Development of Geothermal Resources in China: A Review

Xiaobo Zhang , Qinhong Hu

Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (2) : 452 -467.

PDF
Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (2) : 452 -467. DOI: 10.1007/s12583-018-0838-9
Geothermics

Development of Geothermal Resources in China: A Review

Author information +
History +
PDF

Abstract

Geothermal resources in China are distributed throughout the country, with hydrothermal systems of high temperature in the Tibet Autonomous Region, Yunnan Province and Taiwan Island and hydrothermal systems of low-medium temperature mainly in various sedimentary basins. Development and exploration of geothermal energy in China are below expectations. The purpose of this study is to comparatively review the characteristics (geology, hydrogeology, hydrochemistry and geophysical data) of typical hydrothermal fields/areas and suggest development and utilization approaches in the future. Hydrothermal systems formed by mountain lifting contain a considerable amount of energy for geothermal power generation, especially in the Tibet Autonomous Region, Yunnan Province and Taiwan Island. However, geothermal water in the Tatun geothermal field has high TDS (total dissolved solids), an issue that requires more research to resolve this problem for power generation. The large storage of geothermal resources has been investigated in Meso–Cenozoic sedimentary basins; it is basically used for heating, bathing or greenhouse plantation. Moreover, hydrothermal resources of low-medium temperature can also be used in binary power plants. Although the enhanced geothermal systems (EGS) in China are promising, the resources have not yet been commercially exploited, because the emerging technologies (hydraulic fracturing) and concerns over environmental impacts (induced micro-seismicity) lead to slow development. On the contrary, shallow geothermal energy has been directly utilized mainly for heating and cooling buildings. Cities like Beijing, Tianjin and Shenyang have established a series of ground-source heat-pump systems, which has led to a massive reduction of CO2 emission of 19.87×106 t.

Keywords

geothermal energy / potential / exploitation and utilization / China

Cite this article

Download citation ▾
Xiaobo Zhang, Qinhong Hu. Development of Geothermal Resources in China: A Review. Journal of Earth Science, 2018, 29(2): 452-467 DOI:10.1007/s12583-018-0838-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

An K. S., Huang S. Y. Geothermal Resources in China. Oil & Gas Science and Technology, 1980, 35: 449-460.

[2]

Ayub M., Mitsos A., Ghasemi H. Thermo-Economic Analysis of a Hybrid Solar-Binary Geothermal Power Plant. Energy, 2015, 87: 326-335.

[3]

Azzi M., Duc H., Ha Q. P. Toward Sustainable Energy Usage in the Power Generation and Construction Sectors—A Case Study of Australia. Automation in Construction, 2015, 59: 122-127.

[4]

Bai D. H., Meju M. A. Deep Structure of the Longling-Ruili Fault underneath Ruili Basin near the Eastern Himalayan Syntaxis: Insights from Magnetotelluric Imaging. Tectonophysics, 2003, 364(3/4): 135-146.

[5]

Bai D. H., Unsworth M. J., Meju M. A., . Crustal Deformation of the Eastern Tibetan Plateau Revealed by Magnetotelluric Imaging. Nature Geoscience, 2010, 3(5): 358-362.

[6]

Bai L., Li G. H., Khan N. G., . Focal Depths and Mechanisms of Shallow Earthquakes in the Himalayan-Tibetan Region. Gondwana Research, 2017, 41: 390-399.

[7]

Barbier E. Geothermal Energy Technology and Current Status: An Overview. Renewable and Sustainable Energy Reviews, 2002, 6(1/2): 3-65.

[8]

Baria R., Jung R., Tishner T., . Creation of an HDR Reservoir at 5 000 m Depth at the European HDR Project, 2006.

[9]

Bilgili M., Ozbek A., Sahin B., . An Overview of Renewable Electric Power Capacity and Progress in New Technologies in the World. Renewable and Sustainable Energy Reviews, 2015, 49: 323-334.

