Natural End Member Samples of Pyrope and Grossular: A Cathodoluminescence-Microscopy and -Spectra Case Study

Hans-Peter Schertl , Joana Polednia , Rolf D. Neuser , Arne P. Willner

Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (5) : 989 -1004.

PDF
Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (5) : 989 -1004. DOI: 10.1007/s12583-018-0842-0
P-T Conditions, Chemistry and Physics of Metamorphic Minerals

Natural End Member Samples of Pyrope and Grossular: A Cathodoluminescence-Microscopy and -Spectra Case Study

Author information +
History +
PDF

Abstract

Garnet is one of the most significant minerals in metamorphic rocks, that provides key information on prograde, peak-metamorphic and retrograde parts of the pressure-temperature (PT) path. Such results require a detailed knowledge of its different growth domains. For iron-poor compositions, the cathodoluminescence (CL) microscopy is an important and often overlooked method and allows to identify the internal structures of all garnet grains in one thin section within only a few seconds. The advantage of the CL-microscope is to deliver low magnification images in true color, not only of garnet but also, for instance, of other rock forming silicates, carbonates, sulfates, etc., of metamorphic, but also of sedimentary and magmatic origin, using polished thin sections. Internal structures of grossular from Mexico and pyrope from the Italian Alps were characterized and visualized by CL-microscopy. The different growth domains were additionally studied using CL-spectra and electron microprobe (EMP) analysis. Grossular shows a patchy zonation in its core while in mantle and rim zones oscillatory zoning is observed. It contains zones of anomalous birefringence, zones of orange and bluish luminescence and zones lacking luminescence. Different but low amounts of the activator elements Mn2+ and Eu2+ are responsible for the orange and bluish luminescent domains. Pyrope is also characterized by oscillatory growth zones, shows a dull luminescent core with a change of crystal morphology during growth, and displays an increase of brightness from core towards rim—the outermost rim, however, is lacking luminescence. The different luminescent zones are characterized by different amounts of Dy3+, Tb3+, Sm3+ and Sm2+ as activator elements. Because of slow diffusion rates of activators such as the REEs Sm, Dy and Tb, it can be still possible to visualize possible prograde and/or peak pressure stage growth domains of garnet, even if later high temperature events may have homogenized the major element profiles. Such domains may help to identify respective assemblages of mineral inclusions, and hence these results can represent an integral part of a detailed PT path. Thus the CL-information can be used as an important pathfinder prior to supplementary investigations, as for instance EMP, ion probe, mineral or fluid inclusion studies.

Keywords

pyrope / grossular / cathodoluminescence (CL) / oscillatory zoning / REE / CL-spectra

Cite this article

Download citation ▾
Hans-Peter Schertl, Joana Polednia, Rolf D. Neuser, Arne P. Willner. Natural End Member Samples of Pyrope and Grossular: A Cathodoluminescence-Microscopy and -Spectra Case Study. Journal of Earth Science, 2018, 29(5): 989-1004 DOI:10.1007/s12583-018-0842-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ague J. J., Axler J. A. Interface Coupled Dissolution-Reprecipitation in Garnet from Subducted Granulites and Ultrahigh-Pressure Rocks Revealed by Phosphorous, Sodium, and Titanium Zonation. American Mineralogist, 2016, 101(7): 1696-1699.

[2]

Allan M. M., Yardley B. W. D. Tracking Meteoric Infiltration into a Magmatic-Hydrothermal System: A Cathodoluminescence, Oxygen Isotope and Trace Element Study of Quartz from Mt. Leyshon, Australia. Chemical Geology, 2007, 240(3/4): 343-360.

[3]

Barwood H. Digital Near-Infrared (NIR) Cathodoluminescence (CL) Imaging and Image Processing. American Mineralogist, 2007, 92(2/3): 261-266.

[4]

Baxter E. F., Scherer E. E. Garnet Geochronology: Timekeeper of Tectonometamorphic Processes. Elements, 2013, 9(6): 433-438.

