Phase Equilibria Modeling and Zircon Dating for Precambrian Metapelites from the Xinghuadukou Complex in the Lulin Forest of the Erguna Massif, Northeast China

Jiulei Xu , Changqing Zheng , Lucie Tajčmanová , Xin Zhong , Xiaomeng Han , Zhaoyuan Wang , Yan Yang

Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (5) : 1276 -1290.

PDF
Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (5) : 1276 -1290. DOI: 10.1007/s12583-018-0843-z
Precambrian Metamorphism-Magmatism and Tectonics of the North China Craton and Erguna Massif

Phase Equilibria Modeling and Zircon Dating for Precambrian Metapelites from the Xinghuadukou Complex in the Lulin Forest of the Erguna Massif, Northeast China

Author information +
History +
PDF

Abstract

The nature and formation time of the Xinghuadukou complex in Northeast China are important for determining the tectonic evolution of the Precambrian geological evolution of the Erguna massif. In this study, we present the results of zircon U-Pb dating of two metapelites from the complex. Detrital and metamorphic zircons from the metapelites yield a depositional age of ~601 Ma and a metamorphic age of 496–509 Ma, indicating that the supracrustal rocks formed during the Neoproterozoic and recorded pan-African metamorphic events in the Erguna massif. Garnet porphyroblasts in Sil-Grt-Bt-Ms paragneiss show diffusion zoning, implying a decreasing P-T trend. Based on mineral transformation and P-T estimates using conventional geothermobarometers and phase equilibria modeling, three metamorphic stages were determined, including an early prograde metamorphic stage, a near peak upper amphibolite facies metamorphic stage, and a near-isobaric cooling stage with P-T conditions of 6.1 kb, 645 °C, 5–6 kb, 710–740 °C, and 4.4 kb, 625 °C, respectively. The metamorphic history of the Xinghuadukou complex is thus defined by a clockwise P-T trajectory, which implies that the metamorphism of the metapelites documented the subduction, subsequent uplift and post collision process.

Keywords

metapelites / clockwise P-T path / upper amphibolite facies / Xinghuadukou complex / Northeast China

Cite this article

Download citation ▾
Jiulei Xu, Changqing Zheng, Lucie Tajčmanová, Xin Zhong, Xiaomeng Han, Zhaoyuan Wang, Yan Yang. Phase Equilibria Modeling and Zircon Dating for Precambrian Metapelites from the Xinghuadukou Complex in the Lulin Forest of the Erguna Massif, Northeast China. Journal of Earth Science, 2018, 29(5): 1276-1290 DOI:10.1007/s12583-018-0843-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Biao S. H., Li Y. C., He X. H., . The Geochemical Characteristics of the Xinghuadukou Group in the Lulin Forestry Center, Tahe, Heilongjiang Province. Regonal Geology of China, 1999, 18: 28-33.

[2]

Biao S. H., Zheng W. Z., Zhou X. F. Zircon U-Pb Age of the North Da Hinggan Mts., NE China and Its Constraint to Attribute of the Ergun Block. Acta Geologica Sinica, 2012, 86(8): 1262-1272.

[3]

Connolly J. A. D. Computation of Phase Equilibria by Linear Programming: A Tool for Geodynamic Modeling and Its Application to Subduction Zone Decarbonation. Earth and Planetary Science Letters, 2005, 236(1/2): 524-541.

[4]

Dobretsov N. L., Buslov M. M., Vernikovsky V. A. Neoproterozoic to Early Ordovician Evolution of the Paleo-Asian Ocean: Implications to the Break-up of Rodinia. Gondwana Research, 2003, 6(2): 143-159.

[5]

Feng Z. Q. The Palezoic Tectono-Magmatic Evolution of the Northern Great Xingʼan Range: [Dissertation], 2015.

[6]

Feng Z. Q., Liu Y. J., Liu B. Q., . Timing and Nature of the Xinlin-Xiguitu Ocean: Constraints from Ophiolitic Gabbros in the Northern Great Xing’an Range, Eastern Central Asian Orogenic Belt. International Journal of Earth Sciences, 2016, 105(2): 491-505.

[7]

Florence F. P., Spear F. S. Effects of Diffusional Modification of Garnet Growth Zoning on P-T Path Calculations. Contributions to Mineralogy and Petrology, 1991, 107(4): 487-500.

