Crust in the Southeastern Margin of North China Craton: Petrologic, Geochronological and Hf-Isotopic Ebidences. Journal of Earth Sciences and Environment, 2012, 34(4): 1-11.

[51]

Liu Y. C., Wang A. D., Li S. G., . Composition and Geochronology of the Deep-Seated Xenoliths from the Southeastern Margin of the North China Craton. Gondwana Research, 2013, 23(3): 1021-1039.

[52]

Liu Y. C., Wang A. D., Rolfo F., . Geochronological and Petrological Constraints on Palaeoproterozoic Granulite Facies Metamorphism in Southeastern Margin of the North China Craton. Journal of Metamorphic Geology, 2009, 27(2): 125-138.

[53]

Liu Y. C., Zhang P. G., Wang C. C., . Petrology, Geochemistry and Zirconology of Impure Calcite Marbles from the Precambrian Metamorphic Basement at the Southeastern Margin of the North China Craton. Lithos, 2017, 290/291: 189-209.

[54]

Liu Y. C., Zhang P. G., Wang C. C., . Paleoproterozoic Multistage Metamorphic Ages Registered in the Precambrian Basement Rocks at the Southeastern Margin of the North China Craton and their Geological Implications. Acta Geologica Sinica—English Edition, 2016, 90(6): 2265-2266.

[55]

Nie J. Z., Liu Y. C., Yang Y. Metamorphic Evolution and P-T Paths of the Precambrian Lower-Crust Mafic Xenoliths from Jiagou Area at the Southeastern Margin of the North China Craton. Journal of Mineral and Petrology, 2018, 38: 65-79.

[56]

O’Brien P. J., Kröner A., Jaeckel P., . Petrological and Isotopic Studies on Palaeozoic High-Pressure Granulites, Gory Sowie Mts, Polish Sudetes. Journal of Petrology, 1997, 38(4): 433-456.

[57]

O’Brien P. J., Rötzler J. High-Pressure Granulites: Formation, Recovery of Peak Conditions and Implications for Tectonics. Journal of Metamorphic Geology, 2003, 21(1): 3-20.

[58]

Palin R. M., White R. W., Green E. C. R., . High-Grade Metamorphism and Partial Melting of Basic and Intermediate Rocks. Journal of Metamorphic Geology, 2016, 34(9): 871-892.

[59]

Pattison D. R. M., Chacko T., Farquhar J., . Temperatures of Granulite-Facies Metamorphism: Constraints from Experimental Phase Equilibria and Thermobarometry Corrected for Retrograde Exchange. Journal of Petrology, 2003, 44(5): 867-900.

[60]

Peng P., Zhai M. G., Zhang H. F., . Geochronological Constraints on the Paleoproterozoic Evolution of the North China Craton: SHRIMP Zircon Ages of Different Types of Mafic Dikes. International Geology Review, 2005, 47(5): 492-508.

[61]

Proyer A., Habler G., Abart R., . TiO2 Exsolution from Garnet by Open-System Precipitation: Evidence from Crystallographic and Shape Preferred Orientation of Rutile Inclusions. Contributions to Mineralogy and Petrology, 2013, 166(1): 211-234.

[62]

Ravana E. K. The Garnet-Clinopyroxene Fe2+-Mg Geothermometer: An Updated Calibration. Journal of Metamorphic Geology, 2000, 18(2): 211-219.

[63]

Roever E. W. F., de Lafon J. M., Delor C., . The Bakhuis Ultrahigh-Temperature Granulite Belt (Suriname): I. Petrological and Geochronological Evidence for a Counterclockwise P-T Path at 2.07–2.05 Ga. Géologie De La France, 2003, 175-205.

[64]

Rudnick R. L. Making Continental Crust. Nature, 1995, 378(6557): 571-578.

[65]

Sandiford M., Powell R. Deep Crustal Metamorphism during Continental Extension: Modern and Ancient Examples. Earth and Planetary Science Letters, 1986, 79(1/2): 151-158.

[66]

Santosh M. Assembling North China Craton within the Columbia Supercontinent: The Role of Double-Sided Subduction. Precambrian Research, 2010, 178(1/2/3/4): 149-167.

[67]

Santosh M., Liu D. Y., Shi Y. R., . Paleoproterozoic Accretionary Orogenesis in the North China Craton: A SHRIMP Zircon Study. Precambrian Research, 2013, 227: 29-54.

[68]

Schmidt M. W. Amphibole Composition in Tonalite as a Function of Pressure: An Experimental Calibration of the Al-in-Hornblende Barometer. Contributions to Mineralogy and Petrology, 1992, 110(2/3): 304-310.

