In situ Analysis of Major Elements, Trace Elements and Sr Isotopic Compositions of Apatite from the Granite in the Chengchao Skarn-Type Fe Deposit, Edong Ore District: Implications for Petrogenesis and Mineralization

Zhenghan Li, Dengfei Duan, Shaoyong Jiang, Ying Ma, Hongwei Yuan

Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (2) : 295-306.

Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (2) : 295-306. DOI: 10.1007/s12583-018-0837-x
Petrology and Mineral Deposits

In situ Analysis of Major Elements, Trace Elements and Sr Isotopic Compositions of Apatite from the Granite in the Chengchao Skarn-Type Fe Deposit, Edong Ore District: Implications for Petrogenesis and Mineralization

Author information +
History +

Abstract

Major elements, trace elements and Sr isotopic compositions of apatite from the granite in the Chengchao skarn-type Fe deposit of Edong ore district of Middle–Lower Yangtze River metallogenic belt were measured using EMPA (electron microprobe), LA-ICP-MS (laser ablation inductively coupled plasma mass spectrometer) and LA-MC (multicollector)-ICP-MS methods in order to reveal the petrogenetic and metallogenic significance of the skarn-type iron deposits. The results show that the apatite in Chengchao granite is fluorapatite, which displays slight variation in major elements. The REE distribution pattern of the apatite is similar to that of the whole rocks, with strong negative Eu anomaly and low Sr/Y ratio. The concentration of Mn in apatite is low (140 ppm–591 ppm) and the Sr isotopic composition shows a limited variation from 0.706 9 to 0.708 2. The high oxygen fugacity of the Chengchao granite, implied by the low Mn content in apatite, is possibly attributed to contamination of the gypsum from sedimentary rock strata, which has long been thought to be an important factor that controls the Fe mineralization in the Middle–Lower Yangtze River metallogenic belt. This study also proves that the Eu/Eu* value and Sr/Y ratio in apatite can be effectively used to identify the adakitic affinity. The in situ Sr isotope analysis of apatite is in consistent with the bulk rock analysis, which indicates that the apatite Sr isotope can represent the initial Sr isotopic compositions of the magma. The Sr isotope and negative Eu anomaly in apatite imply that the Chengchao granite is likely sourced from crust-mantle mixed materials.

Keywords

apatite / in situ analysis / Sr isotopes / trace elements / adakite identification / oxygen fugacity

Cite this article

Download citation ▾
Zhenghan Li, Dengfei Duan, Shaoyong Jiang, Ying Ma, Hongwei Yuan. In situ Analysis of Major Elements, Trace Elements and Sr Isotopic Compositions of Apatite from the Granite in the Chengchao Skarn-Type Fe Deposit, Edong Ore District: Implications for Petrogenesis and Mineralization. Journal of Earth Science, 2018, 29(2): 295‒306 https://doi.org/10.1007/s12583-018-0837-x

