Metamorphic P-T Path Differences between the Two UHP Terranes of Sulu Orogen, Eastern China: Petrologic Comparison between Eclogites from Donghai and Rongcheng

Zhuoyang Li , Yilong Li , Jan R. Wijbrans , Qijun Yang , Hua-Ning Qiu , Fraukje M. Brouwer

Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (5) : 1151 -1166.

PDF
Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (5) : 1151 -1166. DOI: 10.1007/s12583-018-0845-x
Metamorphism, Magmatism and Tectonic Evolution of Central China Orogenic Belts

Metamorphic P-T Path Differences between the Two UHP Terranes of Sulu Orogen, Eastern China: Petrologic Comparison between Eclogites from Donghai and Rongcheng

Author information +
History +
PDF

Abstract

The Sulu Orogen constitutes the eastern part of the Sulu-Dabie Orogen formed by Triassic collision between the Sino-Korean and Yangtze plates. An HP Slice I and two UHP slices II and III with contrasting subduction and exhumation histories within the Sulu Orogen were postulated. This study presents the metamorphic P-T paths of eclogites from the two UHP belts constructed by petrography, mineral chemistry and Perple_X P-T pseudosection modeling in the MnC(K)NFMASHO system. Eclogites from Slice III mainly consist of omphacite, garnet and quartz, with minor rutile, ilmenite, amphibole and phengite. Eclogites from Slice II show a porphyroblastic texture with epidote porphyroblasts and garnet, omphacite, phengite, quartz and rutile in matrix. Pseudosection modeling reveals that eclogites from Slice II witness a peak metamorphism of eclogite-facies under conditions of 3.1–3.3 GPa and 660–690 ºC, and a retrograde cooling decompression process. The eclogites from Slice III record a heating decompressive P-T path with a peak-P stage of 3.2 GPa and 840 ºC and a peak-T stage of 2.4 GPa and 950 ºC, suggesting an apparent granulite-facies metamorphism overprint during exhumation. Both eclogites recorded clockwise P-T paths with peak P-T conditions suggesting a subduction beneath the Sino-Korean Plate to ~100–105 km depth. Combined with tectonic scenarios from previous studies, it is concluded that the two UHP crustal slices in the Sulu terrane have a similar geodynamic evolution, but the UHP rocks in Slice II exhumed after the eclogitic peak-pressure conditions earlier than that of Slice III. The existence of Slice II diminished the buoyancy force on Slice III, resulting in a granulite-facies overprint on Slice III. The Sulu orogenic belt is made up of different crustal slices that underwent different subduction and exhumation histories, rather than a single unit.

Keywords

petrology / UHP metamorphism / exhumation process / Sulu Orogen

Cite this article

Download citation ▾
Zhuoyang Li, Yilong Li, Jan R. Wijbrans, Qijun Yang, Hua-Ning Qiu, Fraukje M. Brouwer. Metamorphic P-T Path Differences between the Two UHP Terranes of Sulu Orogen, Eastern China: Petrologic Comparison between Eclogites from Donghai and Rongcheng. Journal of Earth Science, 2018, 29(5): 1151-1166 DOI:10.1007/s12583-018-0845-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Banno S., Enami M., Hirajima T., . Decompression P-T Path of Coesite Eclogite to Granulite from Weihai, Eastern China. Lithos, 2000, 52(1/2/3/4): 97-108.

[2]

Carlson W. D. Scales of Disequilibrium and Rates of Equilibration during Metamorphism. American Mineralogist, 2002, 87(2/3): 185-204.

[3]

Carlson W. D., Schwarze E. T. Petrological Significance of Prograde Homogenization of Growth Zoning in Garnet: An Example from the Llano Uplift. Journal of Metamorphic Geology, 1997, 15(5): 631-644.

[4]

Carson C. J., Powell R., Clarke G. L. Calculated Mineral Equilibria for Eclogites in CaO-Na2O-FeO-MgO-Al2O3-SiO2-H2O: Application to the Pouébo Terrane, Pam Peninsula, New Caledonia. Journal of Metamorphic Geology, 1999, 17(1): 9-24.

[5]

Connolly J. A. D., Petrini K. An Automated Strategy for Calculation of Phase Diagram Sections and Retrieval of Rock Properties as a Function of Physical Conditions. Journal of Metamorphic Geology, 2002, 20(7): 697-708.