[69]

Song S. G., Zhang L. F., Niu Y. L. Ultra-Deep Origin of Garnet Peridotite from the North Qaidam Ultrahigh-Pressure Belt, Northern Tibetan Plateau, NW China. American Mineralogist, 2004, 89(8/9): 1330-1336.

[70]

Spear F. S., Florence F. P. Thermobarometry in Granulites: Pitfalls and New Approaches. Precambrian Research, 1992, 209-241.

[71]

Tam P. Y., Zhao G. C., Zhou X. W., . Metamorphic P-T Path and Implications of High-Pressure Pelitic Granulites from the Jiaobei Massif in the Jiao-Liao-Ji Belt, North China Craton. Gondwana Research, 2012, 22(1): 104-117.

[72]

Tang L., Santosh M., Dong Y. P., . Early Paleozoic Tectonic Evolution of the North Qinling Orogenic Belt: Evidence from Geochemistry, Phase Equilibrium Modeling and Geochronology of Metamorphosed Mafic Rocks from the Songshugou Ophiolite. Gondwana Research, 2016, 30: 48-64.

[73]

Trap P., Faure M., Lin W., . The Zanhuang Massif, the Second and Eastern Suture Zone of the Paleoproterozoic Trans-North China Orogen. Precambrian Research, 2009, 172(1/2): 80-98.

[74]

Trap P., Faure M., Lin W., . Paleoproterozoic Tectonic Evolution of the Trans-North China Orogen: Toward a Comprehensive Model. Precambrian Research, 2012, 191-211.

[75]

Vernon R. H. A Practical Guide to Rock Microstructure, 2004, 169-264

[76]

Wang A. D., Liu Y. C., Santosh M., . Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Pb Isotopes from the Metamorphic Basement in the Wuhe Complex: Implications for Neoarchean Active Continental Margin along the Southeastern North China Craton and Constraints on the Petrogenesis of Mesozoic Granitoids. Geoscience Frontiers, 2013, 4(1): 57-71.

[77]

Wang A. D., Liu Y. C., Gu X. F., . Late-Neoarchean Magmatism and Metamorphism at the Southeastern Margin of the North China Craton and Their Tectonic Implications. Precambrian Research, 2012, 220/221: 65-79.

[78]

Wang C. C., Liu Y. C., Yang Y., . Metamorphic Evolution of Mafic Granulites from the Wuhe Complex at the Southeastern Margin of the North China Craton. Earth Science, 2018, 43(1): 296-316.

[79]

Wang C. C., Liu Y. C., Zhang P. G., . Zircon U-Pb Geochronology and Geochemistry of Two Types of Paleoproterozoic Granitoids from the Southeastern Margin of the North China Craton: Constraints on Petrogenesis and Tectonic Significance. Precambrian Research, 2017, 303: 268-290.

[80]

Wang Q. H., Xu W. L., Yang D. B., . Geochemical Characteristics and Significance of Microelement in Eclogite-Like Inclusions Hosted by Mesozoic Intrusive Complexes in the Southeastern Margin of the North China Block. Acta Petrologica Sinica, 2011, 27(4): 1131-1150.

[81]

Weber M. B. I., Tarney J., Kempton P. D., . Crustal Make-up of the Northern Andes: Evidence Based on Deep Crustal Xenolith Suites, Mercaderes, SW Colombia. Tectonophysics, 2002, 345(1/2/3/4): 49-82.

[82]

Wei C., Powell R. Calculated Phase Relations in High-Pressure Metapelites in the System NKFMASH (Na2O-K2O-FeO-MgO-Al2O3-SiO2-H2O). Journal of Petrology, 2004, 45(1): 183-202.

[83]

White R. W., Powell R., Holland T. J. B. Calculation of Partial Melting Equilibria in the System Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O (NCKFMASH). Journal of Metamorphic Geology, 2001, 19(2): 139-153.

[84]

White R. W., Powell R., Holland T. J. B., . New Mineral Activity-Composition Relations for Thermodynamic Calculations in Metapelitic Systems. Journal of Metamorphic Geology, 2014, 32(3): 261-286.

[85]

Whitney D. L., Evans B. W. Abbreviations for Names of Rock-Forming Minerals. American Mineralogist, 2010, 95(1): 185-187.

[86]

Wilde S. A., Zhao G. C., Sun M. Development of the North China Craton during the Late Archean and Its Final Amalgamation at 1.8Ga: Some Speculations on Its Position within a Global Paleoproterozoic Supercontinent. Gondwana Research, 2002, 5(1): 85-94.

[87]

Wu F. Y., Zhang Y. B., Yang J. H., . Zircon U-Pb and Hf Isotopic Constraints on the Early Archean Crustal Evolution in Anshan of the North China Craton. Precambrian Research, 2008, 167(3/4): 339-362.

