Coulomb Stress Evolution History as Implication on the Pattern of Strong Earthquakes along the Xianshuihe-Xiaojiang Fault System, China

Bing Yan , Shinji Toda , Aiming Lin

Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (2) : 427 -440.

PDF
Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (2) : 427 -440. DOI: 10.1007/s12583-018-0840-2
Seismology

Coulomb Stress Evolution History as Implication on the Pattern of Strong Earthquakes along the Xianshuihe-Xiaojiang Fault System, China

Author information +
History +
PDF

Abstract

Coulomb stress accumulation and releasing history and its relationship with the occurrence of strong historical earthquakes could deepen our understanding of the occurrence pattern of strong earthquakes and hence its seismic potential in future. The sinistral strike-slip Xianshuihe- Xiaojiang fault zone (XXFS) is one of the most dangerous fault zones in China, extending 1 500-km-long from the central Tibetan Plateau to the Red River fault zone. There are 35 M≥6.5 historical earthquakes occurred since 1327, hence it is an ideal site for studying the Coulomb stress evolution history and its relationship with the occurrences of strong earthquakes. In this study, we evaluated the Coulomb stress change history along the XXFS by synthesizing fault geometry, GPS data and historical earthquakes. Coulomb stress change history also revealed different patterns of historical earthquakes on different segments of the XXFS, such as characteristic recurrence intervals along the Salaha-Moxi fault and super-cycles along the Xianshuihe fault. Based on the occurrence pattern of past historical earthquakes and current Coulomb stress field obtained in this study, we suggest positive ΔCFS and hence high seismic potential along the Salaha-Moxi fault and the Anninghe fault.

Keywords

Tibetan Plateau / Xianshuihe-Xiaojiang fault system / Coulomb stress triggering theory / recurrence interval / seismic hazard

Cite this article

Download citation ▾
Bing Yan, Shinji Toda, Aiming Lin. Coulomb Stress Evolution History as Implication on the Pattern of Strong Earthquakes along the Xianshuihe-Xiaojiang Fault System, China. Journal of Earth Science, 2018, 29(2): 427-440 DOI:10.1007/s12583-018-0840-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Allen C. R., Luo Z., Qian H., . Field Study of a Highly Active Fault Zone: The Xianshuihe Fault of Southwestern China. Geological Society of America Bulletin, 1991, 103(9): 1178-1199.

[2]

Anderson J. G., Luco J. E. Consequences of Slip Rate Constraints on Earthquake Occurrence Relations. Bulletin of the Seismological Society of America, 1983, 73(2): 471-496.

[3]

Avouac J. P., Tapponnier P. Kinematic Model of Active Deformation in Central Asia. Geophysical Research Letters, 1993, 20(10): 895-898.

[4]

Bakun W. H., Lindh A. G. The Parkfield, California, Earthquake Prediction Experiment. Science, 1985, 229(4714): 619-624.

[5]

Brune J. N. Seismic Moment, Seismicity, and Rate of Slip along Major Fault Zones. Journal of Geophysical Research, 1968, 73(2): 777-784.

[6]

Earthquake Disaster Prevention Department of China Earthquake Administration EDPDCEA Catalogue of Chinese Historical Strong Earthquakes (23rd Century BC-AD 1911), 1995.

[7]

Earthquake Disaster Prevention Department of China Earthquake Administration EDPDCEA Catalogue of Chinese Modern Earthquake (1912 AD-1990 AD Ms≥ 4.7), 1999.

[8]

England P., Molnar P. Right-Lateral Shear and Rotation as the Explanation for Strike-Slip Faulting in Eastern Tibet. Nature, 1990, 344(6262): 140-142.

[9]

Gan W. J., Zhang P. Z., Shen Z. K., . Present-Day Crustal Motion within the Tibetan Plateau Inferred from GPS Measurements. Journal of Geophysical Research, 2007, 112 B8 B08416

[10]

Grant L. B., Sieh K. Paleoseismic Evidence of Clustered Earthquakes on the San Andreas Fault in the Carrizo Plain, California. Journal of Geophysical Research, 1994, 99(B4): 6819-6841.

[11]

Harris R. A. Introduction to Special Section: Stress Triggers, Stress Shadows, and Implications for Seismic Hazard. Journal of Geophysical Research: Solid Earth, 1998, 103(B10): 24347-24358.