References

Boudreau A. E., Kruger F. J. Variation in the Composition of Apatite through the Merensky Cyclic Unit in the Western Bushveld Complex. Economic Geology, 1990, 85(4): 737-745.
CrossRef Google scholar
Boudreau A. E., McCallum I. S. Investigations of the Stillwater Complex: Part V. Apatites as Indicators of Evolving Fluid Composition. Contributions to Mineralogy and Petrology, 1989, 102(2): 138-153.
CrossRef Google scholar
Boyce J. W., Hervig R. L. Apatite as a Monitor of Late-Stage Magmatic Processes at Volcán Irazú, Costa Rica. Contributions to Mineralogy and Petrology, 2008, 157(2): 135-145.
CrossRef Google scholar
Boynton W. V. Cosmochemistry of the Rare Earth Elements: Meteoric Studies. Rare Earth Element Geochemistry, 1984, 2(2): 63-114.
CrossRef Google scholar
Cai B. J. The Relationship of Gypsum Beds with Endogenic Copper and Iron Ores in the Middle–Lower Yangtze Valley. Geocheimica, 1980, 2: 193-199.
Casillas R., Nagy G., Pantos G., . Occurrence of Th, U, Y, Zr, and REE-Bearing Accessory Minerals in Late-Variscan Granitic Rocks from the Sierra de Guadarrama (Spain). European Journal of Mineralogy, 1995, 7(4): 989-1006.
CrossRef Google scholar
Chang Y. F., Liu X. P., Wu Y. C. The Copper-Iron Belt of the Lower and Middle Reaches of the Changjiang River, 1991.
Chen W., Simonetti A. Evidence for the Multi-Stage Petrogenetic History of the Oka Carbonatite Complex (Québec, Canada) as Recorded by Perovskite and Apatite. Minerals, 2014, 4(2): 437-476.
CrossRef Google scholar
Chen W., Simonetti A., Burns P. C. A Combined Geochemical and Geochronological Investigation of Niocalite from the Oka Carbonatite Complex, Canada. The Canadian Mineralogist, 2013, 51(5): 785-800.
CrossRef Google scholar
Creaser R. A., Gray C. M. Preserved Initial 87Sr/86Sr in Apatite from Altered Felsic Igneous Rocks: A Case Study from the Middle Proterozoic of South Australia. Geochimica et Cosmochimica Acta, 1992, 56(7): 2789-2795.
CrossRef Google scholar
Defant M. J., Drummond M. S. Derivation of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 1990, 347(6294): 662-665.
CrossRef Google scholar
Defant M. J., Xu J. F., Kepezhinskas P., . Adakites: Some Variations on a Theme. Acta Petrologica Sinica, 2002, 18(2): 129-142.
Duan D. F., Jiang S. Y. In situ Major and Trace Element Analysis of Amphiboles in Quartz Monzodiorite Porphyry from the Tonglvshan Cu-Fe (Au) Deposit, Hubei Province, China: Insights into Magma Evolution and Related Mineralization. Contributions to Mineralogy and Petrology, 2017, 172 5 36
CrossRef Google scholar
Fan H. Y., Li W. D., Wang W. B. On the Relationship between the Marine Deposits in the Middle–Lower Yangtze Area. Volcanology & Mineral Resources, 1995, 2: 32-41.
Harrison T. M., Watson E. B. The Behavior of Apatite during Crustal Anatexis: Equilibrium and Kinetic Considerations. Geochimica et Cosmochimica Acta, 1984, 48(7): 1467-1477.
CrossRef Google scholar
Hofmann A. W. 3.3—Sampling Mantle Heterogeneity through Oceanic Basalts: Isotopes and Trace Elements. Treatise on Geochemistry, 2014, 2: 67-101.
CrossRef Google scholar
Hughes J. M., Rakovan J. F. Structurally Robust, Chemically Diverse: Apatite and Apatite Supergroup Minerals. Elements, 2015, 11(3): 165-170.
CrossRef Google scholar
Jahn B. M., Wu F. Y., Lo C. H., . Crust-Mantle Interaction Induced by Deep Subduction of the Continental Crust: Geochemical and Sr-Nd Isotopic Evidence from Post-Collisional Mafic-Ultramafic Intrusions of the Northern Dabie Complex, Central China. Chemical Geology, 1999, 157(1/2): 119-146.
CrossRef Google scholar
Li J. W., Zhao X. F., Zhou M. F., . Late Mesozoic Magmatism from the Daye Region, Eastern China: U-Pb Ages, Petrogenesis, and Geodynamic Implications. Contributions to Mineralogy and Petrology, 2009, 157(3): 383-409.
CrossRef Google scholar
Li W., Xie G. Q., Yao L., . Genesis of the Intrusive Rocks in the Chengchao Large Skarn Iron Deposit, Southeastern Hubei Province. Journal of Jilin University (Earth Science Edition), 2014, 6: 1827-1855.