[88]

Xu W. L., Gao S., Wang Q. H., . Mesozoic Crustal Thickening of the Eastern North China Craton: Evidence from Eclogite Xenoliths and Petrologic Implications. Geology, 2006, 34(9): 721-724.

[89]

Xu W. L., Gao S., Yang D. B., . Geochemistry of Eclogite Xenoliths in Mesozoic Adakitic Rocks from Xuzhou-Suzhou Area in Central China and Their Tectonic Implications. Lithos, 2009, 107(3/4): 269-280.

[90]

Xu W. L., Wang D. Y., Liu X. C., . Discovery of Eclogite Inclusions and Its Geological Significance in Early Jurassic Intrusive Complex in Xuzhou-Northern Anhui, Eastern China. Chinese Science Bulletin, 2002, 47(14): 1212-1216.

[91]

Yardley B. W. D. An introduction to Metamorphic Petrology. Longman Group, Harlow, 1989.

[92]

Ye K., Cong B. L., Ye D. N. The Possible Subduction of Continental Material to Depths Greater than 200 km. Nature, 2000, 407(6805): 734-736.

[93]

Zhai M. G., Bian A. G., Zhao T. P. The Amalgamation of the Supercontinent of North China Craton at the End of Neo-Archaean and its Breakup during Late Palaeoproterozoic and Meso-Proterozoic, 2000, Science in China Series D: Earth Sciences, 219-232.

[94]

Zhai M. G., Liu W. J. Palaeoproterozoic Tectonic History of the North China Craton: A Review. Precambrian Research, 2003, 122(1/2/3/4): 183-199.

[95]

Zhai M. G., Santosh M. The Early Precambrian Odyssey of the North China Craton: A Synoptic Overview. Gondwana Research, 2011, 20(1): 6-25.

[96]

Zhang H. F. Destruction of Ancient Lower Crust through Magma Underplating beneath Jiaodong Peninsula, North China Craton: U-Pb and Hf Isotopic Evidence from Granulite Xenoliths. Gondwana Research, 2012, 21(1): 281-292.

[97]

Zhang J., Zhao G. C., Li S. Z., . Polyphase Deformation of the Fuping Complex, Trans-North China Orogen: Structures, SHRIMP U-Pb Zircon Ages and Tectonic Implications. Journal of Structural Geology, 2009, 31(2): 177-193.

[98]

Zhang J., Zhao G. C., Sun M., . High-Pressure Mafic Granulites in the Trans-North China Orogen: Tectonic Significance and Age. Gondwana Research, 2006, 9(3): 349-362.

[99]

Zhang R. Y., Zhai S. M., Fei Y. W., . Titanium Solubility in Coexisting Garnet and Clinopyroxene at very High Pressure: The Significance of Exsolved Rutile in Garnet. Earth and Planetary Science Letters, 2003, 216(4): 591-601.

[100]

Zhao G. C., Cawood P. A., Wilde S. A., . Metamorphism of Basement Rocks in the Central Zone of the North China Craton: Implications for Paleoproterozoic Tectonic Evolution. Precambrian Research, 2000, 103(1/2): 55-88.

[101]

Zhao G. C., Sun M., Wilde S. A., . Late Arcean to Palaeoproterozoic Evolution of the North China Craton: Key Issues Revisited. Precambrian Research, 2005, 136(2): 177-202.

[102]

Zhao G. C., Wilde S. A., Guo J. H., . Single Zircon Grains Record Two Continental Collisional Events in the North China Craton. Precambrian Research, 2010, 177(3/4): 266-276.

[103]

Zhao G. C., Zhai M. G. Lithotectonic Elements of Precambrian Basement in the North China Craton: Review and Tectonic Implications. Gondwana Research, 2013, 23(4): 1207-1240.

[104]

Zheng J. P., Griffin W. L., OʼReilly S. Y., . 3.6Ga Lower Crust in Central China: New Evidence on the Assembly of the North China Craton. Geology, 2004, 32(3): 229-232.

[105]

Zheng J. P., Sun M., Lu F. X., . Mesozoic Lower Crustal Xenoliths and Their Significance in Lithospheric Evolution beneath the Sino-Korean Craton. Tectonophysics, 2003, 361(1/2): 37-60.

[106]

Zong K. Q., Liu Y. S., Liu X. M., . Geochemical Study on Microelements in Suit of Single Minerals in Eclogites from CCSD Main Hole in Deep of 100–1 100 m. Acta Petrologica Sinica, 2006, 27(7): 1891-1904.

AI Summary AI Mindmap
PDF

120

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/