Phase Equilibria Modeling and P-T Evolution of the Mafic Lower-Crustal Xenoliths from the Southeastern Margin of the North China Craton

Jiazhen Nie, Yican Liu, Yang Yang

Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (5) : 1236-1253.

Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (5) : 1236-1253. DOI: 10.1007/s12583-018-0849-6
Precambrian Metamorphism-Magmatism and Tectonics of the North China Craton and Erguna Massif

Phase Equilibria Modeling and P-T Evolution of the Mafic Lower-Crustal Xenoliths from the Southeastern Margin of the North China Craton

Author information +
History +

Abstract

The Precambrian lower crust rocks at the southeastern margin of the North China Craton (NCC) are mainly exposed as granulite xenoliths hosted by Mesozoic dioritic porphyry and metamorphic terrains in the Xuzhou-Suzhou area. Garnet amphibolites and garnet granulites are two kinds of typical lower-crustal xenoliths and were selected to reconstruct different stages of the metamorphic process. In this study, in view of multistage metamorphic evolution and reworking, phase equilibria modeling was used for the first time to better constrain peak P-T conditions of the xenoliths. Some porphyroblastic garnets have a weak zonal structure in composition with homogeneous cores and were surrounded by thin rims with an increase in X Mg and a decrease in X Ca (or X Mg). Clinopyroxene contain varying amounts of Na2O and Al2O3 as well as amphibole of TiO2, while plagioclases are different in calcium contents. Peak metamorphic P-T conditions are calculated by the smallest garnet x(g) (Fe2+/(Fe2++Mg)) contours and the smallest plagioclase ca(pl) (Ca/(Ca+Na)) contours in NCFMASHTO (Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3) system, which are consistent with those estimated by conventional geothermobarometry. The new results show that the peak and decompressional P-T conditions for the rocks are 850–900 °C/ 1.4–1.6 GPa and 820–850 °C/0.9–1.3 GPa, respectively, suggestive of high and middle-low pressure granulite-facies metamorphism. Combined with previous zircon U-Pb dating and conventional geothermobarometry data, it is indicated that the xenoliths experienced a clockwise P-T-t evolution with nearisothermal decompressional process, suggestive of the Paleoproterozoic subduction-collision setting. In this regard, the studied region together with Jiao-Liao-Ji belt is further documented to make up a Paleoproterozoic collisional orogen in the eastern block of the NCC.

Keywords

southeastern margin of the North China Craton / mafic lower-crustal xenoliths / granulite facies / phase equilibria modeling / P-T path

Cite this article

Download citation ▾
Jiazhen Nie, Yican Liu, Yang Yang. Phase Equilibria Modeling and P-T Evolution of the Mafic Lower-Crustal Xenoliths from the Southeastern Margin of the North China Craton. Journal of Earth Science, 2018, 29(5): 1236‒1253 https://doi.org/10.1007/s12583-018-0849-6

