A Review of Ultrahigh Temperature Metamorphism

Hengcong Lei , Haijin Xu

Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (5) : 1167 -1180.

PDF
Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (5) : 1167 -1180. DOI: 10.1007/s12583-018-0846-9
Metamorphism, Magmatism and Tectonic Evolution of Central China Orogenic Belts

A Review of Ultrahigh Temperature Metamorphism

Author information +
History +
PDF

Abstract

Ultrahigh-temperature (UHT) metamorphism represents extreme crustal metamorphism with peak metamorphic temperatures exceeding 900 ºC and pressures ranging from 7 to 13 kbar with or without partial melting of crusts, which is usually identified in the granulite-facies rocks. UHT rocks are recognized in all major continents related to both extensional and compressive tectonic environments. UHT metamorphism spans different geological ages from Archean to Phanerozoic, providing information of the nature, petrofabric and thermal evolution of crusts. UHT metamorphism is traditionally identified by the presence of a diagnostic mineral assemblage with an appropriate bulk composition and oxidation state in Mg-Al-rich metapelite rocks. Unconventional geothermobarometers including Ti-in-zircon (TIZ) and Zr-in-rutile (ZIR) thermometers and phase equilibria modeling are increasingly being used to estimate UHT metamorphism. Concentrated on the issues about UHT metamorphism, this review presents the research history about UHT metamorphism, the global distribution of UHT rocks, the current methods for constraints on the UHT metamorphism, and the heat sources and tectonic settings of UHT metamorphism. Some key issues and prospects about the study of UHT metamorphism are discussed, e.g., identification of UHT metamorphism for non-supracrustal rocks, robustness of the unconventional geothermometers, tectonic affinity of UHT metamorphic rocks, and methods for the constraints of age and duration of UHT metamorphism. It is concluded that UHT metamorphism is of great importance to the understanding of thermal evolution of the lithosphere.

Keywords

ultrahigh-temperature (UHT) / granulite-facies / metamorphism / review

Cite this article

Download citation ▾
Hengcong Lei, Haijin Xu. A Review of Ultrahigh Temperature Metamorphism. Journal of Earth Science, 2018, 29(5): 1167-1180 DOI:10.1007/s12583-018-0846-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adjerid Z., Godard G., Ouzegane K., . Multistage Progressive Evolution of Rare Osumilite-Bearing Assemblages Preserved in Ultrahigh-Temperature Granulites from In Ouzzal (Hoggar, Algeria). Journal of Metamorphic Geology, 2013, 31(5): 505-524.

[2]

Arima M., Gower C. F. Osumilite-Bearing Granulites in the Eastern Grenville Province, Eastern Labrador, Canada: Mineral Parageneses and Metamorphic Conditions. Journal of Petrology, 1991, 32(1): 29-61.

[3]

Baba S., Hokada T., Kaiden H., . SHRIMP Zircon U-Pb Dating of Sapphirine-Bearing Granulite and Biotite-Hornblende Gneiss in the Schirmacher Hills, East Antarctica: Implications for Neoproterozoic Ultrahigh-Temperature Metamorphism Predating the Assembly of Gondwana. The Journal of Geology, 2010, 118(6): 621-639.

[4]

Baba S., Owada M., Grew E. S., . Sapphirine Granulite from Schirmacher Hills, Central Dronning Maud Land, 2006, 37-44.

[5]

Baldwin J. A., Brown M. Age and Duration of Ultrahigh-Temperature Metamorphism in the Anápolis-Itauçu Complex, Southern Brasília Belt, Central Brazil—Constraints from U-Pb Geochronology, Mineral Rare Earth Element Chemistry and Trace-Element Thermometry. Journal of Metamorphic Geology, 2008, 26(2): 213-233.

[6]

Baldwin J. A., Brown M., Schmitz M. D. First Application of Titanium-in-Zircon Thermometry to Ultrahigh-Temperature Metamorphism. Geology, 2007, 35(4): 295-298.

[7]

Barbosa J., Nicollet C., Leite C., . Hercynite-Quartz-Bearing Granulites from Brejões Dome Area, Jequié Block, Bahia, Brazil: Influence of Charnockite Intrusion on Granulite Facies Metamorphism. Lithos, 2006, 92(3/4): 537-556.

[8]

Barnicoat A. C., OʼHara M. J. High-Temperature Pyroxenes from an Ironstone at Scourie, Sutherland. Mineralogical Magazine, 1979, 43(327): 371-375.

[9]

Berman R. G. Internally-Consistent Thermodynamic Data for Minerals in the System Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. Journal of Petrology, 1988, 29(2): 445-522.

[10]

Bertrand P., Ouzegane K., Kienast J. R. P-T-X Relationships in the Precambrian Al-Mg-Rich Granulites from in Ouzzal, Hoggar, Algeria. Journal of Metamorphic Geology, 1992, 10(1): 17-31.

[11]

Bhadra S. Timing and Duration of Ultra-High Temperature Metamorphism in Sapphirine-Bearing Metapelite Granulite from Kodaikanal, Madurai Block, South India: Constraints from Mineral Chemistry and U-Th-Total Pb EPMA Age of Monazite. Journal of Applied Geochemistry, 2016, 18 1 22.

[12]

Bhowmik S. K., Wilde S. A., Bhandari A., . Zoned Monazite and Zircon as Monitors for the Thermal History of Granulite Terranes: An Example from the Central Indian Tectonic Zone. Journal of Petrology, 2014, 55(3): 585-621.