[8]

Ge W. C., Wu F. Y., Zhou C. Y., . Emplacement Age of the Tahe Granite and Its Constraints on the Tectonic Nature of the Ergun Block in the Northern Part of the Da Hinggan Range. Chinese Science Bulletin, 2005, 50(18): 2097-2105.

[9]

Ge W. C., Chen J. S., Yang H., . Tectonic Implications of New Zircon U-Pb Ages for the Xinghuadukou Complex, Erguna Massif, Northern Great Xing’an Range, NE China. Journal of Asian Earth Sciences, 2015, 106: 169-185.

[10]

Han G. Q., Liu Y. J., Neubauer F., . Provenance Analysis of Permian Sandstones in the Central and Southern Da Xingʼan Mountains, China: Constraints on the Evolution of the Eastern Segment of the Central Asian Orogenic Belt. Tectonophysics, 2012, 580: 100-113.

[11]

HBGMR Heilongjiang Bureau of GeologyMineral Resources Regional Geology of Heilongjiang Province. Geological Publishing House, Beijing, 1993, 347-418.

[12]

Holdaway M. J. Application of New Experimental and Garnet Margules Data to the Garnet-Biotite Geothermometer. American Mineralogist, 2000, 85(7/8): 881-892.

[13]

Holland T. J. B., Powell R. An Internally Consistent Thermodynamic Data Set for Phases of Petrological Interest. Journal of Metamorphic Geology, 1998, 16(3): 309-343.

[14]

IMBGMR Inner Mongolian Bureau of GeologyMineral Resources Regional Geology of Inner Mongolian Automous Region. Geological Publishing House, 1993, 7-725.

[15]

Jahn B. M., Wu F. Y., Capdevila R., . Highly Evolved Juvenile Granites with Tetrad REE Patterns: The Woduhe and Baerzhe Granites from the Great Xingʼan Mountains in NE China. Lithos, 2001, 59(4): 171-198.

[16]

Jahn B. M., Wu F. Y., Chen B. Granitoids of the Central Asian Orogenic Belt and Continental Growth in the Phanerozoic. Transactions of the Royal Society of Edinburgh: Earth Sciences, 2000, 91(1/2): 181-193.

[17]

Jahn B. M. The Central Asian Orogenic Belt and Growth of the Continental Crust in the Phanerozoic. Geological Society, London, Special Publications, 2004, 226(1): 73-100.

[18]

Kröner A., Lehmann J., Schulmann K., . Lithostratigraphic and Geochronological Constraints on the Evolution of the Central Asian Orogenic Belt in SW Mongolia: Early Paleozoic Rifting Followed by Late Paleozoic Accretion. American Journal of Science, 2010, 310(7): 523-574.

[19]

Kröner A., Windley B. F., Badarch G., . Accretionary Growth and Crust Formation in the Central Asian Orogenic Belt and Comparison with the Arabian-Nubian Shield. Geological Society of America Memoirs, 2007, 200: 181-209.

[20]

Li J. Y. Permian Geodynamic Setting of Northeast China and Adjacent Regions: Closure of the Paleo-Asian Ocean and Subduction of the Paleo-Pacific Plate. Journal of Asian Earth Sciences, 2006, 26(3/4): 207-224.

[21]

Li R. S. Xinlin Ophiolite. Heilongjiang Geology, 1991.

[22]

Li Z. X., Bogdanova S. V., Collins A. S., . Assembly, Configuration, and Break-up History of Rodinia: A Synthesis. Precambrian Research, 2008, 160(1): 179-210.

[23]

Liu Y. S., Gao S., Hu Z. C., . Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 2010, 51(1/2): 537-571.

[24]

Liu Y. S., Hu Z. C., Gao S., . In situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 2008, 257(1/2): 34-43.

[25]

Liu Y. J., Li W. M., Feng Z. Q., . A Review of the Paleozoic Tectonics in the Eastern Part of Central Asian Orogenic Belt. Gondwana Research, 2017, 43: 123-148.

[26]

Ludwig K. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Centre Special Publication, 2003, 4 74.

[27]

Meng E., Xu W. L., Pei F. P., . Permian Bimodal Volcanism in the Zhangguangcai Range of Eastern Heilongjiang Province, NE China: Zircon U-Pb-Hf Isotopes and Geochemical Evidence. Journal of Asian Earth Sciences, 2011, 41(2): 119-132.

[28]

Meng E., Xu W. L., Pei F. P., . Detrital-Zircon Geochronology of Late Paleozoic Sedimentary Rocks in Eastern Heilongjiang Province, NE China: Implications for the Tectonic Evolution of the Eastern Segment of the Central Asian Orogenic Belt. Tectonophysics, 2010, 485(1/2/3/4): 42-51.