References

Ague J. J., Eckert J. O. Jr.. Precipitation of Rutile and Ilmenite Needles in Garnet: Implications for Extreme Metamorphic Conditions in the Acadian Orogen, U.S.A.. American Mineralogist, 2012, 97(5/6): 840-855.
CrossRef Google scholar
Ague J. J., Eckert J. O. Jr., Chu X., . Discovery of Ultrahigh-Temperature Metamorphism in the Acadian Orogen, Connecticut, USA. Geology, 2013, 41(2): 271-274.
CrossRef Google scholar
Bhadra S., Bhattacharya A. The Barometer Tremolite+Tschermakite+ 2Albite=2Pargasite+8Quartz: Constraints from Experimental Data at Unit Silica Activity, with Application to Garnet-Free Natural Assemblages. American Mineralogist, 2007, 92(4): 491-502.
CrossRef Google scholar
Bohlen S. R. On the Formation of Granulites. Journal of Metamorphic Geology, 1991, 9(3): 223-229.
CrossRef Google scholar
Brown M. P-T-t Evolution of Orogenic Belts and the Causes of Regional Metamorphism. Journal of the Geological Society, 1993, 150(2): 227-241.
CrossRef Google scholar
Brown M. Metamorphic Patterns in Orogenic Systems and the Geological Record. The Geological Society, London, Special Publications, 2009, 318(1): 37-74.
CrossRef Google scholar
Brown M. The Contribution of Metamorphic Petrology to Understanding Lithosphere Evolution and Geodynamics. Geoscience Frontiers, 2014, 5(4): 553-569.
CrossRef Google scholar
Carswell D. A., O’Brien P. J. Thermobarometry and Geotectonic Significance of High-Pressure Granulites: Examples from the Moldanubian Zone of the Bohemian Massif in Lower Austria. Journal of Petrology, 1993, 34(3): 427-459.
CrossRef Google scholar
Chen N.-S., Sun M., Yang Y., . Metamorphic Garnet’s Compositional Zoning and Metamorphism Process. Earth Science Frontiers, 2003, 10(3): 315-320.
Connolly J. A. D. Multivariable Phase Diagrams: An Algorithm Based on Generalized Thermodynamics. American Journal of Science, 1990, 290(6): 666-718.
CrossRef Google scholar
Cooke R. A. High-Pressure/Temperature Metamorphism in the St. Leonhard Granulite Massif, Austria: Evidence from Intermediate Pyroxene-Bearing Granulites. International Journal of Earth Sciences, 2000, 89(3): 631-651.
Dale J., Holland T., Powell R. Hornblende-Garnet-Plagioclase Thermobarometry: A Natural Assemblage Calibration of the Thermodynamics of Hornblende. Contributions to Mineralogy and Petrology, 2000, 140(3): 353-362.
CrossRef Google scholar
Eckert J. O. Jr., Newton R. C., Kleppa O. J. The ΔH of Reaction and Recalibration of Garnet-Pyroxene-Plagioclase-Quartz Geobameters in the CMAS System by Solution Calorimertry. American Mineralogist, 1991, 76(1/2): 148-160.
England P. C., Thompson A. B. Pressure-Temperature-Time Paths of Regional Metamorphism I. Heat Transfer during the Evolution of Regions of Thickened Continental Crust. Journal of Petrology, 1984, 25(4): 894-928.
Frost B. R., Chacko T. The Granulite Uncertainty Principle: Limitations on Thermobarometry in Granulites. The Journal of Geology, 1989, 97(4): 435-450.
CrossRef Google scholar
Fuhrman M. L., Frost B. R., Lindsley D. H. Crystallization Conditions of the Sybille Monzosyenite, Laramie Anorthosite Complex, Wyoming. Journal of Petrology, 1988, 29(3): 699-729.
CrossRef Google scholar
Ganguly J., Cheng W. J., Tirone M. Thermodynamics of Aluminosilicate Garnet Solid Solution: New Experimental Data, an Optimized Model, and Thermometric Applications. Contributions to Mineralogy and Petrology, 1996, 126(1/2): 137-151.
CrossRef Google scholar
Guo J. H., OʼBrien P. J., Zhai M. High-Pressure Granulites in the Sanggan Area, North China Craton: Metamorphic Evolution, P-T Paths and Geotectonic Significance. Journal of Metamorphic Geology, 2002, 20(8): 741-756.
CrossRef Google scholar
Guo J. H., Sun M., Chen F. K., . Sm-Nd and SHRIMP U-Pb Zircon Geochronology of High-Pressure Granulites in the Sanggan Area, North China Craton: Timing of Paleoproterozoic Continental Collision. Journal of Asian Earth Sciences, 2005, 24(5): 629-642.