[13]

Bradley D., Kusky T. M., Haeussler P., . Geological Signature of Early Tertiary Ridge Subduction in Alaska. In: Sisson, V. B., Roseske, S. M., Pavlis, T. L., eds., Geology of a Transpressional Orogen Developed during Ridge-Trench Interaction along the North Pacifica Margin. Geological Society of America Special Paper, 2003, 371: 19-49.

[14]

Brandt S., Klemd R., Okrusch M. Ultrahigh-Temperature Metamorphism and Multistage Evolution of Garnet-Orthopyroxene Granulites from the Proterozoic Epupa Complex, NW Namibia. Journal of Petrology, 2003, 44(6): 1121-1144.

[15]

Brown M. Duality of Thermal Regimes is the Distinctive Characteristic of Plate Tectonics since the Neoarchean. Geology, 2006, 34(11): 961-964.

[16]

Brown M. Metamorphic Conditions in Orogenic Belts: A Record of Secular Change. International Geology Review, 2007, 49(3): 193-234.

[17]

Brown M. Metamorphism, Plate Tectonics, and the Supercontinent Cycle. Earth Science Frontiers, 2007, 14(1): 1-18.

[18]

Brown M. Metamorphic Patterns in Orogenic Systems and the Geological Record. Geological Society, London, Special Publications, 2009, 318(1): 37-74.

[19]

Brown M. The Contribution of Metamorphic Petrology to Understanding Lithosphere Evolution and Geodynamics. Geoscience Frontiers, 2014, 5(4): 553-569.

[20]

Burg J. P., Gerya T. V. The Role of Viscous Heating in Barrovian Metamorphism of Collisional Orogens: Thermomechanical Models and Application to the Lepontine Dome in the Central Alps. Journal of Metamorphic Geology, 2005, 23(2): 75-95.

[21]

Bushmin S. A., Dolivo-Dobrovolsky D. V., Lebedeva Y. M. Infiltration Metasomatism under High-Pressure Granulite-Facies Conditions Based on Orthopyroxene-Sillimanite Rocks in Shear Zones of the Lapland Granulite Belt. Doklady Earth Sciences, 2007, 412(1): 106-109.

[22]

Carrington D. P., Harley S. L. Partial Melting and Phase Relations in High-Grade Metapelites: An Experimental Petrogenetic Grid in the KFMASH System. Contributions to Mineralogy and Petrology, 1995, 120(3/4): 270-291.

[23]

Chen Z. Y., Zhang L. F., Du J. X., . Zr-in-Rutile Thermometry in Eclogite and Vein from Southwestern Tianshan, China. Journal of Asian Earth Sciences, 2013, 63: 70-80.

[24]

Clark C., Fitzsimons I. C. W., Healy D., . How does the Continental Crust Get Really Hot?. Elements, 2011, 7(4): 235-240.

[25]

Collins W. J. Hot Orogens, Tectonic Switching, and Creation of Continental Crust. Geology, 2002, 30 6 535.

[26]

Collins W. J. Nature of Extensional Accretionary Orogens. Tectonics, 2002, 21(4): 6-1–6.

[27]

Dallwitz W. B. Co-Existing Sapphirine and Quartz in Granulite from Enderby Land, Antarctica. Nature, 1968, 219(5153): 476-477.

[28]

Dasgupta S., Pal S. Origin of Grandite Garnet in Calc-Silicate Granulites: Mineral-Fluid Equilibria and Petrogenetic Grids. Journal of Petrology, 2005, 46(5): 1045-1076.

[29]

Dasgupta S., Sengupta P., Ehl J., . Reaction Textures in a Suite of Spinel Granulites from the Eastern Ghats Belt, India: Evidence for Polymetamorphism, a Partial Petrogenetic Grid in the System KFMASH and the Roles of ZnO and Fe2O3. Journal of Petrology, 1995, 36(2): 435-461.

[30]

Degeling H. S. Zr Equilibria in Metamorphic Rocks: [Dissertation], 2003.

[31]

Diener J. F. A., Powell R. Revised Activity-Composition Models for Clinopyroxene and Amphibole. Journal of Metamorphic Geology, 2012, 30(2): 131-142.

[32]

Diener J. F. A., Powell R., White R. W., . A New Thermodynamic Model for Clino-and Orthoamphiboles in the System Na2O-CaO-FeO-MgOAl2O3-SiO2-H2O-O. Journal of Metamorphic Geology, 2007, 25(6): 631-656.

[33]

Ellis D. J. Osumilite-Sapphirine-Quartz Granulites from Enderby Land, Antarctica: P-T Conditions of Metamorphism, Implications for Garnet-Cordierite Equilibria and the Evolution of the Deep Crust. Contributions to Mineralogy and Petrology, 1980, 74(2): 201-210.

[34]

Ewing T. A., Hermann J., Rubatto D. The Robustness of the Zr-in-Rutile and Ti-in-Zircon Thermometers during High-Temperature Metamorphism (Ivrea-Verbano Zone, Northern Italy). Contributions to Mineralogy and Petrology, 2013, 165(4): 757-779.

[35]

Ferrero S., Axler J., Ague J. J., . Preserved Anatectic Melt in Ultrahigh-Temperature (or High Pressure?) Felsic Granulites, Connecticut, US. EGU General Assembly Conference Abstracts, 2017, 19 96.