[12]

He H. L., Ikeda Y. Faulting on the Anninghe Fault Zone, Southwest China in Late Quaternary and Its Movement Model. Acta Seismologica Sinica, 2007, 20(5): 571-583.

[13]

He H. L., Ikeda Y., He Y. L., . Newly-Generated Daliangshan Fault Zone—Shortcutting on the Central Section of Xianshuihe-Xiaojiang Fault System. Science in China Series D: Earth Sciences, 2008, 51(9): 1248-1258.

[14]

He H. L., Oguchi T. Late Quaternary Activity of the Zemuhe and Xiaojiang Faults in Southwest China from Geomorphological Mapping. Geomorphology, 2008, 96(1/2): 62-85.

[15]

He H. L., Song F. M., Li C. Y. Topographic Survey of Micro Faulted Landform and Estimation of Strike Slip Rate for the Zemuhe Fault, Sichuan Province. Seismology and Geology, 1999, 21(4): 361-369.

[16]

He J. K., Xia W. H., Lu S. J., . Three-Dimensional Finite Element Modeling of Stress Evolution around the Xiaojiang Fault System in the Southeastern Tibetan Plateau during the Past ~500Years. Tectonophysics, 2011, 507: 70-85.

[17]

Heim A. Earthquake Region of Taofu. Geological Society of America Bulletin, 1934, 45(6): 1035-1050.

[18]

Jiang W. L., Zhang J. F., Tian T., . Crustal Structure of Chuan-Dian Region Derived from Gravity Data and Its Tectonic Implications. Physics of the Earth and Planetary Interiors, 2012, 212/213: 76-87.

[19]

Kanamori H. Magnitude Scale and Quantification of Earthquakes. Tectonophysics, 1983, 93(3/4): 185-199.

[20]

King G. C. P., Stein R. S., Lin J. Static Stress Changes and the Triggering of Earthquakes. Bulletin of the Seismological Society of America, 1994, 84(3): 935-953.

[21]

Li A., Shi F., Yang X. P., . Recurrence of Paleoearthquakes on the Southeastern Segment of the Ganzi-Yushu Fault, Central Tibetan Plateau. Science China Earth Sciences, 2012, 56(2): 165-172.

[22]

Li L., Chen Q. F., Niu F. L., . Estimates of Deep Slip Rate along the Xiaojiang Fault with Repeating Microearthquake Data. Chinese Journal of Geophysics, 2013, 56(10): 3373-3384.

[23]

Lin A., Jia D., Rao G., . Recurrent Morphogenic Earthquakes in the Past Millennium along the Strike-Slip Yushu Fault, Central Tibetan Plateau. Bulletin of the Seismological Society of America, 2011, 101(6): 2755-2764.

[24]

Lin J., Stein R. S. Stress Triggering in Thrust and Subduction Earthquakes and Stress Interaction between the Southern San Andreas and nearby Thrust and Strike-Slip Faults. Journal of Geophysical Research: Solid Earth, 2004, 109 B2 B02303

[25]

Liu C., Xu L., Chen Y. IGP-CEA Moment Tensor Solution. [2018-3-8], 2010.

[26]

Liu Q. Y. v d H. R. D. L. Y., . Eastward Expansion of the Tibetan Plateau by Crustal Flow and Strain Partitioning across Faults. Nature Geoscience, 2014, 7(5): 361-365.

[27]

Matsuda T., Ota Y., Ando M., . Fault Mechanism and Recurrence Time of Major Earthquakes in Southern Kanto District, Japan, as Deduced from Coastal Terrace Data. Geological Society of America Bulletin, 1978, 89(11): 1610-1618.

[28]

Nishenko S. P., Buland R. A Generic Recurrence Interval Distribution for Earthquake Forecasting. Geological Society of America Bulletin, 1987, 77(4): 1382-1399.

[29]

Qin X. H., Tan C. X., Chen Q. C., . Crustal Stress State and Seismic Hazard along Southwest Segment of the Longmenshan Thrust Belt after Wenchuan Earthquake. Journal of Earth Science, 2014, 25(4): 676-688.