CrossRef Google scholar
Guo S. S., Li S. G. SHRIMP Zircon U-Pb Ages for the Paleoproterozoic Metamorphic-Magmatic Events in the Southeast Margin of the North China Craton. Science in China Series D: Earth Sciences, 2009, 52(8): 1039-1045.
CrossRef Google scholar
Hammarstrom J. M., Zen E. A. Aluminum in Hornblende: An Empirical Igneous Geobarometer. America Mineralogist, 1986, 71(11/12): 1297-1313.
Harley S. L. The Origins of Granulites: A Metamorphic Perspective. Geological Magazine, 1989, 126(3): 215-247.
CrossRef Google scholar
Harley S. L. On the Occurrence and Characterization of Ultrahigh-Temperature Crustal Metamorphism. Geological Society, London, Special Publications, 1998, 138(1): 81-107.
CrossRef Google scholar
Harley S. L. Refining the P-T Records of UHT Crustal Metamorphism. Journal of Metamorphic Geology, 2008, 26(2): 125-154.
CrossRef Google scholar
Hermann J., Rubatto D. Relating Zircon and Monazite Domains to Garnet Growth Zones: Age and Duration of Granulite Facies Metamorphism in the Val Malenco Lower Crust. Journal of Metamorphic Geology, 2003, 21(9): 833-852.
CrossRef Google scholar
Holland T. J. B., Blundy J. Non-Ideal Interactions in Calcic Amphiboles and their Bearing on Amphibole-Plagioclase Thermometry. Contributions to Mineralogy and Petrology, 1994, 116(4): 433-447.
CrossRef Google scholar
Holland T. J. B., Powell R. An Internally Consistent Thermodynamic Data Set for Phases of Petrological Interest. Journal of Metamorphic Geology, 1998, 16(3): 309-343.
CrossRef Google scholar
Holland T. J. B., Powell R. Calculation of Phase Relations Involving Haplogranitic Melts Using an Internally Consistent Thermodynamic Dataset. Journal of Petrology, 2001, 42(4): 673-683.
CrossRef Google scholar
Hollister L. S., Grissom G. C., Peters E. K., . Confirmation of the Empirical Correlation of Al in Hornblende with Pressure of Solidification of Calc-Alkaline Plutons. American Mineralogist, 1987, 72(3/4): 231-239.
Hou G. T., Liu Y. L., Li J. H. Evidence for ~1.8Ga Extension of the Eastern Block of the North China Craton from SHRIMP U-Pb Dating of Mafic Dyke Swarms in Shandong Province. Journal of Asian Earth Sciences, 2006, 27(4): 392-401.
CrossRef Google scholar
Hou G. T., Li J. H., Yang M. H., . Geochemical Constraints on the Tectonic Environment of the Late Paleoproterozoic Mafic Dyke Swarms in the North China Craton. Gondwana Research, 2008, 13(1): 103-116.
CrossRef Google scholar
Hou Z., Wang C. Determination of 35 Trace Elements in Geological Samples by Inductively Coupled Plasma Mass Spectrometry. Journal of University of Science and Technology of China, 2007, 37: 940-944.
Ji W. Q., Xu W. L., Wang Q. H., . Structural, Mineralogical and Genetic Significance of Hornblende from Eclogites in Xuzhou-Suzhou Area. Journal of Mineralogy and Petrology, 2005, 25(4): 11-16.
Jiao S. J., Guo J. H., Mao Q., . Application of Zr-in-Rutile Thermometry: A Case Study from Ultrahigh-Temperature Granulites of the Khondalite Belt, North China Craton. Contributions to Mineralogy and Petrology, 2011, 162: 379-393.
CrossRef Google scholar
Johnson M. C., Rutherford M. J. Experimental Calibration of the Aluminum-in-Hornblende Geobarometer with Application to Long Valley Caldera (California) Volcanic Rocks. Geology, 1989, 17(9): 837-841.
CrossRef Google scholar
Kelsey D. E. On Ultrahigh-Temperature Crustal Metamorphism. Gondwana Research, 2008, 13(1): 1-29.
CrossRef Google scholar
Kelsey D. E., Hand M. On Ultrahigh Temperature Crustal Metamorphism: Phase Equilibria, Trace Element Thermometry, Bulk Composition, Heat Sources, Timescales and Tectonic Settings. Geoscience Frontiers, 2015, 6(3): 311-356.
CrossRef Google scholar