[10]

Blum P., Campillo G., Münch W., . CO2 Savings of Ground Source Heat Pump Systems—A Regional Analysis. Renewable Energy, 2010, 35(1): 122-127.

[11]

Bonte M., van Breukelen B. M., Stuyfzand P. J. Temperature-Induced Impacts on Groundwater Quality and Arsenic Mobility in Anoxic Aquifer Sediments Used for both Drinking Water and Shallow Geothermal Energy Production. Water Research, 2013, 47(14): 5088-5100.

[12]

BP British Petroleum Geothermal Power., 2017.

[13]

Brown D. W., Duchane D. V. Scientific Progress on the Fenton Hill HDR Project since 1983. Geothermics, 1999, 28(4/5): 591-601.

[14]

Chamorro C. R., García-Cuesta J. L., Mondéjar M. E., . Enhanced Geothermal Systems in Europe: An Estimation and Comparison of the Technical and Sustainable Potentials. Energy, 2014, 65: 250-263.

[15]

Chen M. X. Distribution and Utilization of Geothermal Resources in China. Natural Resources, 1991, 5: 40-46.

[16]

Chen M. X., Wang J. Y., Deng X. Geothermal Resources in China—Formation Characteristics and Potential Evaluation, 1994, 95-97.

[17]

Criss R. E. Use of Geochemical and Geophysical Techniques to Characterize and Prospect for Geothermal Resources and Hydrothermal Ore Deposits. Journal of Earth Science, 2015, 26(1): 73-77.

[18]

Duo J. Recommends on Exploitation of the High Temperature Geothermal Resources in Tibet, 2011, 11-13.

[19]

Dor J., Zhao P. Characteristics and Genesis of the Yangbajing Geothermal Field, Tibet, 2000.

[20]

Evans K. F. Permeability Creation and Damage Due to Massive Fluid Injections into Granite at 3.5 km at Soultz: 2. Critical Stress and Fracture Strength. Journal of Geophysical Research: Solid Earth, 2005, 110(B4): 387-405.

[21]

Ferguson G., Woodbury A. D. Observed Thermal Pollution and Post-Development Simulations of Low-Temperature Geothermal Systems in Winnipeg, Canada. Hydrogeology Journal, 2006, 14(7): 1206-1215.

[22]

Guo Q. H. Hydrogeochemistry of High-Temperature Geothermal Systems in China: A Review. Applied Geochemistry, 2012, 27(10): 1887-1898.

[23]

Guo Q. H., Liu M. L., Li J. X., . Acid Hot Springs Discharged from the Rehai Hydrothermal System of the Tengchong Volcanic Area (China): Formed via Magmatic Fluid Absorption or Geothermal Steam Heating?. Bulletin of Volcanology, 2014, 76(10): 1-12.

[24]

Guo Q. H., Liu M. L., Li J. X. Thioarsenic Species in the High-Temperature Hot Springs from the Rehai Geothermal Field (Tengchong) and Their Geochemical Geneses. Earth Science—Journal of China University of Geosciences, 2017, 42(2): 286-297.

[25]

Guo Q. H., Wang Y. X. Geochemistry of Hot Springs in the Tengchong Hydrothermal Areas, Southwestern China. Journal of Volcanology and Geothermal Research, 2012, 215/216: 61-73.

[26]

Guo Q. H., Wang Y. X., Liu W. Hydrogeochemistry and Environmental Impact of Geothermal Waters from Yangyi of Tibet, China. Journal of Volcanology and Geothermal Research, 2009, 180(1): 9-20.

[27]

Haehnlein S., Bayer P., Blum P. International Legal Status of the Use of Shallow Geothermal Energy. Renewable and Sustainable Energy Reviews, 2010, 14(9): 2611-2625.

[28]

Hähnlein S., Bayer P., Ferguson G., . Sustainability and Policy for the Thermal Use of Shallow Geothermal Energy. Energy Policy, 2013, 59: 914-925.

[29]

Han Z. S. Awareness to the Exploration and Evaluation of Shallow Geothermal Energy. Construction & Design for Project, 2008, 1: 14-16.

[30]

He L. J. Thermal Regime of the North China Craton: Implications for Craton Destruction. Earth-Science Reviews, 2015, 140: 14-26.

[31]

Hébert R. L., Ledésert B., Bartier D., . The Enhanced Geothermal System of Soultz-Sous-Forêts: A Study of the Relationships between Fracture Zones and Calcite Content. Journal of Volcanology and Geothermal Research, 2010, 196(1/2): 126-133.

[32]

Ho C. S. A Synthesis of the Geologic Evolution of Taiwan. Tectonophysics, 1986, 125(1/2/3): 1-16.

[33]

Hochstein M. P., Regenauer-Lieb K. Heat Generation Associated with Collision of Two Plates: The Himalayan Geothermal Belt. Journal of Volcanology and Geothermal Research, 1998, 83(1/2): 75-92.

[34]

Hua Y. P., Oliphant M., Hu E. J. Development of Renewable Energy in Australia and China: A Comparison of Policies and Status. Renewable Energy, 2016, 85: 1044-1051.

[35]

Huang H. F., Goff F. Hydrogeochemistry and Reservoir Model of Fuzhou Geothermal Field, China. Journal of Volcanology and Geothermal Research, 1986, 27(3/4): 203-227.

[36]

Huang S. P. Geothermal Energy in China. Nature Climate Change, 2012, 2(8): 557-560.

[37]

Huang S. B., Li X., Liu C. R. Study on Characteristics and Control Factors of Underground Hot Water in Area of Longling, Yunnan. Research of Soil and Water Conservation, 2007, 14(3): 147-149.

[38]

Kearey P., Wei H. B. Geothermal Fields of China. Journal of Volcanology and Geothermal Research, 1993, 56(4): 415-428.

[39]

Keçebaş A., Gökgedik H. Thermodynamic Evaluation of a Geothermal Power Plant for Advanced Exergy Analysis. Energy, 2015, 88: 746-755.

[40]

Konstantinou K. I., Lin C. H., Liang W. T. Seismicity Characteristics of a Potentially Active Quaternary Volcano: The Tatun Volcano Group, Northern Taiwan. Journal of Volcanology and Geothermal Research, 2007, 160(3/4): 300-318.

[41]

Konstantinou K. I., Lin C. H., Liang W. T., . Seismogenic Stress Field beneath the Tatun Volcano Group, Northern Taiwan. Journal of Volcanology and Geothermal Research, 2009, 187(3/4): 261-271.

[42]

Li J. X., Guo Q. H., Wang Y. X. Evaluation of Temperature of Parent Geothermal Fluid and Its Cooling Processes during Ascent to Surface: A Case Study in Rehai Geothermal Field, Tengchong. Earth Science—Journal of China University of Geosciences, 2015, 40(9): 1576-1584.

[43]

Li L. G., Li B. X. A Discussion on the Heat Source Mechanism and Geothermal System of Gonghe-Guide Basin and Mountain Geothermal Field in Qinghai Province. Geophysical and Geochemical Exploration, 2017, 41(1): 29-34.

[44]

Liao Z. J. Setting of the Geothermal Activities of Xizang (Tibet) and a Discussion of Associated Heat Source Problems. Acta Scientiarum Naturalium Universitatis Pekinensis, 1982, 24: 70-78.

[45]

Liao Z. J. Deep-Circulation Hydrothermal Systems without Magmatic Heat Source in Fujian Province. Geoscience, 2012, 26: 85-98.

[46]

Ling W. J., Liu Z. M., Wang W. L., . Assessment of Geothermal Resources and Its Potential in China. Geology in China, 2013, 40: 312-321.

[47]

Ling W. J., Wu Q. H., Wang G. L. Evaluation of Shallow Geothermal Energy Potential in China and Its Environmental Effects Analysis. Journal of Arid Land Resources and Environment, 2012, 26: 57-61.