[5]

Berman R. G. Internally-Consistent Thermodynamic Data for Minerals in the System Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. Journal of Petrology, 1988, 29(2): 445-522.

[6]

Bishop F. C., Smith J. V., Dawson J. B. Na, P, Ti and Coordination of Si in Garnet from Peridotite and Eclogite Xenoliths. Nature, 1976, 260(5553): 696-697.

[7]

Blanc P., Baumer A., Cesbron F., . Systematic Cathodoluminescence Spectral Analysis of Synthetic Doped Minerals: Anhydrite, Apatite, Calcite, Fluorite, Scheelite and Zircon, 2000, 127-160.

[8]

Burton K. W., Kohn M. J., Cohen A. S., . The Relative Diffusion of Pb, Nd, Sr and O in Garnet. Earth and Planetary Science Letters, 1995, 133(1/2): 199-211.

[9]

Caddick M. J., Kohn M. J. Garnet: Witness to the Evolution of Destructive Plate Boundaries. Elements, 2013, 9(6): 427-432.

[10]

Carlson W. D. Rates of Fe, Mg, Mn, and Ca Diffusion in Garnet. American Mineralogist, 2006, 91(1): 1-11.

[11]

Carlson W. D. Multicomponent Diffusion in Aluminosilicate Garnet: Coupling Effects due to Charge Compensation. International Geology Review, 2017, 28: 1-15.

[12]

Catlos E. J., Baker C. B., Sorensen S. S., . Linking Microcracks and Mineral Zoning of Detachment-Exhumed Granites to Their Tectonomagmatic History: Evidence from the Salihli and Turgutlu Plutons in Western Turkey (Menderes Massif). Journal of Structural Geology, 2011, 33(5): 951-969.

[13]

Chakraborty S., Ganguly J. Compositional Zoning and Cation Diffusion in Garnets, 1991

[14]

Cherniak D. J. Rare Earth Element and Gallium Diffusion in Yttrium Aluminum Garnet. Physics and Chemistry of Minerals, 1998, 26(2): 156-163.

[15]

Chernoff C. B., Carlson W. D. Trace Element Zoning as a Record of Chemical Disequilibrium during Garnet Growth. Geology, 1999, 27(6): 555-558.

[16]

Chopin C. Coesite and Pure Pyrope in High-Grade Blueschists of the Western Alps: A First Record and some Consequences. Contributions to Mineralogy and Petrology, 1984, 86(2): 107-118.

[17]

Chopin C., Beyssac O., Bernard S., . Aragonite-Grossular Intergrowths in Eclogite-Facies Marble, Alpine Corsica. European Journal of Mineralogy, 2008, 20(5): 857-865.

[18]

Compagnoni R., Hirajima T. Superzoned Garnets in the Coesite-Bearing Brossasco-Isasca Unit, Dora-Maira Massif, Western Alps, and the Origin of the Whiteschists. Lithos, 2001, 57(4): 219-236.

[19]

Compagnoni R., Messiga B., Castelli D. High Pressure Metamorphism in the Western Alps, 1994, 10-15.

[20]

Connolly J. A. D. Multivariable Phase Diagrams: An Algorithm Based on Generalized Thermodynamics. American Journal of Science, 1990, 290(6): 666-718.

[21]

de Capitani C., Brown T. H. The Computation of Chemical Equilibrium in Complex Systems Containing Non-Ideal Solutions. Geochimica et Cosmochimica Acta, 1987, 51(10): 2639-2652.

[22]

Dudley R. J. The Use of Cathodoluminescence in the Identification of Soil Minerals. Journal of Soil Science, 1976, 27(4): 487-494.

[23]

Ferrando S., Frezzotti M. L., Petrelli M., . Metasomatism of Continental Crust during Subduction: The UHP Whiteschists from the Southern Dora-Maira Massif (Italian Western Alps). Journal of Metamorphic Geology, 2009, 27(9): 739-756.