[6]

Dale J., Holland T. J. B., Powell R. Hornblende-Garnet-Plagioclase Thermobarometry: A Natural Assemblage Calibration of the Thermodynamics of Hornblende. Contributions to Mineralogy and Petrology, 2000, 140: 353-362.

[7]

Dale J., Powell R., White R. W., . A Thermodynamic Model for Ca-Na Clinoamphiboles in Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O-O for Petrological Calculations. Journal of Metamorphic Geology, 2005, 23(8): 771-791.

[8]

Ernst W. G. Subduction, Ultrahigh-Pressure Metamorphism, and Regurgitation of Buoyant Crustal Slices—Implications for Arcs and Continental Growth. Physics of the Earth and Planetary Interiors, 2001, 127(1/2/3/4): 253-275.

[9]

Ernst W. G., Maruyama S., Wallis S. Buoyancy-Driven, Rapid Exhumation of Ultrahigh-Pressure Metamorphosed Continental Crust. Proceedings of the National Academy of Sciences, 1997, 94(18): 9532-9537.

[10]

Faure M., Lin W., Shu L., . Tectonics of the Dabieshan (Eastern China) and Possible Exhumation Mechanism of Ultra High-Pressure Rocks. Terra Nova, 1999, 11(6): 251-258.

[11]

Green E. C. R., Holland T. J. B., Powell R. An Order-Disorder Model for Omphacitic Pyroxenes in the System Jadeite-Diopside-Hedenbergite-Acmite, with Applications to Eclogitic Rocks. American Mineralogist, 2007, 92(7): 1181-1189.

[12]

Hacker B. R., Ratschbacher L., Webb L., . Exhumation of Ultrahigh-Pressure Continental Crust in East Central China: Late Triassic–Early Jurassic Tectonic Unroofing, 2000, 13339-13364.

[13]

Hirajima T., Ishiwatari A., Cong B. L., . Coesite from Mengzhong Eclogite at Donghai County, Northeastern Jiangsu Province, China. Mineralogical Magazine, 1990, 54(377): 579-583.

[14]

Holland T. J. B., Babu E. V. S. S. K., Waters D. J. Phase Relations of Osumilite and Dehydration Melting in Pelitic Rocks: A Simple Thermodynamic Model for the KFMASH System. Contributions to Mineralogy and Petrology, 1996, 124(3/4): 383-394.

[15]

Holland T. J. B., Baker J., Powell R. Mixing Properties and Activity-Composition Relationships of Chlorites in the System MgO-FeO-Al2O3-SiO2-H2O. European Journal of Mineralogy, 1998, 10(3): 395-406.

[16]

Holland T. J. B., Powell R. An Internally Consistent Thermodynamic Data Set for Phases of Petrological Interest. Journal of Metamorphic Geology, 1998, 16(3): 309-343.

[17]

Holland T. J. B., Powell R. Activity-Composition Relations for Phases in Petrological Calculations: An Asymmetric Multicomponent Formulation. Contributions to Mineralogy and Petrology, 2003, 145(4): 492-501.

[18]

Holland T. J. B., Powell R. A Compensated-Redlich-Kwong (CORK) Equation for Volumes and Fugacities of CO2 and H2O in the Range 1 bar to 50 kbar and 100–1 600 ºC. Contributions to Mineralogy and Petrology, 1991, 109(2): 265-273.

[19]

Jahn B. M., Cornichet J., Cong B. L., . Ultrahigh-εNd Eclogites from an Ultrahigh-Pressure Metamorphic Terrane of China. Chemical Geology, 1996, 127(1/2/3): 61-79.

[20]

Leake B. E., Woolley A. R., Arps C. E. S., . Nomenclature of Amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. The Canadian Mineralogist, 1997, 35: 219-246.

[21]

Li S. G., Huang F., Zhou H. Y., . U-Pb Isotopic Compositions of the Ultrahigh Pressure Metamorphic (UHPM) Rocks from Shuanghe and Gneisses from Northern Dabie Zone in the Dabie Mountains, Central China: Constraint on the Exhumation Mechanism of UHPM Rocks. Science in China Series D: Earth Sciences, 2003, 46(3): 200-209.

[22]

Li S. Z., Kusky T. M., Zhao G. C., . Thermochronological Constraints on Two-Stage Extrusion of HP/UHP Terranes in the Dabie-Sulu Orogen, East-Central China. Tectonophysics, 2011, 504(1/2/3/4): 25-42.

[23]

Li S. G., Li Q. L., Hou Z. H., . Cooling History and Exhumation Mechanism of the Ultrahigh-Pressure Metamorphic Rocks in the Dabie Mountains, Central China. Acta Petrologica Sinica, 2005, 21: 1117-1124.

[24]

Liou J. G., Ernst W. G., Zhang R. Y., . Ultrahigh-Pressure Minerals and Metamorphic Terranes—The View from China. Journal of Asian Earth Sciences, 2009, 35(3/4): 199-231.

[25]

Liu F. L., Gerdes A., Xue H. M. Differential Subduction and Exhumation of Crustal Slices in the Sulu HP-UHP Metamorphic Terrane: Insights from Mineral Inclusions, Trace Elements, U-Pb and Lu-Hf Isotope Analyses of Zircon in Orthogneiss. Journal of Metamorphic Geology, 2009, 27(9): 805-825.

[26]

Liu F. L., Gerdes A., Zeng L. S., . SHRIMP U-Pb Dating, Trace Elements and the Lu-Hf Isotope System of Coesite-Bearing Zircon from Amphibolite in the SW Sulu UHP Terrane, Eastern China. Geochimica et Cosmochimica Acta, 2008, 72(12): 2973-3000.

[27]

Liu F. L., Xu Z. Q. Fluid Inclusions Hidden in Coesite-Bearing Zircons in Ultrahigh-Pressure Metamorphic Rocks from Southwestern Sulu Terrane in Eastern China. Chinese Science Bulletin, 2004, 49(4): 396-404.

[28]

Liu F. L., Xu Z. Q., Liou J. G. Tracing the Boundary between UHP and HP Metamorphic Belts in the Southwestern Sulu Terrane, Eastern China: Evidence from Mineral Inclusions in Zircons from Metamorphic Rocks. International Geology Review, 2004, 46(5): 409-425.

[29]

Liu F. L., Xue H. M. Review and Prospect of SHRIMP U-Pb Dating on Zircons from Sulu-Dabie UHP Metamorphic Rocks. Acta Petrologica Sinica, 2007, 23: 2737-2756.

[30]

Morimoto N., Ferguson A. K., Ginzburg I. V., . Nomenclature of Pyroxenes. American Mineralogist, 1988, 73: 1123-1133.

[31]

Nakamura D., Hirajima T. Granulite-Facies Overprinting of Ultrahigh-Pressure Metamorphic Rocks, Northeastern Su-Lu Region, Eastern China. Journal of Petrology, 2000, 41(4): 563-582.

[32]

Okay A. I. Şengör, A. M. C. A. M. C. Evidence for Intracontinental Thrust-Related Exhumation of the Ultra-High-Pressure Rocks in China. Geology, 1992, 20(5): 411-414.

[33]

Song S. G., Niu Y. L., Su L., . Continental Orogenesis from Ocean Subduction, Continent Collision/Subduction, to Orogen Collapse, and Orogen Recycling: The Example of the North Qaidam UHPM Belt, NW China. Earth-Science Reviews, 2014, 129: 59-84.

[34]

Spear F. S. On the Interpretation of Peak Metamorphic Temperatures in Light of Garnet Diffusion during Cooling. Journal of Metamorphic Geology, 1991, 9(4): 379-388.

[35]

Suo S. T., Zhong Z. Q., Zhou H. W., . Two Fresh Types of Eclogites in the Dabie-Sulu UHP Metamorphic Belt, China: Implications for the Deep Subduction and Earliest Stages of Exhumation of the Continental Crust. Journal of Earth Science, 2012, 23(6): 775-785.

[36]

Tajčmanová L., Connolly J. A. D., Cesare B. A Thermodynamic Model for Titanium and Ferric Iron Solution in Biotite. Journal of Metamorphic Geology, 2009, 27(2): 153-165.