Li Y. H., Duan C., Han D., . Effect of Sulfate Evaporate Layer for Formation of Porphyry Type Iron Ore Deposits in the Middle–Lower Yangtze River Area. Acta Petrologica Sinica, 2014, 30(5): 1355-1368.
Li Y. H., Xie G. Q., Duan C., . Effect of Sulfate Evaporate Layer over the Formation of Skarn-Type Iron Ore Deposits. Acta Geologica Sinica, 2013, 87(9): 1324-1334.
Liu X. N., Kong F. H., Yang P., . Distribution and Basic Characteristics of Small Intrusions in Southeast Hubei. Resources Environment & Engineering, 2009, 23(4): 390-395.
Liu Y. S., Gao S., Hu Z. C., . Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 2010, 51(1/2): 537-571.
CrossRef Google scholar
Liu Y. S., Hu Z. C., Zong K. Q., . Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 2010, 55(15): 1535-1546.
CrossRef Google scholar
London D. Experimental Silicate-Phosphate Equilibria in Peraluminous Granitic Magmas, with a Case Study of the Alburquerque Batholith at Tres Arroyos, Badajoz, Spain. Journal of Petrology, 1999, 40(1): 215-240.
CrossRef Google scholar
Miles A. J., Graham C. M., Hawkesworth C. J., . Apatite: A New Redox Proxy for Silicic Magmas?. Geochimica et Cosmochimica Acta, 2014, 132: 101-119.
CrossRef Google scholar
Miller C. F., McDowell S. M., Mapes R. W. Hot and Cold Granites? Implications of Zircon Saturation Temperatures and Preservation of Inheritance. Geology, 2003, 31 6 529
CrossRef Google scholar
Pan L. C., Hu R. Z., Wang X. S., . Apatite Trace Element and Halogen Compositions as Petrogenetic-Metallogenic Indicators: Examples from Four Granite Plutons in the Sanjiang Region, SW China. Lithos, 2016, 254/255: 118-130.
CrossRef Google scholar
Pan Y. M., Dong P. The Lower Changjiang (Yangzi/Yangtze River) Metallogenic Belt, East Central China: Intrusion-and Wall Rock-Hosted Cu-Fe-Au, Mo, Zn, Pb, Ag Deposits. Ore Geology Reviews, 1999, 15(4): 177-242.
CrossRef Google scholar
Pan Y., Fleet M. E. Compositions of the Apatite-Group Minerals: Substitution Mechanisms and Controlling Factors. Reviews in Mineralogy and Geochemistry, 2002, 48(1): 13-49.
CrossRef Google scholar
Paton C., Woodhead J. D., Hergt J. M., . Strontium Isotope Analysis of Kimberlitic Groundmass Perovskite via LA-MC-ICP-MS. Geostandards & Geoanalytical Research, 2010, 31(4): 321-330.
Piccoli P. M., Candela P. A. Apatite in Igneous Systems. Reviews in Mineralogy and Geochemistry, 2002, 48(1): 255-292.
CrossRef Google scholar
Pichavant M., Montel J. M., Richard L. R. Apatite Solubility in Peraluminous Liquids: Experimental Data and an Extension of the Harrison-Watson Model. Geochimica et Cosmochimica Acta, 1992, 56(10): 3855-3861.
CrossRef Google scholar
Prowatke S., Klemme S. Trace Element Partitioning between Apatite and Silicate Melts. Geochimica et Cosmochimica Acta, 2006, 70(17): 4513-4527.
CrossRef Google scholar
Ramos F. C., Wolff J. A., Tollstrup D. L. Measuring 87Sr/86Sr Variations in Minerals and Groundmass from Basalts Using LA-MC-ICPMS. Chemical Geology, 2004, 211(1/2): 135-158.
CrossRef Google scholar
Roeder P. L., Macarthur D., Ma X. P., . Cathodoluminescence and Microprobe Study of Rare-Earth Elements in Apatite. American Mineralogist, 1987, 72(7): 801-811.
Ronsno J. G. Coupled Substitutions Involving REEs and Na and Si in Apatites in Alkaline Rocks from the Ilimaussaq Intrusion, South Greenland, and the Petrological Implications. American Mineralogist, 1989, 74(7): 896-901.
Schisa P., Boudreau A., Djon L., . The Lac des Iles Palladium Deposit, Ontario, Canada. Part II. Halogen Variations in Apatite. Mineralium Deposita, 2015, 50(3): 339-355.
CrossRef Google scholar
Sha L. K., Chappell B. W. Apatite Chemical Composition, Determined by Electron Microprobe and Laser-Ablation Inductively Coupled Plasma Mass Spectrometry, as a Probe into Granite Petrogenesis. Geochimica et Cosmochimica Acta, 1999, 63(22): 3861-3881.
CrossRef Google scholar
Shu Q. A., Chen P. L., Cheng J. R. Geology of Iron-Copper Deposits in Eastern Hubei Province, 1992.
Tan Q. M. Characteristics of Mineral Inclusions within Magmatites from Southeastern Hubei Area and Its Geological Significance. Resources Environment & