Time Scale of Partial Melting of KLB-1 Peridotite: Constrained from Experimental Observation and Thermodynamic Models

Wei Du , Li Li , Donald J. Weidner

Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (2) : 245 -254.

PDF
Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (2) : 245 -254. DOI: 10.1007/s12583-018-0839-8
Petrology and Mineral Deposits

Time Scale of Partial Melting of KLB-1 Peridotite: Constrained from Experimental Observation and Thermodynamic Models

Author information +
History +
PDF

Abstract

Partial melting experiments were carried on KLB-1 peridotite, a xenolith sample from the Earth’s upper mantle, at 1.5 GPa and temperatures from 1 300 to 1 600 °C, with heating time varies from 1 to 30 min. We quantify the axial temperature gradient in the deformation-DIA apparatus (D-DIA) and constrain the time scale of partial melting by comparing experimental observations with calculated result from pMELTS program. The compositions of the liquid phase and the coexisting solid phases (clinopyroxene, orthopyroxene, and olivine) agree well with those calculated from pMELTS program, suggesting that local chemical equilibrium achieves during partial melting, although longer heating time is required to homogenize the bulk sample. The Mg# (=Mg/(Mg+Fe) mol.%) of olivines from the 1-minute heating experiment changed continuously along the axial of the graphite capsule. A thermal gradient of 50 °C/mm was calculated by comparing the Mg# of olivine grains with the output of pMELTS program. Olivine grains at the hot end of the graphite capsule from the three experiments heated at 1 400 °C but with different annealing time show consistence on Mg#, indicating that partitioning of Fe2+ between the olivine grains and the silicate melt happened fast, and partial melting occurs in seconds.

Keywords

peridotite / partial melting / temperature gradient / pMELTS program

Cite this article

Download citation ▾
Wei Du, Li Li, Donald J. Weidner. Time Scale of Partial Melting of KLB-1 Peridotite: Constrained from Experimental Observation and Thermodynamic Models. Journal of Earth Science, 2018, 29(2): 245-254 DOI:10.1007/s12583-018-0839-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Agee C. B., Walker D. Aluminum Partitioning between Olivine and Ultrabasic Silicate Liquid to 6GPa. Contributions to Mineralogy and Petrology, 1990, 105(3): 243-254.

[2]

Anderson D. L., Sammis C. Partial Melting in the Upper Mantle. Physics of the Earth and Planetary Interiors, 1970, 3: 41-50.

[3]

Asimow P. D., Ghiorso M. S. Algorithmic Modifications Extending MELTS to Calculate Subsolidus Phase Relations. American Mineralogist, 1998, 83(9/10): 1127-1132.

[4]

Dasgupta R., Hirschmann M. M., Smith N. D. Partial Melting Experiments of Peridotite+CO2 at 3 GPa and Genesis of Alkalic Ocean Island Basalts. Journal of Petrology, 2007, 48(11): 2093-2124.

[5]

Davis F. A., Hirschmann M. M., Humayun M. The Composition of the Incipient Partial Melt of Garnet Peridotite at 3GPa and the Origin of OIB. Earth and Planetary Science Letters, 2011, 308(3/4): 380-390.

[6]

Davis F. A., Tangeman J. A., Tenner T. J., . The Composition of KLB-1Peridotite. American Mineralogist, 2009, 94(1): 176-180.

[7]

Donovan J. J. Probe for EPMA: Acquisition, Automation and Analysis, 2012.

[8]

Du W., Li L., Weidner D. J. Experimental Observation on Grain Boundaries Affected by Partial Melting and Garnet Forming Phase Transition in KLB-1Peridotite. Physics of the Earth and Planetary Interiors, 2014, 228: 287-293.

[9]

Ghiorso M. S., Hirschmann M. M., Reiners P. W., . The pMELTS: A Revision of MELTS for Improved Calculation of Phase Relations and Major Element Partitioning Related to Partial Melting of the Mantle to 3GPa. Geochemistry, Geophysics, Geosystems, 2002, 3(5): 1-35.

[10]

Ghiorso M. S., Sack R. O. Chemical Mass Transfer in Magmatic Processes IV. A Revised and Internally Consistent Thermodynamic Model for the Interpolation and Extrapolation of Liquid-Solid Equilibria in Magmatic Systems at Elevated Temperatures and Pressures. Contributions to Mineralogy and Petrology, 1995, 119(2/3): 197-212.

[11]

Harmon N., Forsyth D. W., Weeraratne D. S. Thickening of Young Pacific Lithosphere from High-Resolution Rayleigh Wave Tomography: A Test of the Conductive Cooling Model. Earth and Planetary Science Letters, 2009, 278(1/2): 96-106.

[12]

Herzberg C., Gasparik T., Sawamoto H. Origin of Mantle Peridotite: Constraints from Melting Experiments to 16.5 GPa. Journal of Geophysical Research, 1990, 95(B10): 15779-15803.

[13]

Herzberg C., Raterron P., Zhang J. Z. New Experimental Observations on the Anhydrous Solidus for Peridotite KLB-1. Geochemistry, Geophysics, Geosystems, 2000, 1(11): 1-15.

[14]

Herzberg C., Zhang J. Z. Melting Experiments on Anhydrous Peridotite KLB-1: Compositions of Magmas in the Upper Mantle and Transition Zone. Journal of Geophysical Research: Solid Earth, 1996, 101(B4): 8271-8295.

[15]

Hirose K. Melting Experiments on Lherzolite KLB-1 under Hydrous Conditions and Generation of High-Magnesian Andesitic Melts. Geology, 1997, 25(1): 42-44.

[16]

Hirose K., Fei Y. W. Subsolidus and Melting Phase Relations of Basaltic Composition in the Uppermost Lower Mantle. Geochimica et Cosmochimica Acta, 2002, 66(12): 2099-2108.

[17]

Hirose K., Kushiro I. Partial Melting of Dry Peridotites at High Pressures: Determination of Compositions of Melts Segregated from Peridotite Using Aggregates of Diamond. Earth and Planetary Science Letters, 1993, 114(4): 477-489.

[18]

Hirschmann M. M. Mantle Solidus: Experimental Constraints and the Effects of Peridotite Composition. Geochemistry, Geophysics, Geosystems, 2000, 1 10 1042

[19]

Hirschmann M. M. Partial Melt in the Oceanic Low Velocity Zone. Physics of the Earth and Planetary Interiors, 2010, 179(1/2): 60-71.

[20]

Hirschmann M. M., Ghiorso M. S., Wasylenki L. E., . Calculation of Peridotite Partial Melting from Thermodynamic Models of Minerals and Melts. I. Review of Methods and Comparison with Experiments. Journal of Petrology, 1998, 39(6): 1091-1115.

[21]

Ito K., Kennedy G. C. Melting and Phase Relations in a Natural Peridotite to 40Kilobars. American Journal of Science, 1967, 265(6): 519-538.

[22]

Kato T., Ringwood A. E., Irifune T. Constraints on Element Partition Coefficients between MgSiO3 Perovskite and Liquid Determined by Direct Measurements. Earth and Planetary Science Letters, 1988, 90(1): 65-68.

[23]

Lesher C. E., Pickering-Witter J., Baxter G., . Melting of Garnet Peridotite: Effects of Capsules and Thermocouples, and Implications for the High-Pressure Mantle Solidus. American Mineralogist, 2003, 88(8/9): 1181-1189.

[24]

Lesher C. E., Walker D. Cumulate Maturation and Melt Migration in a Temperature Gradient, 1988, Journal of Geophysical Research: Solid Earth, 10295-10311.

[25]

Li L. Studies of Mineral Properties at Mantle Condition Using Deformation Multi-Anvil Apparatus. Progress in Natural Science, 2009, 19(11): 1467-1475.

[26]

Li L., Weidner D. J. Effect of Dynamic Melting on Acoustic Velocities in a Partially Molten Peridotite. Physics of the Earth and Planetary Interiors, 2013, 222: 1-7.

[27]

Li L., Weidner D. J. Detection of Melting by X-Ray Imaging at High Pressure. Review of Scientific Instruments, 2014, 85 6 065104

[28]

Munro R. G. Evaluated Material Properties for a Sintered Alpha-Alumina. Journal of the American Ceramic Society, 1997, 80(8): 1919-1928.

[29]

Ohtani E. Melting Relation of Fe2SiO4 up to about 200Kbar. Journal of Physics of the Earth, 1979, 27(3): 189-208.

[30]

Raterron P., Merkel S., Holyoke C. W. I. Axial Temperature Gradient and Stress Measurements in the Deformation-DIA Cell Using Alumina Pistons. Review of Scientific Instruments, 2013, 84 4 043906

[31]

Smith P. M., Asimow P. D. Adiabat_1ph: A New Public Front-End to the MELTS, PMELTS, and PHMELTS Models. Geochemistry, Geophysics, Geosystems, 2005, 6(2): 1-8.

[32]

Takahashi E. Melting of a Dry Peridotite KLB-1 up to 14GPa: Implications on the Origin of Peridotitic Upper Mantle. Journal of Geophysical Research, 1986, 91(B9): 9367-9382.

[33]

Takahashi E., Shimazaki T., Tsuzaki Y., . Melting Study of a Peridotite KLB-1 to 6.5GPa, and the Origin of Basaltic Magmas. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1993, 342(1663): 105-120.

[34]

Walker D., DeLong S. E. Soret Separation of Mid-Ocean Ridge Basalt Magma. Contributions to Mineralogy and Petrology, 1982, 79(3): 231-240.

[35]

Walter M. Melting of Garnet Peridotite and the Origin of Komatiite and Depleted Lithosphere. Journal of Petrology, 1998, 39(1): 29-60.

[36]

Weidner D. J., Li L. Kinetics of Melting in Peridotite from Volume Strain Measurements. Physics of the Earth and Planetary Interiors, 2015, 246: 25-30.

[37]

Yoshino T., Takei Y., Wark D. A., . Grain Boundary Wetness of Texturally Equilibrated Rocks, with Implications for Seismic Properties of the Upper Mantle. Journal of Geophysical Research, 2005, 110(B8): 1-16.

[38]

Zhang J. Z., Herzberg C. Melting Experiments on Anhydrous Peridotite KLB-1 from 5.0 to 22.5GPa. Journal of Geophysical Research: Solid Earth, 1994, 99(B9): 17729-17742.

[39]

Zhu W., Gaetani G. A., Fusseis F., . Microtomography of Partially Molten Rocks: Three-Dimensional Melt Distribution in Mantle Peridotite. Science, 2011, 332(6025): 88-91.

AI Summary AI Mindmap
PDF

152

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/