[37]

Tsujimori T., Sisson V. B., Liou J. G., . Very-Low-Temperature Record of the Subduction Process: A Review of Worldwide Lawsonite Eclogites. Lithos, 2006, 92(3/4): 609-624.

[38]

Wang Q. C., Ishiwatari A., Zhao Z. Y., . Coesite-Bearing Granulite Retrograded from Eclogite in Weihai, Eastern China. European Journal of Mineralogy, 1993, 5(1): 141-152.

[39]

Wei C. J., Li Y. J., Yu Y., . Phase Equilibria and Metamorphic Evolution of Glaucophane-Bearing UHP Eclogites from the Western Dabieshan Terrane, Central China. Journal of Metamorphic Geology, 2010, 28(6): 647-666.

[40]

Wei C. J., Powell R., Zhang L. F. Eclogites from the South Tianshan, NW China: Petrological Characteristic and Calculated Mineral Equilibria in the Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O System. Journal of Metamorphic Geology, 2003, 21(2): 163-179.

[41]

Wei C. J., Tian Z. L., Zhang L. F. Modelling of Peak Mineral Assemblages and P-T Conditions for High-Pressure and Ultrahigh-Pressure Eclogites. China Science Bulletin, 2013, 58(22): 2159-2164.

[42]

White R. W., Powell R., Holland T. J. B., . The Effect of TiO2 and Fe2O3 on Metapelitic Assemblages at Greenschist and Amphibolite Facies Conditions: Mineral Equilibria Calculations in the System K2O-FeO-MgOAl2O3-SiO2-H2O-TiO2-Fe2O3. Journal of Metamorphic Geology, 2000, 18(5): 497-511.

[43]

Whitney D. L., Davis P. B. Why is Lawsonite Eclogite so Rare? Metamorphism and Preservation of Lawsonite Eclogite, Sivrihisar, Turkey. Geology, 2006, 34 6 473

[44]

Whitney D. L., Evans B. W. Abbreviations for Names of Rock-Forming Minerals. American Mineralogist, 2010, 95(1): 185-187.

[45]

Xu Z. Q., Zeng L. S., Liu F. L., . Polyphase Subduction and Exhumation of the Sulu High-Pressure-Ultrahigh-Pressure Metamorphic Terrane. Geological Society of America Special Paper, 2006, 403: 93-113.

[46]

Yao Y. P., Ye K., Liu J. B., . A Transitional Eclogite-to High Pressure Granulite-Facies Overprint on Coesite-Eclogite at Taohang in the Sulu Ultrahigh-Pressure Terrane, Eastern China. Lithos, 2000, 52(1/2/3/4): 109-120.

[47]

Ye K., Cong B. L., Ye D. N. The Possible Subduction of Continental Material to Depths Greater than 200 km. Nature, 2000, 407(6805): 734-736.

[48]

Zhang R. Y., Hirajima T., Banno S., . Petrology of Ultrahigh-Pressure Rocks from the Southern Su-Lu Region, Eastern China. Journal of Metamorphic Geology, 1995, 13(6): 659-675.

[49]

Zhang R. Y., Liou J. G., Shu J. F. Hydroxyl-Rich Topaz in High-Pressure and Ultrahigh-Pressure Kyanite Quartzites, with Retrograde Woodhouseite, from the Sulu Terrane, Eastern China. American Mineralogist, 2002, 87(4): 445-453.

[50]

Zhang R. Y., Liou J. G., Yang J. S., . Petrochemical Constraints for Dual Origin of Garnet Peridotites from the Dabie-Sulu UHP Terrane, Eastern-Central China. Journal of Metamorphic Geology, 2000, 18(2): 149-166.

[51]

Zhang Z. M., Xiao Y. L., Shen K., . Garnet Growth Compositional Zonation and Metamorphic P-T Path of the Ultrahigh-Pressure Eclogites from the Sulu Orogenic Belt, Eastern Central China. Acta Petrologica Sinica, 2005, 21: 809-818.

[52]

Zheng Y. F., Fu B., Gong B., . Stable Isotope Geochemistry of Ultrahigh Pressure Metamorphic Rocks from the Dabie-Sulu Orogen in China: Implications for Geodynamics and Fluid Regime. Earth-Science Reviews, 2003, 62(1/2): 105-161.

AI Summary AI Mindmap
PDF

164

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/