[48]

Liu C. C., Maity J. P., Jean J. S., . Geochemical Characteristics of the Mud Volcano Fluids in Southwestern Taiwan and Their Possible Linkage to Elevated Arsenic Concentration in Chianan Plain Groundwater. Environmental Earth Sciences, 2012, 66(5): 1513-1523.

[49]

Liu S. M. Geothermal Resources in Taiwan. Geology in China, 1992, 5: 25-28.

[50]

Liu Y. T. A Study of Hydrochemistry and Geyser of Thermal Ground Water in the Banglazhang Geothermal Field in Longling, Yunnan: [Dissertation], 2009, 34-40.

[51]

Lu G. P., Liu R. F. Aqueous Chemistry of Typical Geothermal Springs with Deep Faults in Xinyi and Fengshun in Guangdong Province, China. Journal of Earth Science, 2015, 26(1): 60-72.

[52]

Lu H. Y. Application of Water Chemistry as a Hydrological Tracer in a Volcano Catchment Area: A Case Study of the Tatun Volcano Group, North Taiwan. Journal of Hydrology, 2014, 511: 825-837.

[53]

Lund J. W., Freeston D. H., Boyd T. L. Direct Utilization of Geothermal Energy 2010 Worldwide Review. Geothermics, 2011, 40(3): 159-180.

[54]

Ma F. R., Lin L., Wang Y. P., . Discussion on the Sustainable Exploitation and Utilization of Geothermal Resources in Tianjin. Geological Survey and Research, 2006, 29(3): 222-228.

[55]

Ma J. T., Bao X. H., Cao J. F., . Analysis on Utilization Conditions of Shallow Geothermal Energy in Changchun. Geoscience, 2013, 27: 460-467.

[56]

Majer E. L., Baria R., Stark M., . Induced Seismicity Associated with Enhanced Geothermal Systems. Geothermics, 2007, 36(3): 185-222.

[57]

Majer E. L., Peterson J. E. The Impact of Injection on Seismicity at the Geysers, California Geothermal Field. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(8): 1079-1090.

[58]

McClure M. W., Horne R. N. An Investigation of Stimulation Mechanisms in Enhanced Geothermal Systems. International Journal of Rock Mechanics and Mining Sciences, 2014, 72: 242-260.

[59]

Michaelides E. E. Future Directions and Cycles for Electricity Production from Geothermal Resources. Energy Conversion and Management, 2016, 107: 3-9.

[60]

Mignan A., Landtwing D., Kästli P., . Induced Seismicity Risk Analysis of the 2006 Basel, Switzerland, Enhanced Geothermal System Project: Influence of Uncertainties on Risk Mitigation. Geothermics, 2015, 53: 133-146.

[61]

Molnar P., Lyon-Caent H. Fault Plane Solutions of Earthquakes and Active Tectonics of the Tibetan Plateau and Its Margins. Geophysical Journal International, 1989, 99(1): 123-154.

[62]

Noblet C. L., Teisl M. F., Evans K., . Public Preferences for Investments in Renewable Energy Production and Energy Efficiency. Energy Policy, 2015, 87: 177-186.

[63]

Purnomo B. J., Pichler T. Geothermal Systems on the Island of Java, Indonesia. Journal of Volcanology and Geothermal Research, 2014, 285: 47-59.

[64]

Quenette S., Xi Y. F., Mansour J., . Underworld-GT Applied to Guangdong, a Tool to Explore the Geothermal Potential of the Crust. Journal of Earth Science, 2015, 26(1): 78-88.

[65]

Qiang M. R., Chen F. H., Song L., . Late Quaternary Aeolian Activity in Gonghe Basin, Northeastern Qinghai-Tibetan Plateau, China. Quaternary Research, 2013, 79(3): 403-412.

[66]

Qiu N. S., Zuo Y. H., Chang J., . Geothermal Evidence of Meso–Cenozoic Lithosphere Thinning in the Jiyang Sub-Basin, Bohai Bay Basin, Eastern North China Craton. Gondwana Research, 2014, 26(3/4): 1079-1092.