[36]

Ferry J. M., Watson E. B. New Thermodynamic Models and Revised Calibrations for the Ti-in-Zircon and Zr-in-Rutile Thermometers. Contributions to Mineralogy and Petrology, 2007, 154(4): 429-437.

[37]

Fitzsimons I. C. W., Harley S. L. Garnet Coronas in Scapolite-Wollastonite Calc-Silicates from East Antarctica: The Application and Limitations of Activity-Corrected Grids. Journal of Metamorphic Geology, 1994, 12(6): 761-777.

[38]

Frost B. R., Chacko T. The Granulite Uncertainty Principle: Limitations on Thermobarometry in Granulites. The Journal of Geology, 1989, 97(4): 435-450.

[39]

Ganguly P., Bose S., Das K., . Origin of Spinel+Quartz Assemblage in a Si-Undersaturated Ultrahigh-Temperature Aluminous Granulite and Its Implication for the P-T-Fluid History of the Phulbani Domain, Eastern Ghats Belt, India. Journal of Petrology, 2018, 58(10): 1941-1974.

[40]

Gorczyk W., Smithies H., Korhonen F., . Ultra-Hot Mesoproterozoic Evolution of Intracontinental Central Australia. Geoscience Frontiers, 2016, 6(1): 23-37.

[41]

Gou L. L., Zhang C. L., Wang Q. Petrological Evidence for Isobaric Cooling of Ultrahigh-Temperature Pelitic Granulites from the Khondalite Belt, North China Craton. Science Bulletin, 2015, 60(17): 1535-1542.

[42]

Green E. C. R., Holland T. J. B., Powell R. An Order-Disorder Model for Omphacitic Pyroxenes in the System Jadeite-Diopside-Hedenbergite-Acmite, with Applications to Eclogitic Rocks. American Mineralogist, 2007, 92(7): 1181-1189.

[43]

Green E. C. R., White R. W., Diener J. F. A., . Activity-Composition Relations for the Calculation of Partial Melting Equilibria in Metabasic Rocks. Journal of Metamorphic Geology, 2016, 34(9): 845-869.

[44]

Grew E. S. Osumilite in the Sapphirine-Quartz Terrane of Enderby Land, Antarctica: Implications for Osumilite Petrogenesis in the Granulite Facies. American Mineralogist, 1982, 67: 762-787.

[45]

Groppo C., Lombardo B., Rolfo F., . Clockwise Exhumation Path of Granulitized Eclogites from the Ama Drime Range (Eastern Himalayas). Journal of Metamorphic Geology, 2007, 25(1): 51-75.

[46]

Guo J. H., Peng P., Chen Y., . UHT Sapphirine Granulite Metamorphism at 1.93–1.92 Ga Caused by Gabbronorite Intrusions: Implications for Tectonic Evolution of the Northern Margin of the North China Craton. Precambrian Research, 2012, 222/223: 124-142.

[47]

Hacker B. R., Gnos L., Grove M., . Hot and Dry Xenoliths from the Lower Crust of Tibet. Science, 2000, 287: 2463-2466.

[48]

Haissen F., Garcia-Casco A., Torres-Roldan R., . Decompression Reactions and P-T Conditions in High-Pressure Granulites from Casares-Los Reales Units of the Betic-Rif Belt (S Spain and N Morocco). Journal of African Earth Sciences, 2004, 39(3/4/5): 375-383.

[49]

Harley S. L. A Pyroxene-Bearing Meta-Ironstone and Other Pyroxene-Granulites from Tonagh Island, Enderby Land, Antarctica: Further Evidence for very High Temperature (>980 °C) Archaean Regional Metamorphism in the Napier Complex. Journal of Metamorphic Geology, 1987, 5(3): 341-356.

[50]

Harley S. L. The Origins of Granulites: A Metamorphic Perspective. Geological Magazine, 1989, 126(3): 215-247.

[51]

Harley S. L. On the Occurrence and Characterization of Ultrahigh-Temperature Crustal Metamorphism. Geological Society, London, Special Publications, 1998, 138(1): 81-107.

[52]

Harley S. L. An Appraisal of Peak Temperatures and Thermal Histories in Ultrahigh-Temperature (UHT) Crustal Metamorphism: The Significance of Aluminous Orthopyroxene. In: Motoyoshi, Y., Shiraishi, K., eds., Origin and Evolution of Continents. Memoir National Institute Polar Research, Tokyo., 1998, 53: 49-73.

[53]

Harley S. L. Ultrahigh Temperature Granulite Metamorphism (1 050 ºC, 12 kbar) and Decompression in Garnet (Mg70)-Orthopyroxene-Sillimanite Gneisses from the Rauer Group, East Antarctica. Journal of Metamorphic Geology, 1998, 16(4): 541-562.

[54]

Harley S. L. Extending Our Understanding of Ultrahigh Temperature Crustal Metamorphism. Journal of Mineralogical and Petrological Sciences, 2004, 99(4): 140-158.

[55]

Harley S. L. Refining the P-T Records of UHT Crustal Metamorphism. Journal of Metamorphic Geology, 2008, 26(2): 125-154.

[56]

Harley S. L. A Matter of Time: The Importance of the Duration of UHT Metamorphism. Journal of Mineralogical and Petrological Sciences, 2016, 111(2): 50-72.

[57]

Harley S. L., Hensen B. J., Sheraton J. W. Two-Stage Decompression in Orthopyroxene-Sillimanite Granulites from Forefinger Point, Enderby Land, Antarctica: Implications for the Evolution of the Archaean Napier Complex. Journal of Metamorphic Geology, 1990, 8(6): 591-613.