[30]

Ran Y., Cheng J., Gong H., . Late Quaternary Geomorphic Deformation and Displacement Rates of the Anninghe Fault around Zimakua. Seismology and Geology, 2008, 30(1): 86-98.

[31]

Ren Z. K. Geometry and Deformation Features of the most Recent Co-Seismic Surface Ruptures along the Xiaojiang Fault and Its Tectonic Implications for the Tibetan Plateau. Journal of Asian Earth Sciences, 2013, 77: 21-30.

[32]

Ren Z. K. Late Quaternary Deformation Features along the Anninghe Fault on the Eastern Margin of the Tibetan Plateau. Journal of Asian Earth Sciences, 2014, 85: 53-65.

[33]

Ren Z. K., Lin A. M. Deformation Characteristics of Co-Seismic Surface Ruptures Produced by the 1850M 7.5 Xichang Earthquake on the Eastern Margin of the Tibetan Plateau. Journal of Asian Earth Sciences, 2010, 38(1/2): 1-13.

[34]

Ren Z. K., Lin A. M., Rao G. Late Pleistocene–Holocene Activity of the Zemuhe Fault on the Southeastern Margin of the Tibetan Plateau. Tectonophysics, 2010, 495(3/4): 324-336.

[35]

Ren Z. K., Zhang Z. Q., Chen T., . Clustering of Offsets on the Haiyuan Fault and their Relationship to Paleoearthquakes. Geological Society of America Bulletin, 2015, 128(1/2): 3-18.

[36]

Roger F., Calassou S., Lancelot J., . Miocene Emplacement and Deformation of the Konga Shan Granite (Xianshui he Fault Zone, West Sichuan, China): Geodynamic Implications. Earth and Planetary Science Letters, 1995, 130(1/2/3/4): 201-216.

[37]

Schlagenhauf A., Manighetti I., Benedetti L., . Earthquake Supercycles in Central Italy, Inferred from 36Cl Exposure Dating. Earth and Planetary Science Letters, 2011, 307(3/4): 487-500.

[38]

Schwartz D. P., Coppersmith K. J. Fault Behavior and Characteristic Earthquakes: Examples from the Wasatch and San Andreas Fault Zones, 1984, Journal of Geophysical Research: Solid Earth, 5681-5698.

[39]

Searle M. P., Elliott J. R., Phillips R. J., . Crustal-Lithospheric Structure and Continental Extrusion of Tibet. Journal of the Geological Society, 2011, 168(3): 633-672.

[40]

Shan B., Xiong X., Wang R. J., . Coulomb Stress Evolution along Xianshuihe-Xiaojiang Fault System since 1713 and Its Interaction with Wenchuan Earthquake, May 12, 2008. Earth and Planetary Science Letters, 2013, 377/378: 199-210.

[41]

Shao Z. G., Xu J., Ma H. S., . Coulomb Stress Evolution over the Past 200Years and Seismic Hazard along the Xianshuihe Fault Zone of Sichuan, China. Tectonophysics, 2016, 670: 48-65.

[42]

Shen Z. K., J. N., Wang M., . Contemporary Crustal Deformation around the Southeast Borderland of the Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 2005, 110 B11 B11409

[43]

Shi F., He H. L., Densmore A. L., . Active Tectonics of the Ganzi-Yushu Fault in the Southeastern Tibetan Plateau. Tectonophysics, 2016, 676: 112-124.

[44]

Shimazaki K., Nakata T. Time-Predictable Recurrence Model for Large Earthquakes. Geophysical Research Letters, 1980, 7(4): 279-282.

[45]

Sieh K. The Repetition of Large-Earthquake Ruptures. Proceedings of the National Academy of Sciences, 1996, 93(9): 3764-3771.

[46]

Sieh K., Natawidjaja D. H., Meltzner A. J., . Earthquake Supercycles Inferred from Sea-Level Changes Recorded in the Corals of West Sumatra. Science, 2008, 322(5908): 1674-1678.

[47]

Sieh K., Stuiver M., Brillinger D. A more Precise Chronology of Earthquakes Produced by the San Andreas Fault in Southern California. Journal of Geophysical Research, 1989, 94(B1): 603-623.

[48]

Stein R. S., Barka A. A., Dieterich J. H. Progressive Failure on the North Anatolian Fault since 1939 by Earthquake Stress Triggering. Geophysical Journal International, 1997, 128(3): 594-604.

[49]

Stein S., Geller R. J., Liu M. Why Earthquake Hazard Maps often Fail and what to do about it. Tectonophysics, 2012, 562/563: 1-25.

[50]

Tang R., Wen D., Deng T., . A Preliminary Study on the Characteristics of the Ground Fracture during the Luhuo M=7.9 Earthquake, 1973 and the Origin of the Earthquake. Acta Geophysica Sinica, 1976, 19(1): 18-27.

[51]

Thatcher W. Earthquake Recurrence and Risk Assessment in Circum-Pacific Seismic Gaps. Nature, 1989, 341(6241): 432-434.

[52]

Toda S., Lin J., Meghraoui M., . 12 May 2008 M=7.9 Wenchuan, China, Earthquake Calculated to Increase Failure Stress and Seismicity Rate on Three Major Fault Systems. Geophysical Research Letters, 2008, 35 17 L17305

[53]

Journal of Geophysical Research, 2002, 107 B6

[54]

Toda S., Stein R. S., Richards-Dinger K., . Forecasting the Evolution of Seismicity in Southern California: Animations Built on Earthquake Stress Transfer. Journal of Geophysical Research, 2005, 110 B5 B05S16

[55]

Toda S., Stein R. S., Sevilgen V., . Coulomb 3.3 Graphic-Rich Deformation and Stress-Change Software for Earthquake, Tectonic, and Volcano Research and Teaching—User Guide, 2011.

[56]

Wallace R. E. Earthquake Recurrence Intervals on the San Andreas Fault. Geological Society of America Bulletin, 1970, 81(10): 2875-2890.

[57]

Wang C. Y., Han W. B., Wu J. P., . Crustal Structure beneath the Eastern Margin of the Tibetan Plateau and Its Tectonic Implications. Journal of Geophysical Research, 2007, 112(B7): 3672-3672.

[58]

Wang C. Y., Lou H., Wang X. L., . Crustal Structure in Xiaojiang Fault Zone and Its Vicinity. Earthquake Science, 2009, 22(4): 347-356.

[59]

Wang D., Mori J. The 2010 Qinghai, China, Earthquake: A Moderate Earthquake with Supershear Rupture. Bulletin of the Seismological Society of America, 2012, 102(1): 301-308.

[60]

Wang E., Burchfiel B. C. Late Cenozoic to Holocene Deformation in Southwestern Sichuan and Adjacent Yunnan, China, and Its Role in Formation of the Southeastern Part of the Tibetan Plateau. Geological Society of America Bulletin, 2000, 112(3): 413-423.

[61]

Wang E., Burchfiel B. C., Royden L. H., . Late Cenozoic Xianshuihe-Xiaojiang, Red River, and Dali Fault Systems of Southwestern Sichuan and Central Yunnan, China. Special Paper of the Geological Society of America, 1998, 327: 1-108.

[62]

Wang S. F., Fang X. M., Zheng D. W., . Initiation of Slip along the Xianshuihe Fault Zone, Eastern Tibet, Constrained by K/Ar and Fission-Track Ages. International Geology Review, 2009, 51(12): 1121-1131.

[63]

Wang Y. Z., Wang M., Shen Z. K., . Inter-Seismic Deformation Field of the Ganzi-Yushu Fault before the 2010Mw 6.9 Yushu Earthquake. Tectonophysics, 2013, 584: 138-143.

[64]

Wells D. L., Coppersmith K. J. New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement. Bulletin of the Seismological Society of America, 1994, 84(4): 974-1002.

[65]

Wen X. Z., Ma S. L., Xu X. W., . Historical Pattern and Behavior of Earthquake Ruptures along the Eastern Boundary of the Sichuan-Yunnan Faulted-Block, Southwestern China. Physics of the Earth and Planetary Interiors, 2008, 168(1/2): 16-36.

[66]

Wen X. Z., Xu X. W., Zheng R., . Average Slip-Rate and Recent Large Earthquake Ruptures along the Garzê-Yushu Fault. Science in China Series D: Earth Sciences, 2003, 46(2): 276-288.

[67]

Wesnousky S. G. The Gutenberg-Richter or Characteristic Earthquake Distribution, Which is it. Bulletin of the Seismological Society of America, 1994, 84(6): 1940-1959.