[24]

Ferry J. M., Spear F. S. Experimental Calibration of the Partitioning of Fe and Mg between Biotite and Garnet. Contributions to Mineralogy and Petrology, 1978, 66(2): 113-117.

[25]

Gaft M., Reisfeld R., Panczer G. Modern Luminescence Spectroscopy of Minerals and Materials, 2005.

[26]

Ganguly J. Cation Diffusion Kinetics in Aluminosilicate Garnets and Geological Applications. Reviews in Mineralogy and Geochemistry, 2010, 72(1): 559-601.

[27]

Ganguly J., Tirone M., Hervig R. L. Diffusion Kinetics of Samarium and Neodymium in Garnet, and a Method for Determining Cooling Rates of Rocks. Science, 1998, 281(5378): 805-807.

[28]

Gorobets B. S., Rogojine A. A. Luminescent Spectra of Minerals: Reference-Book, 2002.

[29]

Götze J. Potential of Cathodoluminescence (CL) Microscopy and Spectroscopy for the Analysis of Minerals and Materials. Analytical and Bioanalytical Chemistry, 2002, 374(4): 703-708.

[30]

Götze J., Schertl H. P., Neuser R. D., . Optical Microscope-Cathodoluminescence (OM-CL) Imaging as a Powerful Tool to Reveal Internal Textures of Minerals. Mineralogy and Petrology, 2013, 107(3): 373-392.

[31]

Gross J., Burchard M., Schertl H. P., . Common High-Pressure Metamorphic History of Eclogite Lenses and Surrounding Metasediments: A Case Study of Calc-Silicate Reaction Zones (Erzgebirge, Germany). European Journal of Mineralogy, 2008, 20(5): 757-775.

[32]

Habermann D., Götze J., Neuser R. D., . Quantitative high Resolution Spectral Analysis of Mn2+ in Sedimentary Calcite, 2000, 331-358.

[33]

Habermann D., Meijer J., Neuser R. D., . Micro-PIXE and Quantitative Cathodoluminescence Spectroscopy: Combined High Resolution Trace Element Analyses in Minerals, 1999, 470-477.

[34]

Habermann D., Neuser R. D., Richter D. K. REE-Activated Cathodoluminescence of Calcite and Dolomite: High-Resolution Spectrometric Analysis of CL Emission (HRS-CL). Sedimentary Geology, 1996, 101(1/2): 1-7.

[35]

Harlow G. E. Jadeitites, Albitites and Related Rocks from the Motagua Fault Zone, Guatemala. Journal of Metamorphic Geology, 1994, 12(1): 49-68.

[36]

Harlow G. E., Sorensen S. S. Jade (Nephrite and Jadeitite) and Serpentinite: Metasomatic Connections. International Geology Review, 2005, 47(2): 113-146.

[37]

Henmi K., Kusachi I., Numano T. Contact Minerals from Kushiro, Hiroshima Prefecture. Journal of the Mineralogical Society of Japan, 1971, 10(3): 160-169.

[38]

Holland T. J. B., Powell R. An Internally Consistent Thermodynamic Dataset with Uncertainties and Correlations: 2. Data and Results. Journal of Metamorphic Geology, 1985, 3(4): 343-370.

[39]

Holland T. J. B., Powell R. An Enlarged and Updated Internally Consistent Thermodynamic Dataset with Uncertainties and Correlations: The System K2O-Na2O-CaO-MgO-MnO-FeO-Fe2O3-Al2O3-TiO2-SiO2-C-H2-O2. Journal of Metamorphic Geology, 1990, 8(1): 89-124.

[40]

Houzar S., Leichmann J. Application of Cathodoluminescence to the Study of Metamorphic Textures in Marbles from the Eastern Part of the Bohemian Massif. Bulletin of Geosciences, 2003, 78: 241-250.