[58]

Hensen B. J., Harley S. L. Graphical Analysis of p-T.x Relations in Granulite Facies Metapelites, 1990, 19-56.

[59]

Hokada T. Feldspar Thermometry in Ultrahigh-Temperature Metamorphic Rocks: Evidence of Crustal Metamorphism Attaining ~1 100 °C in the Archean Napier Complex, East Antarctica. American Mineralogist, 2001, 86(7/8): 932-938.

[60]

Hokada T., Suzuki S. Feldspar in Felsic Orthogneiss as Indicator for UHT Crustal Processes. Journal of Mineralogical and Petrological Sciences, 2006, 101(5): 260-264.

[61]

Holland T. J. B., Powell R. An Internally Consistent Thermodynamic Data Set for Phases of Petrological Interest. Journal of Metamorphic Geology, 1998, 16(3): 309-343.

[62]

Holland T. J. B., Powell R. An Improved and Extended Internally Consistent Thermodynamic Dataset for Phases of Petrological Interest, Involving a New Equation of State for Solids. Journal of Metamorphic Geology, 2011, 29(3): 333-383.

[63]

Hyndman R. D., Currie C. A., Mazzotti S. P. Subduction Zone Backarcs, Mobile Belts, and Orogenic Heat. GSA Today, 2005, 15(2): 4-10.

[64]

Ishii S., Tsunogae T., Santosh M. Ultrahigh-Temperature Metamorphism in the Achankovil Zone: Implications for the Correlation of Crustal Blocks in Southern India. Gondwana Research, 2006, 10(1/2): 99-114.

[65]

Jagoutz O., Müntener O., Ulmer P., . Petrology and Mineral Chemistry of Lower Crustal Intrusions: The Chilas Complex, Kohistan (NW Pakistan). Journal of Petrology, 2007, 48(10): 1895-1953.

[66]

Jamieson R. A., Beaumont C. On the Origin of Orogens. Geological Society of America Bulletin, 2013, 125(11/12): 1671-1702.

[67]

Jiao S. J., Guo J. H., Mao Q., . Application of Zr-in-Rutile Thermometry: A Case Study from Ultrahigh-Temperature Granulites of the Khondalite Belt, North China Craton. Contributions to Mineralogy and Petrology, 2010, 162(2): 379-393.

[68]

Jiao S. J., Guo J. H., Mao Q., . Application of Zr-in-Rutile Thermometry: A Case Study from Ultrahigh-Temperature Granulites of the Khondalite Belt, North China Craton. Contributions to Mineralogy and Petrology, 2011, 162(2): 379-393.

[69]

Kelly N. M., Harley S. L. Orthopyroxene-Corundum in Mg-Al-Rich Granulites from the Oygarden Islands, East Antarctica. Journal of Petrology, 2004, 45(7): 1481-1512.

[70]

Kelsey D. E. On Ultrahigh-Temperature Crustal Metamorphism. Gondwana Research, 2008, 13(1): 1-29.

[71]

Kelsey D. E., Clark C., Hand M., . Comment on “First Report of Garnet-Corundum Rocks from Southern India: Implications for Prograde High-Pressure (Eclogite-Facies?) Metamorphism”. Earth and Planetary Science Letters, 2006, 249(3/4): 529-534.

[72]

Kelsey D. E., Hand M. On Ultrahigh Temperature Crustal Metamorphism: Phase Equilibria, Trace Element Thermometry, Bulk Composition, Heat Sources, Timescales and Tectonic Settings. Geoscience Frontiers, 2015, 6(3): 311-356.

[73]

Kelsey D. E., White R. W., Powell R. Orthopyroxene-Sillimanite-Quartz Assemblages: Distribution, Petrology, Quantitative P-T-X Constraints and P-T Paths. Journal of Metamorphic Geology, 2003, 21(5): 439-453.

[74]

Kelsey D. E., White R. W., Powell R., . New Constraints on Metamorphism in the Rauer Group, Prydz Bay, East Antarctica. Journal of Metamorphic Geology, 2003, 21(8): 739-759.

[75]

Kemp A. I. S., Shimura T., Hawkesworth C. J., . Linking Granulites, Silicic Magmatism, and Crustal Growth in Arcs: Ion Microprobe (Zircon) U-Pb Ages from the Hidaka Metamorphic Belt, Japan. Geology, 2007, 35(9): 807-810.

[76]

Kihle J., Bucher-Nurminen K. Orthopyroxene-Sillimanite-Sapphirine Granulites from the Bamble Granulite Terrane, Southern Norway. Journal of Metamorphic Geology, 1992, 10(5): 671-693.

[77]

Kincaid C., Silver P. The Role of Viscous Dissipation in the Orogenic Process. Earth and Planetary Science Letters, 1996, 142(3/4): 271-288.

[78]

Kooijman E., Smit M. A., Mezger K., . Trace Element Systematics in Granulite Facies Rutile: Implications for Zr Geothermometry and Provenance Studies. Journal of Metamorphic Geology, 2012, 30(4): 397-412.

[79]

Kusky T. M., Li J. H. Paleoproterozoic Tectonic Evolution of the North China Craton. Journal of Asian Earth Sciences, 2003, 22(4): 383-397.