[67]

Regenauer-Lieb K., Yuen D. A., Qi S. H., . Foreword: Toward a Quantitative Understanding of the Frontier in Geothermal Energy. Journal of Earth Science, 2015, 26(1): 1-1.

[68]

Rosiek S., Batlles F. J. Shallow Geothermal Energy Applied to a Solar-Assisted Air-Conditioning System in Southern Spain: Two-Year Experience. Applied Energy, 2012, 100: 267-276.

[69]

Rybach L., Eugster W. J. Sustainability Aspects of Geothermal Heat Pump Operation, with Experience from Switzerland. Geothermics, 2010, 39(4): 365-369.

[70]

Safari R., Ghassemi A. 3D Thermo-Poroelastic Analysis of Fracture Network Deformation and Induced Micro-Seismicity in Enhanced Geothermal Systems. Geothermics, 2015, 58: 1-14.

[71]

Tan H. B., Zhang W. J., Chen J. S., . Isotope and Geochemical Study for Geothermal Assessment of the Xining Basin of the Northeastern Tibetan Plateau. Geothermics, 2012, 42: 47-55.

[72]

Tao Q. F. A New Round of Survey and Assessment of Geothermal Resources in China, 2015.

[73]

Tian G. H., Wang B., Liu D. L. Development Dynamic, Existing Problems and Countermeasures of Geothermal Resources in Tianjin, China, 2015.

[74]

Wang G., Li K., Wen D., . Assessment of Geothermal Resources in China, 2013.

[75]

Wang G. L., Ling W. J., Han Y.Y., . The Shallow Geothermal Energy Research Situation and Works which have to be Done. Construction and Design for Project, 2007, 11: 1-4.

[76]

Wang J. Y., Hu S. B., Pang Z. H., . Estimate of Geothermal Resources Potential for Hot Dry Rock in the Continental Area of China. Science and Technology Review, 2012, 30: 25-31.

[77]

Wang J. Y., Huang S. P. Summary of Heat Flow Data from the Continental Area of China. Seismology and Geology, 1990, 12: 351-366.

[78]

Wang S. Geothermal Resources Characteristics and Exploitation Suggestion for the Xinzhou Geothermal Field in Yangjiang City, Guangdong. Ground Water, 2013, 35(1): 42-44.

[79]

Wei W. S., Li N. B., Yang J. W., . The Problems on Exploitation and Utilization of Shallow Geothermal Energy. Geothermal Energy, 2009, 3: 17-19.

[80]

Xing H. L., Liu Y., Gao J. F., . Recent Development in Numerical Simulation of Enhanced Geothermal Reservoirs. Journal of Earth Science, 2015, 26(1): 28-36.

[81]

Xiong S. B., Jin D. M., Sun K. Z., . Some Characteristics of Deep Structure of the Zhangzhou Geothermal Field and Itʼs Neighborhood in the Fujian Province. Acta Geophysica Sinica, 1991, 34: 55-63.

[82]

Xu M., Zhu C. Q., Tian Y. T., . Borehole Temperature Logging and Characteristics of Subsurface Temperature in the Sichuan Basin. Chinese Journal of Geophysics, 2011, 54(2): 224-233.

[83]

Xue J. Q., Gan B., Li B. X., . Geological-Geophysical Characteristics of Enhanced Geothermal Systems (Hot Dry Rocks) in Gonghe-Guide Basin. Geophysical and Geochemical Exploration, 2013, 37: 35-41.

[84]

Xue N., Chen Z. J. A Summary Study on Distribution and Utilization of Geothermal Resources in Fujian Province. Fujian Energy Exploitation and Saving, 2003, 2: 15-18.

[85]

Yang H. L., Zheng K. B., Zheng K. Y., . Large-Scale Development and Utilization of Shallow Geothermal Energy in China, 2010, 97-115.