Kempton P. D., Downes H., Embey-Isztin A. Mafic Granulite Xenoliths in Neogene Alkali Basalts from the Western Pannonian Basin: Insights into the Lower Crust of a Collapsed Orogen. Journal of Petrology, 1997, 38(7): 941-970.
CrossRef Google scholar
Klaver M., de Roever E. W. F., Nanne J. A. M., . Charnockites and UHT Metamorphism in the Bakhuis Granulite Belt, Western Suriname: Evidence for Two Separate UHT Events. Precambrian Research, 2015, 262: 1-19.
CrossRef Google scholar
Kotková J., Harley S. L. Anatexis during High-Pressure Crustal Metamorphism: Evidence from Garnet-Whole-Rock REE Relationships and Zircon-Rutile Ti-Zr Thermometry in Leucogranulites from the Bohemian Massif. Journal of Petrology, 2010, 51(10): 1967-2001.
CrossRef Google scholar
Li S. Z., Zhao G. C., Santosh M., . Paleoproterozoic Structural Evolution of the Southern Segment of the Jiao-Liao-Ji Belt, North China Craton, 2012, 200–203: 59-73.
Liu D. Y., Nutman A. P., Compston W., . Remnants of ≥3.800 Ma Crust in the Chinese Part of the Sino-Korean Craton. Geology, 1992, 20 4 339
CrossRef Google scholar
Liu P. H., Liu F. L., Liu C. H., . Petrogenesis, P-T-t Path, and Tectonic Significance of High-Pressure Mafic Granulites from the Jiaobei Terrane, North China Craton. Precambrian Research, 2013, 233: 237-258.
CrossRef Google scholar
Liu P. H., Liu F. L., Wang F. P-T-t Paths of the Multiple Metamorphic Events of the Jiaobei Terrane in the Southeastern Segment of the Jiao-Liao-Ji Belt (JLJB), in the North China Craton: Implication for Formation and Evolution of the JLJB. Acta Petrologica Sinica, 2015, 31(10): 2889-2941.
Liu S. W., Zhang J., Li Q. G., . Geochemistry and U-Pb Zircon Ages of Metamorphic Volcanic Rocks of the Paleoproterozoic Lüliang Complex and Constraints on the Evolution of the Trans-North China Orogen, North China Craton. Precambrian Research, 2012, 222/223: 173-190.
CrossRef Google scholar
Liu S. W., Zhao G. C., Wilde S. A., . Th-U-Pb Monazite Geochronology of the Lüliang and Wutai Complexes: Constraints on the Tectonothermal Evolution of the Trans-North China Orogen. Precambrian Research, 2006, 148(3/4): 205-224.
CrossRef Google scholar
Liu Y. C., Deng L. P., Gu X. F., . Application of Ti-in-Zircon and Zr-in-Rutile Thermometers to Constrain High-Temperature Metamorphism in Eclogites from the Dabie Orogen, Central China. Gondwana Research, 2015, 27(1): 410-423.
CrossRef Google scholar
Liu Y. C., Wang C. C., Zhang P. G., . Growth and Metamorphic Evolution of the Precambrian Lower Crust at the Southeastern Margin of the North China Block. Acta Petrologica Sinica, 2015, 31: 2847-2862.
Liu Y. C., Gu X. F., Rolfo F., . Ultrahigh-Pressure Metamorphism and Multistage Exhumation of Eclogite of the Luotian Dome, North Dabie Compl.xZone (Central China): Evidence from Mineral Inclusions and Decompression Textures. Journal of Asian Earth Sciences, 2011, 42(4): 607-617.
CrossRef Google scholar
Liu Y. C., Wang A. D. Episodic Growth and Multiple Modification of Precambrian Lower Crust in the Southeastern Margin of North China Craton: Petrologic, Geochronological and Hf-Isotopic Ebidences. Journal of Earth Sciences and Environment, 2012, 34(4): 1-11.
CrossRef Google scholar
Liu Y. C., Wang A. D., Li S. G., . Composition and Geochronology of the Deep-Seated Xenoliths from the Southeastern Margin of the North China Craton. Gondwana Research, 2013, 23(3): 1021-1039.
CrossRef Google scholar
Liu Y. C., Wang A. D., Rolfo F., . Geochronological and Petrological Constraints on Palaeoproterozoic Granulite Facies Metamorphism in Southeastern Margin of the North China Craton. Journal of Metamorphic Geology, 2009, 27(2): 125-138.
CrossRef Google scholar
Liu Y. C., Zhang P. G., Wang C. C., . Petrology, Geochemistry and Zirconology of Impure Calcite Marbles from the Precambrian Metamorphic Basement at the Southeastern Margin of the North China Craton. Lithos, 2017, 290/291: 189-209.