[80]

Lebedeva Y. M., Glebovitskii V. A., Bushmin S. A., . The Age of High-Pressure Metasomatism in Shear Zones during Collision-Related Metamorphism in the Lapland Granulite Belt: The Sm-Nd Method of Dating the Paragenesises from Sillimanite-Orthopyroxene Rocks of Por’ya Guba Nappe. Doklady Earth Sciences, 2010, 432(1): 602-605.

[81]

Lee B. C., Oh C. W., Kim T. S., . The Metamorphic Evolution from Ultrahigh-Temperature to Amphibolite Facies Metamorphism in the Odaesan Area after the Collision between the North and South China Cratons in the Korean Peninsula. Lithos, 2016, 109-131.

[82]

Lei H. C., Xiang H., Zhang Z. M., . Paleoproterozoic UHT Granulite in the Sulu Orogen and Its Tectonic Implications. Acta Petrologica Sinica, 2014, 30: 2435-2445.

[83]

Li Z. L., Chen H. L., Santosh M., . Discovery of Ultrahigh-T Spinel-Garnet Granulite with Pure CO2 Fluid Inclusions from the Altay Orogenic Belt, NW China. Journal of Zhejiang University—Science A, 2004, 5(10): 1180-1182.

[84]

Li Z. L., Yang X. Q., Li Y. Q., . Late Paleozoic Tectono-Metamorphic Evolution of the Altai Segment of the Central Asian Orogenic Belt: Constraints from Metamorphic P-T Pseudosection and Zircon U-Pb Dating of Ultra-High-Temperature Granulite. Lithos, 2014, 204: 83-96.

[85]

Liu S. J., Li J. H. Review of Ultrahigh-Temperature (UHT) Metamorphism Study: A Case from North China Craton. Earth Science Frontiers, 2007, 14(3): 131-137.

[86]

Liu S. J., Li J. H., Santosh M. First Application of the Revised Ti-in-Zircon Geothermometer to Paleoproterozoic Ultrahigh-Temperature Granulites of Tuguiwula, Inner Mongolia, North China Craton. Contributions to Mineralogy and Petrology, 2010, 159(2): 225-235.

[87]

Liu S. J., Tsunogae T., Li W. S., . Paleoproterozoic Granulites from Helingʼer: Implications for Regional Ultrahigh-Temperature Metamorphism in the North China Craton. Lithos, 2012, 148(1): 54-70.

[88]

Liu Y. C., Deng L. P., Gu X. F., . Application of Ti-in-Zircon and Zr-in-Rutile Thermometers to Constrain High-Temperature Metamorphism in Eclogites from the Dabie Orogen, Central China. Gondwana Research, 2015, 27(1): 410-423.

[89]

Maidment D. W., Hand M., Williams I. S. High Grade Metamorphism of Sedimentary Rocks during Palaeozoic Rift Basin Formation in Central Australia. Gondwana Research, 2013, 24(3/4): 865-885.

[90]

McFarlane C. R. M., Carlson W. D., Connelly J. N. Prograde, Peak, and Retrograde P-T Paths from Aluminium in Orthopyroxene: High-Temperature Contact Metamorphism in the Aureole of the Makhavinekh Lake Pluton, Nain Plutonic Suite, Labrador. Journal of Metamorphic Geology, 2003, 21(5): 405-423.

[91]

McKenzie D., Priestley K. The Influence of Lithospheric Thickness Variations on Continental Evolution. Lithos, 2008, 102(1/2): 1-11.

[92]

Meyer M., John T., Brandt S., . Trace Element Composition of Rutile and the Application of Zr-in-Rutile Thermometry to UHT Metamorphism (Epupa Complex, NW Namibia). Lithos, 2011, 126(3/4): 388-401.

[93]

Mitchell R. J., Harley S. L. Zr-in-Rutile Resetting in Aluminosilicate Bearing Ultra-High Temperature Granulites: Refining the Record of Cooling and Hydration in the Napier Complex, Antarctica. Lithos, 2017, 272/273: 128-146.

[94]

Nabelek P. I., Liu M. Petrologic and Thermal Constraints on the Origin of Leucogranites in Collisional Orogens. Transactions of the Royal Society of Edinburgh: Earth Sciences, 2004, 95(1/2): 73-85.

[95]

Journal of Geophysical Research, 2010, 115 B12

[96]

Nakano N., Osanai Y., Owada M., . Decompression Process of Mafic Granulite from Eclogite to Granulite Facies under Ultrahigh-Temperature Condition in the Kontum Massif, Central Vietnam. Journal of Mineralogical and Petrological Sciences, 2004, 99(4): 242-256.

[97]

Nicoli G., Stevens G., Buick I., . A Comment on Ultrahigh-Temperature Metamorphism from an Unusual Corundum+ Orthopyroxene Intergrowth Bearing Al-Mg Granulite from the Southern Marginal Zone, Limpopo Complex, South Africa, by Belyanin et al. Contributions to Mineralogy and Petrology, 2014, 167 6 1022.

[98]

O’Brien P. J., Rötzler J. High-Pressure Granulites: Formation, Recovery of Peak Conditions and Implications for Tectonics. Journal of Metamorphic Geology, 2003, 21(1): 3-20.

[99]

Pape J., Mezger K., Robyr M. A Systematic Evaluation of the Zr-in-Rutile Thermometer in Ultra-High Temperature (UHT) Rocks. Contributions to Mineralogy and Petrology, 2016, 171 5 44.