[68]

Xu L. L., Rondenay S., van der Hilst R. D. Structure of the Crust beneath the Southeastern Tibetan Plateau from Teleseismic Receiver Functions. Physics of the Earth and Planetary Interiors, 2007, 165(3/4): 176-193.

[69]

Yan B., Lin A. M. Systematic Deflection and Offset of the Yangtze River Drainage System along the Strike-Slip Ganzi-Yushu-Xianshuihe Fault Zone, Tibetan Plateau. Journal of Geodynamics, 2015, 87: 13-25.

[70]

Yan B., Lin A. M. Holocene Activity and Paleoseismicity of the Selaha Fault, Southeastern Segment of the Strike-Slip Xianshuihe Fault Zone, Tibetan Plateau. Tectonophysics, 2017, 694(2): 302-318.

[71]

Yan J.-Q., Shi Z.-L., Huan W.-L., . The Characteristics of Fault Plane Solutions of Strong Aftershocks. Acta Sedimentologica Sinica, 1980, 2(4): 395-403.

[72]

Yao H. J., Beghein C., van der Hilst R. D. Surface Wave Array Tomography in SE Tibet from Ambient Seismic Noise and Two-Station Analysis-II. Crustal and Upper-Mantle Structure. Geophysical Journal International, 2008, 173(1): 205-219.

[73]

Youngs R. R., Coppersmith K. J. Implications of Fault Slip Rates and Earthquake Recurrence Models to Probabilistic Seismic Hazard Estimates. Bulletin of the Seismological Society of America, 1985, 75(4): 939-964.

[74]

Zhang P. Z. A Review on Active Tectonics and Deep Crustal Processes of the Western Sichuan Region, Eastern Margin of the Tibetan Plateau. Tectonophysics, 2013, 584: 7-22.

[75]

Zhang P. Z., Shen Z. K., Wang M., . Continuous Deformation of the Tibetan Plateau from Global Positioning System Data. Geology, 2004, 32(9): 809-812.

[76]

Zhang Z. J., Deng Y. F., Teng J. W., . An Overview of the Crustal Structure of the Tibetan Plateau after 35 Years of Deep Seismic Soundings. Journal of Asian Earth Sciences, 2011, 40(4): 977-989.

[77]

Zhou H., Liu H.-L., Kanamori H. Source Processes of Large Earthquakes along the Xianshuihe Fault in Southwestern China. Bulletin of the Seismological Society of America, 1983, 73(2): 537-551.

[78]

Zhou R. J., He Y. L., Huang Z. Z., . The Slip Rate and Strong Earthquake Recurrence Interval on the Qianning-Kangding Segment of the Xianshuihe Fault Zone. Acta Seismologica Sinica, 2001, 14(3): 263-273.

[79]

Zhou R. J., He Y. L., Yang T., . Slip Rate and Strong Earthquake Rupture on the Moxi-Mianning Segment along the Xianshuihe-Anninghe Fault Zone. Earthquake Research in China, 2001, 17(3): 253-262.

[80]

Zhou R. J., Li X. G., Huang Z. Z., . Average Slip Rate of Daliang Mountain Fault Zone in Sichuan in Late Quaternary Period. Journal of Seismological Research, 2003, 26(2): 191-196.

[81]

Zhou R. J., Li Y., Liang M. J., . Determination of Mean Recurrence Interval of Large Earthquakes on the Garzê-Yushu Fault (Dengke Segment) on the Eastern Margin of the Qinghai-Tibetan Plateau. Quaternary International, 2014, 333: 179-187.

[82]

Zhou R. J., Ma S. H., Cai C. X. Late Quaternary Active Features of the Ganzi-Yushu Fault Zone. Earthquake Research in China, 1996, 12(3): 250-260.

[83]

Zhou R. J., Wen X. Z., Cai C. X., . Recent Earthquakes and Assessment of Seismic Tendency on the Ganzi-Yushu Fault Zone. Seismology and Geology, 1997, 19(2): 115-124.

[84]

Zhu H., Wen X. Z. Static Stress Triggering Effects Related with MS 8.0 Wenchuan Earthquake. Journal of Earth Science, 2010, 21(1): 32-41.

AI Summary AI Mindmap
PDF

143

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/