CrossRef Google scholar
Liu Y. C., Zhang P. G., Wang C. C., . Paleoproterozoic Multistage Metamorphic Ages Registered in the Precambrian Basement Rocks at the Southeastern Margin of the North China Craton and their Geological Implications. Acta Geologica Sinica—English Edition, 2016, 90(6): 2265-2266.
CrossRef Google scholar
Nie J. Z., Liu Y. C., Yang Y. Metamorphic Evolution and P-T Paths of the Precambrian Lower-Crust Mafic Xenoliths from Jiagou Area at the Southeastern Margin of the North China Craton. Journal of Mineral and Petrology, 2018, 38: 65-79.
O’Brien P. J., Kröner A., Jaeckel P., . Petrological and Isotopic Studies on Palaeozoic High-Pressure Granulites, Gory Sowie Mts, Polish Sudetes. Journal of Petrology, 1997, 38(4): 433-456.
CrossRef Google scholar
O’Brien P. J., Rötzler J. High-Pressure Granulites: Formation, Recovery of Peak Conditions and Implications for Tectonics. Journal of Metamorphic Geology, 2003, 21(1): 3-20.
CrossRef Google scholar
Palin R. M., White R. W., Green E. C. R., . High-Grade Metamorphism and Partial Melting of Basic and Intermediate Rocks. Journal of Metamorphic Geology, 2016, 34(9): 871-892.
CrossRef Google scholar
Pattison D. R. M., Chacko T., Farquhar J., . Temperatures of Granulite-Facies Metamorphism: Constraints from Experimental Phase Equilibria and Thermobarometry Corrected for Retrograde Exchange. Journal of Petrology, 2003, 44(5): 867-900.
CrossRef Google scholar
Peng P., Zhai M. G., Zhang H. F., . Geochronological Constraints on the Paleoproterozoic Evolution of the North China Craton: SHRIMP Zircon Ages of Different Types of Mafic Dikes. International Geology Review, 2005, 47(5): 492-508.
CrossRef Google scholar
Proyer A., Habler G., Abart R., . TiO2 Exsolution from Garnet by Open-System Precipitation: Evidence from Crystallographic and Shape Preferred Orientation of Rutile Inclusions. Contributions to Mineralogy and Petrology, 2013, 166(1): 211-234.
CrossRef Google scholar
Ravana E. K. The Garnet-Clinopyroxene Fe2+-Mg Geothermometer: An Updated Calibration. Journal of Metamorphic Geology, 2000, 18(2): 211-219.
CrossRef Google scholar
Roever E. W. F., de Lafon J. M., Delor C., . The Bakhuis Ultrahigh-Temperature Granulite Belt (Suriname): I. Petrological and Geochronological Evidence for a Counterclockwise P-T Path at 2.07–2.05 Ga. Géologie De La France, 2003, 175-205.
Rudnick R. L. Making Continental Crust. Nature, 1995, 378(6557): 571-578.
CrossRef Google scholar
Sandiford M., Powell R. Deep Crustal Metamorphism during Continental Extension: Modern and Ancient Examples. Earth and Planetary Science Letters, 1986, 79(1/2): 151-158.
CrossRef Google scholar
Santosh M. Assembling North China Craton within the Columbia Supercontinent: The Role of Double-Sided Subduction. Precambrian Research, 2010, 178(1/2/3/4): 149-167.
CrossRef Google scholar
Santosh M., Liu D. Y., Shi Y. R., . Paleoproterozoic Accretionary Orogenesis in the North China Craton: A SHRIMP Zircon Study. Precambrian Research, 2013, 227: 29-54.
CrossRef Google scholar
Schmidt M. W. Amphibole Composition in Tonalite as a Function of Pressure: An Experimental Calibration of the Al-in-Hornblende Barometer. Contributions to Mineralogy and Petrology, 1992, 110(2/3): 304-310.
CrossRef Google scholar
Song S. G., Zhang L. F., Niu Y. L. Ultra-Deep Origin of Garnet Peridotite from the North Qaidam Ultrahigh-Pressure Belt, Northern Tibetan Plateau, NW China. American Mineralogist, 2004, 89(8/9): 1330-1336.
CrossRef Google scholar
Spear F. S., Florence F. P. Thermobarometry in Granulites: Pitfalls and New Approaches. Precambrian Research, 1992, 209-241.
Tam P. Y., Zhao G. C., Zhou X. W., . Metamorphic P-T Path and Implications of High-Pressure Pelitic Granulites from the Jiaobei Massif in the Jiao-Liao-Ji Belt, North China Craton. Gondwana Research, 2012, 22(1): 104-117.