[100]

Pattison D. R. M., Chacko T., Farquhar J., . Temperatures of Granulite-Facies Metamorphism: Constraints from Experimental Phase Equilibria and Thermobarometry Corrected for Retrograde Exchange. Journal of Petrology, 2003, 44(5): 867-900.

[101]

Peng P., Guo J. H., Zhai M. G., . Paleoproterozoic Gabbronoritic and Granitic Magmatism in the Northern Margin of the North China Craton: Evidence of Crust-Mantle Interaction. Precambrian Research, 2010, 183(3): 635-659.

[102]

Peng S. B., Jin Z. M., Fu J. M. Ultra-High Temperature Granulite Enclaves in the Darongshan-Shiwandashan Granites in South China and Implications, 2006.

[103]

Perchuk L., Gerya T., Nozhkin A. Petrology and Retrograde P-T Path in Granulites of the Kanskaya Formation, Yenisey Range, Eastern Siberia. Journal of Metamorphic Geology, 1989, 7(6): 599-617.

[104]

Prakash D., Arima M., Mohan A. Ultrahigh-Temperature Metamorphism in the Palni Hills, South India: Insights from Feldspar Thermometry and Phase Equilibria. International Geology Review, 2006, 48(7): 619-638.

[105]

Royden L. H. The Steady State Thermal Structure of Eroding Orogenic Belts and Accretionary Prisms, 1993, Journal of Geophysical Research: Solid Earth, 98(B3):, 4487-4507.

[106]

Rötzler J., Romer R. L. P-T-t Evolution of Ultrahigh-Temperature Granulites from the Saxon Granulite Massif, Germany. Part I: Petrology. Journal of Petrology, 2001, 42(11): 1995-2013.

[107]

Rubatto D. Zircon Trace Element Geochemistry: Partitioning with Garnet and the Link between U-Pb Ages and Metamorphism. Chemical Geology, 2002, 184(1/2): 123-138.

[108]

Rubatto D., Gebauer D. Use of Cathodoluminescence for U-Pb Zircon Dating by Ion Microprobe: Some Examples from the Western Alps, 2000, 373-400.

[109]

Rubatto D., Hermann J. Experimental Zircon/Melt and Zircon/Garnet Trace Element Partitioning and Implications for the Geochronology of Crustal Rocks. Chemical Geology, 2007, 241(1/2): 38-61.

[110]

Rubatto D., Williams I. S., Buick I. S. Zircon and Monazite Response to Prograde Metamorphism in the Reynolds Range, Central Australia. Contributions to Mineralogy and Petrology, 2001, 140(4): 458-468.

[111]

Sajeev K., Osanai Y. Ultrahigh-Temperature Metamorphism (1 150 ºC, 12 kbar) and Multistage Evolution of Mg-, Al-Rich Granulites from the Central Highland Complex, Sri Lanka. Journal of Petrology, 2004, 45(9): 1821-1844.

[112]

Sajeev K., Osanai Y., Santosh M. Ultrahigh-Temperature Metamorphism Followed by Two-Stage Decompression of Garnet-Orthopyroxene-Sillimanite Granulites from Ganguvarpatti, Madurai Block, Southern India. Contributions to Mineralogy and Petrology, 2004, 148(1): 29-46.

[113]

Sandiford M., McLaren S. Thermo-Mechanical Controls on Heat Production Distributions and the Long-Term Evolution of the Continents, 2006, 67-91.

[114]

Sandiford M., Powell R. Pyroxene Exsolution in Granulites from Fyfe Hills, Enderby Land, Antarctica: Evidence for 1 000 ºC Metamorphic Temperatures in Archean Continental Crust. American Mineralogist, 1986, 71(7/8): 946-954.

[115]

Santosh M., Kusky T. M. Origin of Paired High Pressure-Ultrahigh-Temperature Orogens: A Ridge Subduction and Slab Window Model. Terra Nova, 2010, 22(1): 35-42.

[116]

Santosh M., Liu S. J., Tsunogae T., . Paleoproterozoic Ultrahigh-Temperature Granulites in the North China Craton: Implications for Tectonic Models on Extreme Crustal Metamorphism. Precambrian Research, 2012, 222/223: 77-106.

[117]

Santosh M., Omori S. CO2 Flushing: A Plate Tectonic Perspective. Gondwana Research, 2008, 13(1): 86-102.

[118]

Santosh M., Omori S. CO2 Windows from Mantle to Atmosphere: Models on Ultrahigh-Temperature Metamorphism and Speculations on the Link with Melting of Snowball Earth. Gondwana Research, 2008, 14(1/2): 82-96.

[119]

Santosh M., Sajeev K. Anticlockwise Evolution of Ultrahigh-Temperature Granulites within Continental Collision Zone in Southern India. Lithos, 2006, 92(3/4): 447-464.

[120]

Santosh M., Sajeev K., Li J. H. Extreme Crustal Metamorphism during Columbia Supercontinent Assembly: Evidence from North China Craton. Gondwana Research, 2006, 10(3/4): 256-266.

[121]

Santosh M., Tsunogae T., Li J. H., . Discovery of Sapphirine-Bearing Mg-Al Granulites in the North China Craton: Implications for Paleoproterozoic Ultrahigh Temperature Metamorphism. Gondwana Research, 2007, 11(3): 263-285.

[122]

Santosh M., Wilde S., Li J. H. Timing of Paleoproterozoic Ultrahigh-Temperature Metamorphism in the North China Craton: Evidence from SHRIMP U-Pb Zircon Geochronology. Precambrian Research, 2007, 159(3/4): 178-196.