[29]

Miao L. C., Liu D. Y., Zhang F. Q., . Zircon SHRIMP U-Pb Ages of the “Xinghuadukou Group” in Hanjiayuanzi and Xinlin Areas and the “Zhalantun Group” in Inner Mongolia, Da Hinggan Mountains. Chinese Science Bulletin, 2007, 52(8): 1112-1124.

[30]

Miao L. C., Zhang F., Jiao S. J. Age, Protoliths and Tectonic Implications of the Toudaoqiao Blueschist, Inner Mongolia, China. Journal of Asian Earth Sciences, 2015, 105: 360-373.

[31]

Newton R., Charlu T., Kleppa O. Thermochemistry of the High Structural State Plagioclases. Geochimica et Cosmochimica Acta, 1980, 44(7): 933-941.

[32]

Qin X. F., Yin Z. G., Wang Y., . Early Paleozoic Adakitic Rocks in Mohe Area at the Northern End of the Da Hinggan Mountains and Their Geological Significance. Acta Petrologica Sinica, 2007, 23(6): 1501-1511.

[33]

Rytsk E. Y., Kovach V. P., Yarmolyuk V. V., . Isotopic Structure and Evolution of the Continental Crust in the East Transbaikalian Segment of the Central Asian Foldbelt. Geotectonics, 2011, 45(5): 349-377.

[34]

Safonova I. Y., Seltmann R., Kröner A., . A New Concept of Continental Construction in the Central Asian Orogenic Belt. Episodes, 2011, 34(3): 186-196.

[35]

Safonova I. Y., Santosh M. Accretionary Complexes in the Asia-Pacific Region: Tracing Archives of Ocean Plate Stratigraphy and Tracking Mantle Plumes. Gondwana Research, 2014, 25(1): 126-158.

[36]

Safonova I. Y., Utsunomiya A., Kojima S., . Pacific Superplume-Related Oceanic Basalts Hosted by Accretionary Complexes of Central Asia, Russian Far East and Japan. Gondwana Research, 2009, 16(3/4): 587-608.

[37]

Sengör A. M. C., Natal’in B. A., Burtman V. S. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 1993, 364(6435): 299-307.

[38]

Sengör A. M. C., Natal’in B. A. Paleotectonics of Asia: Fragments of a Synthesis. In: World and Regional Geology, Tectonic Evolution of Asia. Cambridge University Press, New York., 1996, 8: 486-640.

[39]

Shao J., Li Y. F., Zhou Y. H., . Neo-Archaean Magmatic Event in Erguna Massif of Northeast China: Evidence from the Zircon LA-ICP-MS Dating of the Gneissic Monzogranite from the Drill. Journal of Jilin University (Earth Science Edition), 2015, 45(2): 364-373.

[40]

Spear F. S. Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths, 1995, 1-55.

[41]

Spear F. S., Kohn M. J., Cheney J. T. P-T Paths from Anatectic Pelites. Contributions to Mineralogy and Petrology, 1999, 134(1): 17-32.

[42]

Sui Z. M., Ge W. C., Wu F. Y., . U-Pb Chronology in Zircon from Harabaqi Granitic Pluton in Northeastern Daxing’anling Area and Its Origin. Global Geology, 2006, 25(3): 229-236.

[43]

Sun D. Y., Gou J., Wang T. H., . Geochronological and Geochemical Constraints on the Erguna Massif Basement, NE China—Subduction History of the Mongol-Okhotsk Oceanic Crust. International Geology Review, 2013, 55(14): 1801-1816.

[44]

Sun G. R., Li Y. C., Zhang Y. The Basement Tectonics of Ergun Massif. Journal of Precious Metallic Geology, 2002, 11(3): 129-139.

[45]

Sun L., Ren B., Zhao F., . Late Paleoproterozoic Magmatic Records in the Erguna Massif: Evidences from the Zircon U-Pb Dating of Granitic Gneisses. Geological Bulletin of China, 2013, 32(2): 341-352.

[46]

Tajčmanová L., Connolly J. A. D., Cesare B. A Thermodynamic Model for Titanium and Ferric Iron Solution in Biotite. Journal of Metamorphic Geology, 2009, 27(2): 153-165.