CrossRef Google scholar
Tang L., Santosh M., Dong Y. P., . Early Paleozoic Tectonic Evolution of the North Qinling Orogenic Belt: Evidence from Geochemistry, Phase Equilibrium Modeling and Geochronology of Metamorphosed Mafic Rocks from the Songshugou Ophiolite. Gondwana Research, 2016, 30: 48-64.
CrossRef Google scholar
Trap P., Faure M., Lin W., . The Zanhuang Massif, the Second and Eastern Suture Zone of the Paleoproterozoic Trans-North China Orogen. Precambrian Research, 2009, 172(1/2): 80-98.
CrossRef Google scholar
Trap P., Faure M., Lin W., . Paleoproterozoic Tectonic Evolution of the Trans-North China Orogen: Toward a Comprehensive Model. Precambrian Research, 2012, 191-211.
Vernon R. H. A Practical Guide to Rock Microstructure, 2004, 169-264
CrossRef Google scholar
Wang A. D., Liu Y. C., Santosh M., . Zircon U-Pb Geochronology, Geochemistry and Sr-Nd-Pb Isotopes from the Metamorphic Basement in the Wuhe Complex: Implications for Neoarchean Active Continental Margin along the Southeastern North China Craton and Constraints on the Petrogenesis of Mesozoic Granitoids. Geoscience Frontiers, 2013, 4(1): 57-71.
CrossRef Google scholar
Wang A. D., Liu Y. C., Gu X. F., . Late-Neoarchean Magmatism and Metamorphism at the Southeastern Margin of the North China Craton and Their Tectonic Implications. Precambrian Research, 2012, 220/221: 65-79.
CrossRef Google scholar
Wang C. C., Liu Y. C., Yang Y., . Metamorphic Evolution of Mafic Granulites from the Wuhe Complex at the Southeastern Margin of the North China Craton. Earth Science, 2018, 43(1): 296-316.
Wang C. C., Liu Y. C., Zhang P. G., . Zircon U-Pb Geochronology and Geochemistry of Two Types of Paleoproterozoic Granitoids from the Southeastern Margin of the North China Craton: Constraints on Petrogenesis and Tectonic Significance. Precambrian Research, 2017, 303: 268-290.
CrossRef Google scholar
Wang Q. H., Xu W. L., Yang D. B., . Geochemical Characteristics and Significance of Microelement in Eclogite-Like Inclusions Hosted by Mesozoic Intrusive Complexes in the Southeastern Margin of the North China Block. Acta Petrologica Sinica, 2011, 27(4): 1131-1150.
Weber M. B. I., Tarney J., Kempton P. D., . Crustal Make-up of the Northern Andes: Evidence Based on Deep Crustal Xenolith Suites, Mercaderes, SW Colombia. Tectonophysics, 2002, 345(1/2/3/4): 49-82.
CrossRef Google scholar
Wei C., Powell R. Calculated Phase Relations in High-Pressure Metapelites in the System NKFMASH (Na2O-K2O-FeO-MgO-Al2O3-SiO2-H2O). Journal of Petrology, 2004, 45(1): 183-202.
CrossRef Google scholar
White R. W., Powell R., Holland T. J. B. Calculation of Partial Melting Equilibria in the System Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O (NCKFMASH). Journal of Metamorphic Geology, 2001, 19(2): 139-153.
CrossRef Google scholar
White R. W., Powell R., Holland T. J. B., . New Mineral Activity-Composition Relations for Thermodynamic Calculations in Metapelitic Systems. Journal of Metamorphic Geology, 2014, 32(3): 261-286.
CrossRef Google scholar
Whitney D. L., Evans B. W. Abbreviations for Names of Rock-Forming Minerals. American Mineralogist, 2010, 95(1): 185-187.
CrossRef Google scholar
Wilde S. A., Zhao G. C., Sun M. Development of the North China Craton during the Late Archean and Its Final Amalgamation at 1.8Ga: Some Speculations on Its Position within a Global Paleoproterozoic Supercontinent. Gondwana Research, 2002, 5(1): 85-94.
CrossRef Google scholar
Wu F. Y., Zhang Y. B., Yang J. H., . Zircon U-Pb and Hf Isotopic Constraints on the Early Archean Crustal Evolution in Anshan of the North China Craton. Precambrian Research, 2008, 167(3/4): 339-362.
CrossRef Google scholar
Xu W. L., Gao S., Wang Q. H., . Mesozoic Crustal Thickening of the Eastern North China Craton: Evidence from Eclogite Xenoliths and Petrologic Implications. Geology, 2006, 34(9): 721-724.