[86]

Yang R. H., Zou S. H., Liu C. X. Preliminary Discussion on the Development and Utilization of Shallow Geothermal Energy. Journal of Xuzhou Institute of Technology (Natural Sciences Edition), 2011, 26(2): 69-72.

[87]

Yao Z. J., Chen Z. Y. Geological Assessment of Geothermal Potential for Regional Development in Southeast Coast of China. Bulletin Institute of Hydrogeology and Engineering Geology, 1990, 6: 43-76.

[88]

Yi-Ben T. Seismotectonics of Taiwan. Tectonophysics, 1986, 125: 17-37.

[89]

Yokoyama T., Nakai S., Wakita H. Helium and Carbon Isotopic Compositions of Hot Spring Gases in the Tibetan Plateau. Journal of Volcanology and Geothermal Research, 1999, 88(1/2): 99-107.

[90]

Yu Y. F., Hu D., Wu F. Z. Applications of the Screw Expander in Geothermal Power Generation in China, 2015.

[91]

Zeng M. X., Liu D. L., Tian G. H., . “Hot Spring Capital of China”—Status of the Development and Utilization of Geothermal Resources in Tianjin, 2015, 19-25.

[92]

Zhang P., Wang L. S., Liu S. W., . Study on Geothermal Field in the South of the North China Basin. Progress in Geophysics, 2007, 22(2): 604-608.

[93]

Zhang X. B., Guo Q. H., Li J. X., . Estimation of Reservoir Temperature Using Silica and Cationic Solutes Geothermometers: A Case Study in the Tengchong Geothermal Area. Chinese Journal of Geochemistry, 2015, 34(2): 233-240.

[94]

Zhang X. M., Teng J. W., Sun R. M., . Structural Model of the Lithosphere-Asthenosphere System beneath the Qinghai-Tibet Plateau and Its Adjacent Areas. Tectonophysics, 2014, 634: 208-226.

[95]

Zhang Z. G. An Assessment of Karst Geothermal Resources of the North China Basin. Carsologica Sinica, 1988, 7(4): 324-328.

[96]

Zhao X. G., Wan G. Current Situation and Prospect of Chinaʼs Geothermal Resources. Renewable and Sustainable Energy Reviews, 2014, 32: 651-661.

[97]

Zheng B. B., Xu J. P., Ni T., . Geothermal Energy Utilization Trends from a Technological Paradigm Perspective. Renewable Energy, 2015, 77: 430-441.

[98]

Zheng K. Y., Chen Z. H. The Prospect of Ground Source Heat Pump (GSHP) in China, 2016.

[99]

Zheng K. Y., Dong Y., Chen Z. H., . Speeding up Industrialized Development of Geothermal Resources in China—Country Update Report 2010–2014, 2015.

[100]

Zhu B. Q., Yu H. The Use of Geochemical Indicator Elements in the Exploration for Hot Water Sources within Geothermal Fields. Journal of Geochemical Exploration, 1995, 55(1/2/3): 125-136.

[101]

Zhu J. L., Hu K. Y., Lu X. L., . A Review of Geothermal Energy Resources, Development, and Applications in China: Current Status and Prospects. Energy, 2015, 93: 466-483.

[102]

Zhuang Y. Q., Guo Q. H., Liu M. L., . Geochemical Simulation of Thioarsenic Speciation in High-Temperature, Sulfide-Rich Hot Springs: A Case Study in the Rehai Hydrothermal Area, Tengchong, Yunnan. Earth Science—Journal of China University of Geosciences, 2016, 41(9): 1499-1510.

[103]

Zimmermann G., Blöcher G., Reinicke A., . Rock Specific Hydraulic Fracturing and Matrix Acidizing to Enhance a Geothermal System—Concepts and Field Results. Tectonophysics, 2011, 503(1/2): 146-154.

[104]

Zou H. B. A Mafic-Ultramafic Rock Belt in the Fujian Coastal Area, Southeastern China: A Geochemical Study. Journal of Southeast Asian Earth Sciences, 1995, 12(1/2): 121-127.

AI Summary AI Mindmap
PDF

162

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/