[123]

Scrimgeour I. R., Kinny P. D., Close D. F., . High-T Granulites and Polymetamorphism in the Southern Arunta Region, Central Australia: Evidence for a 1.64Ga Accretional Event. Precambrian Research, 2005, 142(1/2): 1-27.

[124]

Sengupta P., Raith M. M. Garnet Composition as a Petrogenetic Indicator: An Example from a Marble—Calc-Silicate Granulite Interface at Kondapalle, Eastern Ghats Belt, India. American Journal of Science, 2002, 302(8): 686-725.

[125]

Shimpo M., Tsunogae T., Santosh M. First Report of Garnet-Corundum Rocks from Southern India: Implications for Prograde High-Pressure (Eclogite-Facies?) Metamorphism. Earth and Planetary Science Letters, 2006, 242(1/2): 111-129.

[126]

Sisson V. B., Poole A. R., Harris N. R., . Geochemical and Geochronologic Constraints for Genesis of a Tonalite-Trondhjemite Suite and Associated Mafic Intrusive Rocks in the Eastern Chugach Mountains, Alaska: A Record of Ridge Transform Subduction. In: Sisson, V. B., Roeske, S. M., Pavlis, T. L., eds., Geology of a Transpressional Orogen Developed during Ridge-Trench Interaction along the North Pacific Margin. Geological Society of America Special Paper, 2003, 371: 293-326.

[127]

Sizova E., Gerya T., Brown M. Contrasting Styles of Phanerozoic and Precambrian Continental Collision. Gondwana Research, 2014, 25(2): 522-545.

[128]

Stüwe K. Heat Sources of Cretaceous Metamorphism in the Eastern Alps—A Discussion. Tectonophysics, 1998, 251-269.

[129]

Stüwe K. Geodynamics of the Lithosphere: Quantitative Description of Geological Problems, 2007.

[130]

Taylor-Jones K., Powell R. Interpreting Zirconium-in-Rutile Thermometric Results. Journal of Metamorphic Geology, 2015, 33(2): 115-122.

[131]

Thompson A. B., Connolly J. A. D. Melting of the Continental Crust: Some Thermal and Petrological Constraints on Anatexis in Continental Collision Zones and Other Tectonic Settings, 1995, Journal of Geophysical Research: Solid Earth, 15565-15579.

[132]

Tomkins H. S., Powell R., Ellis D. J. The Pressure Dependence of the Zirconium-in-Rutile Thermometer. Journal of Metamorphic Geology, 2007, 25(6): 703-713.

[133]

Tong L. X., Chen Y. B., Xu Y. G., . Zircon U-Pb Ages of the Ultrahigh-Temperature Metapelitic Granulite from the Altai Orogen, NW China, and Geological Implications. Acta Petrologica Sinica, 2013, 29(10): 3435-3445.

[134]

Tong L. X., Xu Y. G., Cawood P. A., . Anticlockwise P-T Evolution at ~2.0 Ma Recorded from Ultrahigh-Temperature Metapelitic Granulite in the Chinese Altai Orogenic Belt, a Possible Link with the Tarim Mantle Plume?. Journal of Asian Earth Sciences, 2014, 94: 1-11.

[135]

Tsunogae T., Santosh M. Spinel-Sapphirine-Quartz Bearing Composite Inclusion within Garnet from an Ultrahigh-Temperature Pelitic Granulite: Implications for Metamorphic History and P-T Path. Lithos, 2006, 92(3/4): 524-536.

[136]

Tsunogae T., Santosh M. Sapphirine+Quartz Assemblage from the Southern Granulite Terrane, India: Diagnostic Evidence for Ultrahigh-Temperature Metamorphism within the Gondwana Collisional Orogen. Geological Journal, 2011, 46(2/3): 183-197.

[137]

Tsunogae T., Santosh M., Ohyama H., . High-Pressure and Ultrahigh-Temperature Metamorphism at Komateri, Northern Madurai Block, Southern India. Journal of Asian Earth Sciences, 2008, 33(5/6): 395-413.

[138]

Vilà M., Fernández M., Jiménez-Munt I. Radiogenic Heat Production Variability of Some Common Lithological Groups and Its Significance to Lithospheric Thermal Modeling. Tectonophysics, 2010, 490(3/4): 152-164.

[139]

Wan Y. S., Xu Z. Y., Dong C. Y., . Episodic Paleoproterozoic (~2.45, ~1.95 and ~1.85 Ga) Mafic Magmatism and Associated High Temperature Metamorphism in the Daqingshan Area, North China Craton: SHRIMP Zircon U-Pb Dating and Whole-Rock Geochemistry. Precambrian Research, 2013, 224: 71-93.

[140]

Wang W., Wei C. J., Wang T., . Confirmation of Pelitic Granulite in the Altai Orogen and Its Geological Significance. Chinese Science Bulletin, 2009, 54(14): 2543-2548.

[141]

Watson E. B., Wark D. A., Thomas J. B. Crystallization Thermometers for Zircon and Rutile. Contributions to Mineralogy and Petrology, 2006, 151(4): 413-433.

[142]

Wei C. J. Advance of Metamorphic Petrology during the First Decade of the 21st Century. Bulletin of Mineralogy, Petrology and Geochemistry, 2012, 31: 415-427.