CrossRef Google scholar
Xu W. L., Gao S., Yang D. B., . Geochemistry of Eclogite Xenoliths in Mesozoic Adakitic Rocks from Xuzhou-Suzhou Area in Central China and Their Tectonic Implications. Lithos, 2009, 107(3/4): 269-280.
CrossRef Google scholar
Xu W. L., Wang D. Y., Liu X. C., . Discovery of Eclogite Inclusions and Its Geological Significance in Early Jurassic Intrusive Complex in Xuzhou-Northern Anhui, Eastern China. Chinese Science Bulletin, 2002, 47(14): 1212-1216.
Yardley B. W. D. An introduction to Metamorphic Petrology. Longman Group, Harlow, 1989.
Ye K., Cong B. L., Ye D. N. The Possible Subduction of Continental Material to Depths Greater than 200 km. Nature, 2000, 407(6805): 734-736.
CrossRef Google scholar
Zhai M. G., Bian A. G., Zhao T. P. The Amalgamation of the Supercontinent of North China Craton at the End of Neo-Archaean and its Breakup during Late Palaeoproterozoic and Meso-Proterozoic, 2000, Science in China Series D: Earth Sciences, 219-232.
Zhai M. G., Liu W. J. Palaeoproterozoic Tectonic History of the North China Craton: A Review. Precambrian Research, 2003, 122(1/2/3/4): 183-199.
CrossRef Google scholar
Zhai M. G., Santosh M. The Early Precambrian Odyssey of the North China Craton: A Synoptic Overview. Gondwana Research, 2011, 20(1): 6-25.
CrossRef Google scholar
Zhang H. F. Destruction of Ancient Lower Crust through Magma Underplating beneath Jiaodong Peninsula, North China Craton: U-Pb and Hf Isotopic Evidence from Granulite Xenoliths. Gondwana Research, 2012, 21(1): 281-292.
CrossRef Google scholar
Zhang J., Zhao G. C., Li S. Z., . Polyphase Deformation of the Fuping Complex, Trans-North China Orogen: Structures, SHRIMP U-Pb Zircon Ages and Tectonic Implications. Journal of Structural Geology, 2009, 31(2): 177-193.
CrossRef Google scholar
Zhang J., Zhao G. C., Sun M., . High-Pressure Mafic Granulites in the Trans-North China Orogen: Tectonic Significance and Age. Gondwana Research, 2006, 9(3): 349-362.
CrossRef Google scholar
Zhang R. Y., Zhai S. M., Fei Y. W., . Titanium Solubility in Coexisting Garnet and Clinopyroxene at very High Pressure: The Significance of Exsolved Rutile in Garnet. Earth and Planetary Science Letters, 2003, 216(4): 591-601.
CrossRef Google scholar
Zhao G. C., Cawood P. A., Wilde S. A., . Metamorphism of Basement Rocks in the Central Zone of the North China Craton: Implications for Paleoproterozoic Tectonic Evolution. Precambrian Research, 2000, 103(1/2): 55-88.
CrossRef Google scholar
Zhao G. C., Sun M., Wilde S. A., . Late Arcean to Palaeoproterozoic Evolution of the North China Craton: Key Issues Revisited. Precambrian Research, 2005, 136(2): 177-202.
CrossRef Google scholar
Zhao G. C., Wilde S. A., Guo J. H., . Single Zircon Grains Record Two Continental Collisional Events in the North China Craton. Precambrian Research, 2010, 177(3/4): 266-276.
CrossRef Google scholar
Zhao G. C., Zhai M. G. Lithotectonic Elements of Precambrian Basement in the North China Craton: Review and Tectonic Implications. Gondwana Research, 2013, 23(4): 1207-1240.
CrossRef Google scholar
Zheng J. P., Griffin W. L., OʼReilly S. Y., . 3.6Ga Lower Crust in Central China: New Evidence on the Assembly of the North China Craton. Geology, 2004, 32(3): 229-232.
CrossRef Google scholar
Zheng J. P., Sun M., Lu F. X., . Mesozoic Lower Crustal Xenoliths and Their Significance in Lithospheric Evolution beneath the Sino-Korean Craton. Tectonophysics, 2003, 361(1/2): 37-60.
CrossRef Google scholar
Zong K. Q., Liu Y. S., Liu X. M., . Geochemical Study on Microelements in Suit of Single Minerals in Eclogites from CCSD Main Hole in Deep of 100–1 100 m. Acta Petrologica Sinica, 2006, 27(7): 1891-1904.

Accesses

Citations

Detail

Sections
Recommended

/