[47]

Tang J., Xu W. L., Wang F., . Geochronology and Geochemistry of Neoproterozoic Magmatism in the Erguna Massif, NE China: Petrogenesis and Implications for the Breakup of the Rodinia Supercontinent. Precambrian Research, 2013, 224: 597-611.

[48]

Tang J., Xu W. L., Wang F., . Early Mesozoic Southward Subduction History of the Mongol-Okhotsk Oceanic Plate: Evidence from Geochronology and Geochemistry of Early Mesozoic Intrusive Rocks in the Erguna Massif, NE China. Gondwana Research, 2016, 31: 218-240.

[49]

Thompson J., Hovis G. L. Entropy of Mixing in Sanidine. American Mineralogist, 1979, 64: 57-65.

[50]

Tinkham D. K., Zuluaga C. A., Stowell H. H. Metapelite Phase Equilibria Modeling in MnNCKFMASH: The Effect of Variable Al2O3 and MgO/(MgO+FeO) on Mineral Stability. American Mineralogist, 2003, 88(7): 1174-1174.

[51]

Torsvik T. H., Cocks L. R. M. Earth Geography from 400 to 2.0Ma: A Palaeomagnetic, Faunal and Facies Review. Journal of the Geological Society, 2004, 161(4): 555-572.

[52]

Turkina O. M., Nozhkin A. D., Bayanova T. B., . Precambrian Terranes in the Southwestern Framing of the Siberian Craton: Isotopic Provinces, Stages of Crustal Evolution and Accretion-Collision Events. Russian Geology and Geophysics, 2007, 48(1): 61-70.

[53]

Wang F., Xu W. L., Gao F. H., . Tectonic History of the Zhangguangcailing Group in Eastern Heilongjiang Province, NE China: Constraints from U-Pb Geochronology of Detrital and Magmatic Zircons. Tectonophysics, 2012, 566/567: 105-122.

[54]

Wang Y., Yang X. P., Na F. C., . Discovery of the Late Cambrian Intermediate-Basic Volcanic Rocks in Tahe, Northern Da Hinggan Mountain and Its Geological Significance. Journal of Jilin University (Earth Science Edition), 2017, 47(1): 126-138.

[55]

Wang Z. Y., Zheng C. Q., Xu J. L., . Geochemistry and Its Tectonic Implictions of Metamorphic Rocks of Jiageda Formation in Moerdaoga Area, Inner Mongolia. Earth Science, 2018, 43(1): 176-198.

[56]

Wei C. J. Granulite Facies Metamorphism and Petrogenesis of Granite (II): Quantitative Modeling of the HT-UHT Phase Equilibria for Metapelites and the Petrogenesis of S-Type Granite. Acta Petrologica Sinica, 2016, 32(6): 1625-1643.

[57]

White R. W., Powell R., Holland T. J. B. Progress Relating to Calculation of Partial Melting Equilibria for Metapelites. Journal of Metamorphic Geology, 2007, 25(5): 511-527.

[58]

Windley B. F., Alexeiev D., Xiao W. J., . Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 2007, 164(1): 31-47.

[59]

Wu C. M., Chen H. X. Revised Ti-in-Biotite Geothermometer for Ilmenite-or Rutile-Bearing Crustal Metapelites. Chinese Science Bulletin, 2015, 60(1): 116-121.

[60]

Wu C. M., Zhao G. C. The Metapelitic Garne-Biotite-Muscovite-Aluminosilicate-Quartz (GBMAQ) Geobarometer. Lithos, 2007, 97(3/4): 365-372.

[61]

Wu F. Y., Jahn B. M., Wilde S. A., . Phanerozoic Crustal Growth: U-Pb and Sr-Nd Isotopic Evidence from the Granites in Northeastern China. Tectonophysics, 2000, 328(1/2): 89-113.

[62]

Wu F. Y., Jahn B. M., Wilde S. A., . Highly Fractionated I-Type Granites in NE China (I): Geochronology and Petrogenesis. Lithos, 2003, 66(3): 241-273.

[63]

Wu F. Y., Jahn B. M., Wilde S. A., . Highly Fractionated I-Type Granites in NE China (II): Isotopic Geochemistry and Implications for Crustal Growth in the Phanerozoic. Lithos, 2003, 67(3/4): 191-204.

[64]

Wu F. Y., Lin J. Q., Wilde S. A., . Nature and Significance of the Early Cretaceous Giant Igneous Event in Eastern China. Earth and Planetary Science Letters, 2005, 233(1/2): 103-119.

[65]

Wu F. Y., Sun D. Y., Li H. M., . A-Type Granites in Northeastern China: Age and Geochemical Constraints on Their Petrogenesis. Chemical Geology, 2002, 187(1/2): 143-173.

[66]

Wu F. Y., Sun D. Y., Ge W. C., . Geochronology of the Phanerozoic Granitoids in Northeastern China. Journal of Asian Earth Sciences, 2011, 41(1): 1-30.

[67]

Wu G., Chen Y. C., Chen Y. J., . Zircon U-Pb Ages of the Metamorphic Supracrustal Rocks of the Xinghuadukou Group and Granitic Complexes in the Argun Massif of the Northern Great Hinggan Range, NE China, and Their Tectonic Implications. Journal of Asian Earth Sciences, 2012, 49: 214-233.

[68]

Wu G. N., Sun F. Y., Zhao C. S., . Discovery of the Early Paleozoic Post-Collisional Granites in Northern Margin of the Erguna Massif and Its Geological Significance. Chinese Science Bulletin, 2005, 50(23): 2733-2743.

[69]

Xiao W. J., Santosh M. The Western Central Asian Orogenic Belt: A Window to Accretionary Orogenesis and Continental Growth. Gondwana Research, 2014, 25(4): 1429-1444.

[70]

Xu B., Zhao P., Wang Y. Y., . The Pre-Devonian Tectonic Framework of Xing’an-Mongolia Orogenic Belt (XMOB) in North China. Journal of Asian Earth Sciences, 2015, 97: 183-196.

[71]

Xu W. L., Pei F. P., Wang F., . Spatial-Temporal Relationships of Mesozoic Volcanic Rocks in NE China: Constraints on Tectonic Overprinting and Transformations between Multiple Tectonic Regimes. Journal of Asian Earth Sciences, 2013, 74: 167-193.

[72]

Zhang L., Liu Y. J., Li W. M., . Discussion on the Basement Properties and East Boundary of the Ergun Massif. Chinese Journal of Geology, 2013, 48(1): 227-244.

[73]

Zhao L., Takasu A., Liu Y., . Blueschist from the Toudaoqiao Area, Inner Mongolia, NE China: Evidence for the Suture between the Ergun and the Xing’an Blocks. Journal of Earth Science, 2017, 28(2): 241-248.

[74]

Zhao S. Neoproterozoic–Early Paleozoic Tectonic Evolution and Attribute of the Erguna Massif: Constraints from Detrital Zircon U-Pb Geochronology and Igneous Rock Associations: [Dissertation], 2017.

[75]

Zhao S., Xu W. L., Tang J., . Timing of Formation and Tectonic Nature of the Purportedly Neoproterozoic Jiageda Formation of the Erguna Massif, NE China: Constraints from Field Geology and U-Pb Geochronology of Detrital and Magmatic Zircons. Precambrian Research, 2016, 281: 585-601.

[76]

Zhao S., Xu W. L., Tang J., . Neoproterozoic Magmatic Events and Tectonic Attribution of the Erguna Massif: Constraints from Geochronological, Geochemical and Hf Isotopic Data of Intrusive Rocks. Earth Science, 2016, 41: 1803-1829.

[77]

Zhao S., Xu W. L., Wang F., . Neoproterozoic Magmatisms in the Erguna Massif, NE China: Evidence from Zircon U-Pb Geochronology. Geotectonica et Metallogenia, 2016, 40: 559-573.

[78]

Zhou J. B., Wang B., Wilde S. A., . Geochemistry and U-Pb Zircon Dating of the Toudaoqiao Blueschists in the Great Xing’an Range, Northeast China, and Tectonic Implications. Journal of Asian Earth Sciences, 2015, 97: 197-210.

[79]

Zhou J. B., Wilde S. A., Zhao G. C., . Nature and Assembly of Microcontinental Blocks within the Paleo-Asian Ocean. Earth-Science Reviews, 2017.

[80]

Zhou J. B., Wilde S. A., Zhang X. Z., . Early Paleozoic Metamorphic Rocks of the Erguna Block in the Great Xingʼan Range, NE China: Evidence for the Timing of Magmatic and Metamorphic Events and Their Tectonic Implications. Tectonophysics, 2011, 499(1/2/3/4): 105-117.

[81]

Zhou J. B., Wilde S. A., Zhang X. Z., . A >1 300 km Late Pan-African Metamorphic Belt in NE China: New Evidence from the Xingʼan Block and Its Tectonic Implications. Tectonophysics, 2011, 509(3/4): 280-292.

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/