[41]

Kempe U., Plötze M., Brachmann A., . Stabilisation of Divalent Rare Earth Elements in Natural Fluorite. Mineralogy and Petrology, 2002, 76: 213-234.

[42]

Kohn M. J. Oscillatory-and Sector-Zoned Garnets Record Cyclic (?) Rapid Thrusting in Central Nepal, 2004, Geochemistry, Geophysics, Geosystems, 5(12): Q12014

[43]

Lasaga A. C., Richardson S. M., Holland H. D. The Mathematics of Cation Diffusion and Exchange between Silicate Minerals during Retrograde Metamorphism, 1977, 353-388.

[44]

Leach T. M., Rodgers K. A. Metasomatism in the Wairere Serpentinite, King Country, New Zealand. Mineralogical Magazine, 1978, 42(321): 45-62.

[45]

Li X. P., Duan W. Y., Zhao L. Q., . Rodingites from the Xigaze Ophiolite, Southern Tibet—New Insights into the Processes of Rodingitization. European Journal of Mineralogy, 2017, 29(5): 821-837.

[46]

Liu P. L., Massonne H. J., Jin Z. M., . Diopside, Apatite, and Rutile in an Ultrahigh Pressure Impure Marble from the Dabie Shan, Eastern China: A Record of Eclogite-Facies Metasomatism during Exhumation. Chemical Geology, 2017, 466: 123-139.

[47]

Locock A. J. An Excel Spreadsheet to Recast Analyses of Garnet into End-Member Components, and a Synopsis of the Crystal Chemistry of Natural Silicate Garnets. Computers & Geosciences, 2008, 34(12): 1769-1780.

[48]

Marfunin A. S. Spectroscopy, Luminescence and Radiation Centres in Minerals, 1979

[49]

McAloon B. P., Hofmeister A. M. Single-Crystal Absorption and Reflection Infrared Spectroscopy of Birefringent Grossular-Andradite Garnets. American Mineralogist, 1993, 78: 957-967.

[50]

Mitchell R. H., Xiong J., Mariano A. N., . Rare-Earth Element-Activated Cathodoluminescence in Apatite. Canadian Mineralogist, 1997, 35: 979-998.

[51]

Moore R. O., Gurney J. J. Pyroxene Solid Solution in Garnets Included in Diamond. Nature, 1985, 318(6046): 553-555.

[52]

Neuser R. D., Reinecke T., Schertl H.-P. Low Temperature Cathodoluminescence of Selected Minerals from High Pressure Metamorphic Rocks. Bochumer Geologische und Geotechnische Arbeiten, 1995, 44: 119-123.

[53]

Pagel M., Barbin V., Blanc P., . Cathodoluminescence in Geosciences, 2000

[54]

Park C., Choi W., Kim H., . Oscillatory Zoning in Skarn Garnet: Implications for Tungsten Ore Exploration. Ore Geology Reviews, 2017, 89: 1006-1018.

[55]

Parsons I., Steele D. A., Lee M. R., . Titanium as a Cathodoluminescence Activator in Alkali Feldspars. American Mineralogist, 2008, 93(5/6): 875-879.

[56]

Perchuk A. L., Burchard M., Schertl H. P., . Diffusion of Divalent Cations in Garnet: Multi-Couple Experiments. Contributions to Mineralogy and Petrology, 2009, 157(5): 573-592.

[57]

Råheim A., Green D. H. Experimental Determination of the Temperature and Pressure Dependence of the Fe-Mg Partition Coefficient for Coexisting Garnet and Clinopyroxene. Contributions to Mineralogy and Petrology, 1974, 48(3): 179-203.

[58]

Reinecke T. Prograde High-to Ultrahigh-Pressure Metamorphism and Exhumation of Oceanic Sediments at Lago Di Cignana, Zermatt-Saas Zone, Western Alps. Lithos, 1998, 42(3/4): 147-189.