[143]

Wei C. J. Granulite Facies Metamorphism and Petrogenesis of Granite (II): Quantitative Modeling of the HT-UHT Phase Equilibria for Metapelites and the Petrogenesis of S-Type Granite. Acta Petrologica Sinica, 2016, 32(6): 1625-1643.

[144]

Wei C. J., Guan X. J., Dong J. HT-UHT Metamorphism of Metabasites and the Petrogenesis of TTGs. Acta Petrologica Sinica, 2017, 33: 1381-1404.

[145]

Wei C. J., Powell R., Clarke G. L. Calculated Phase Equilibria for Low-and Medium-Pressure Metapelites in the KFMASH and KMnFMASH Systems. Journal of Metamorphic Geology, 2004, 22(5): 495-508.

[146]

Wei C. J., Zhou X. W. Progress in the Study Of Metamorphic Phase Equilibrium. Earth Science Frontiers, 2003, 10: 341-351.

[147]

Wei C. J., Zhu W. P. Granulite Facies Metamorphism and Petrogenesis of Granite (I): Metamorphic Phase Equilibria for HT-UHT Metapelites/Greywackes. Acta Petrologica Sinica, 2016, 32(6): 1611-1624.

[148]

White R. W., Powell R. Retrograde Melt-Residue Interaction and the Formation of Near-Anhydrous Leucosomes in Migmatites. Journal of Metamorphic Geology, 2010, 28(6): 579-597.

[149]

White R. W., Powell R., Holland T. J. B. Calculation of Partial Melting Equilibria in the System Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O (NCKFMASH). Journal of Metamorphic Geology, 2001, 19(2): 139-153.

[150]

White R. W., Powell R., Holland T. J. B. Progress Relating to Calculation of Partial Melting Equilibria for Metapelites. Journal of Metamorphic Geology, 2007, 25(5): 511-527.

[151]

Whittington A. G., Hofmeister A. M., Nabelek P. I. Temperature-Dependent Thermal Diffusivity of the Earth’s Crust and Implications for Magmatism. Nature, 2009, 458(7236): 319-321.

[152]

Xiang H., Zhang Z. M., Lei H. C., . Paleoproterozoic Ultrahigh-Temperature Pelitic Granulites in the Northern Sulu Orogen: Constraints from Petrology and Geochronology. Precambrian Research, 2014, 254: 273-289.

[153]

Xiang H., Zhong Z. Q., Li Y., . Sapphirine-Bearing Granulites from the Tongbai Orogen, China: Petrology, Phase Equilibria, Zircon U-Pb Geochronology and Implications for Paleozoic Ultrahigh Temperature Metamorphism. Lithos, 2014, 208/209: 446-461.

[154]

Yang C., Wei C. J. Ultrahigh Temperature (UHT) Mafic Granulites in the East Hebei, North China Craton: Constraints from a Comparison between Temperatures Derived from REE-Based Thermometers and Major Element-Based Thermometers. Gondwana Research, 2017, 46: 156-169.

[155]

Yang Q. Y., Santosh M., Tsunogae T. Ultrahigh-Temperature Metamorphism under Isobaric Heating: New Evidence from the North China Craton. Journal of Asian Earth Sciences, 2014, 95: 2-16.

[156]

Yang X. Q., Li Z. L. Fluid Characteristics of Late Paleozoic Ultrahigh-Temperature Granulites from the Altay Orogenic Belt, Northwestern China and Its Significance. Acta Petrologica Sinica, 2013, 29(10): 3446-3456.

[157]

Yoshino T., Okudaira T. Crustal Growth by Magmatic Accretion Constrained by Metamorphic P-T Paths and Thermal Models of the Kohistan Arc, NW Himalayas. Journal of Petrology, 2004, 45(11): 2287-2302.

[158]

Yu S. Y., Zhang J. X., Gong J. H. Zr-in-Rutile Thermometry in HP/UHT Granulite in the Bashiwake Area of the South Altun and Its Geological Implications. Earth Science Frontiers, 2011, 18(2): 140-150.

[159]

Zack T., Moraes R., Kronz A. Temperature Dependence of Zr in Rutile: Empirical Calibration of a Rutile Thermometer. Contributions to Mineralogy and Petrology, 2004, 148(4): 471-488.

[160]

Zhai M. G., Liu W. J. The Formation of Granulite and Its Contribution to Evolution of the Continental Crust. Acta Petrologica Sinica, 2001, 17(1): 28-38.

[161]

Zhang G. B., Ellis D. J., Christy A. G., . Zr-in-Rutile Thermometry in HP/UHP Eclogites from Western China. Contributions to Mineralogy and Petrology, 2010, 160(3): 427-439.

[162]

Zhang J. X., Meng F. C. Sapphirine-Bearing High Pressure Mafic Granulite and Its Implications in the South Altyn Tagh. Chinese Science Bulletin, 2005, 50(3): 265-269.

[163]

Zhao G. C., Wilde S. A., Cawood P. A., . Petrology and P-T Path of the Fuping Mafic Granulites: Implications for Tectonic Evolution of the Central Zone of the North China Craton. Journal of Metamorphic Geology, 2000, 18(4): 375-391.

[164]

Zhao L., Guo F., Fan W. M., . Late Paleozoic Ultrahigh-Temperature Metamorphism in South China: A Case Study of Granulite Enclaves in the Shiwandashan Granites. Acta Petrologica Sinica, 2011, 27(6): 1707-1720.

AI Summary AI Mindmap
PDF

176

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/