[59]

Richter D. K., Götte T., Götze J., . Progress in Application of Cathodoluminescence (CL) in Sedimentary Petrology. Mineralogy and Petrology, 2003, 79(3/4): 127-166.

[60]

Richter D. K., Heinrich F., Geske A., . First Description of Phanerozoic Radiaxial Fibrous Dolomite. Sedimentary Geology, 2014, 304: 1-10.

[61]

Rollinson H. Metamorphic History Suggested by Garnet-Growth Chronologies in the Isua Greenstone Belt, West Greenland. Precambrian Research, 2003, 126(3/4): 181-196.

[62]

Satish-Kumar M., Mori H., Kusachi I., . Cathodoluminescence Microscopy of High-Temperature Skarn Minerals from Fuka Contact Aureole, Okayama, Japan. Geoscience Reports, Shizuoka University, 2006, 33: 21-28.

[63]

Schandl E. S., Mittwede S. K. Evolution of the Acipayam (Denizli, Turkey) Rodingites. International Geology Review, 2001, 43(7): 611-623.

[64]

Scherer E. E., Cameron K. L., Blichert-Toft J. Lu-Hf Garnet Geochronology: Closure Temperature Relative to the Sm-Nd System and the Effects of Trace Mineral Inclusions. Geochimica et Cosmochimica Acta, 2000, 64(19): 3413-3432.

[65]

Schertl H.-P., Maresch W. V., Knippenberg S., . Petrography, Mineralogy and Geochemistry of Jadeite-Rich Artefacts from the Playa Grande Excavation Site, Northern Hispaniola: Evaluation of Local Provenance from the Río San Juan Complex, 2018.

[66]

Schertl H.-P., Medenbach O., Neuser R. D. UHP-Metamorphic Rocks from Dora Maira, Western Alps: Cathodoluminescence of Silica and Twinning of Coesite. Russian Geology and Geophysics, 2005, 46: 1327-1332.

[67]

Schertl H.-P., Maresch W. V., Stanek K. P., . New Occurrences of Jadeitite, Jadeite Quartzite and Jadeite-Lawsonite Quartzite in the Dominican Republic, Hispaniola: Petrological and Geochronological Overview. European Journal of Mineralogy, 2012, 24(2): 199-216.

[68]

Schertl H.-P., Neuser R. D., Logvinova A. M., . Cathodoluminescence Microscopy of the Kokchetav Ultrahigh-Pressure Calcsilicate Rocks: What can We Learn from Silicates, Carbon-Hosting Minerals, and Diamond?. Russian Geology and Geophysics, 2015, 56(1/2): 100-112.

[69]

Schertl H.-P., Neuser R. D., Sobolev N. V., . UHP-Metamorphic Rocks from Dora Maira/Western Alps and Kokchetav/Kazakhstan: New Insights Using Cathodoluminescence Petrography. European Journal of Mineralogy, 2004, 16(1): 49-57.

[70]

Schertl H.-P., Schreyer W. Geochemistry of Coesite-Bearing “Pyrope Quartzite” and Related Rocks from the Dora-Maira Massif, Western Alps. European Journal of Mineralogy, 2008, 20(5): 791-809.

[71]

Schertl H.-P., Schreyer W., Chopin C. The Pyrope-Coesite Rocks and Their Country Rocks at Parigi, Dora Maira Massif, Western Alps: Detailed Petrography, Mineral Chemistry and PT-Path. Contributions to Mineralogy and Petrology, 1991, 108(1/2): 1-21.

[72]

Schertl H.-P., Sobolev N. V. The Kokchetav Massif, Kazakhstan: “Type Locality” of Diamond-Bearing UHP Metamorphic Rocks. Journal of Asian Earth Sciences, 2013, 63: 5-38.

[73]

Schmidt A., Mezger K., OʼBrien P. J. The Time of Eclogite Formation in the Ultrahigh Pressure Rocks of the Sulu Terrane. Lithos, 2011, 125(1/2): 743-756.

[74]

Schumacher R., Rötzler K., Maresch W. V. Subtle Oscillatory Zoning in Garnet from Regional Metamorphic Phyllites and Mica Schists, Western Erzgebirge, Germany. Canadian Mineralogist, 1998, 37: 381-402.

[75]

Shtukenberg A. G., Punin Y. O., Frank-Kamenetskaya O. V., . On the Origin of Anomalous Birefringence in Grandite Garnets. Mineralogical Magazine, 2001, 65(3): 445-459.

[76]

Shtukenberg A. G., Punin Y. O., Haegele E., . On the Origin of Inhomogeneity of Anomalous Birefringence in Mixed Crystals: An Example of Alums. Physics and Chemistry of Minerals, 2001, 28(9): 665-674.

[77]

Sobolev N. V. Jr., Lavrentʼev J. G. Isomorphic Sodium Admixture in Garnets Formed at High Pressures. Contributions to Mineralogy and Petrology, 1971, 31(1): 1-12.

[78]

Sobolev N. V., Shatsky V. S. Diamond Inclusions in Garnets from Metamorphic Rocks: A New Environment for Diamond Formation. Nature, 1990, 343(6260): 742-746.

[79]

Sobolev N. V., Schertl H. P., Neuser R. D., . Relict Unusually Low Iron Pyrope-Grossular Garnets in UHPM Calc-Silicate Rocks of the Kokchetav Massif, Kazakhstan. International Geology Review, 2007, 49(8): 717-731.

[80]

Sobolev N. V., Schertl H. P., Valley J. W., . Oxygen Isotope Variations of Garnets and Clinopyroxenes in a Layered Diamondiferous Calcsilicate Rock from Kokchetav Massif, Kazakhstan: A Window into the Geochemical Nature of Deeply Subducted UHPM Rocks. Contributions to Mineralogy and Petrology, 2011, 162(5): 1079-1092.

[81]

Sobolev N. V., Schertl H.-P., Neuser R. D., . Formation and Evolution of Hypabyssal Kimberlites from the Siberian Craton: Part 1—New Insights from Cathodoluminescence of the Carbonates. Journal of Asian Earth Sciences, 2017, 145: 670-678.

[82]

Takahashi N., Tsujimori T., Kayama M., . Cathodoluminescence Petrography of P-Type Jadeitites from the New Idria Serpentinite Body, California. Journal of Mineralogical and Petrological Sciences, 2017, 112(5): 291-299.

[83]

Teng H. H. How Ions and Molecules Organize to Form Crystals. Elements, 2013, 9(3): 189-194.

[84]

Tirone M., Ganguly J., Dohmen R., . Rare Earth Diffusion Kinetics in Garnet: Experimental Studies and Applications. Geochimica et Cosmochimica Acta, 2005, 69(9): 2385-2398.

[85]

Van Orman J. A., Grove T. L., Shimizu N., . Rare Earth Element Diffusion in a Natural Pyrope Single Crystal at 2.8 GPa. Contributions to Mineralogy and Petrology, 2002, 142(4): 416-424.

[86]

Whitney D. L., Evans B. W. Abbreviations for Names of Rock-Forming Minerals. American Mineralogist, 2010, 95(1): 185-187.

[87]

Zhai D.-G., Liu J.-J., Zhang H.-Y., . Origin of Oscillatory Zoned Garnets from the Xieertala Fe-Zn Skarn Deposit, Northern China: In situ LA-ICP-MS Evidence. Lithos, 2014, 279-291.

[88]

Zorenko Y., Gorbenko V., Zorenko T., . Luminescent and Scintillation Properties of YAG: Dy and YAG: Dy, Ce Single Crystalline Films. Radiation Measurements, 2016, 90: 308-313.

AI Summary AI Mindmap
PDF

162

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/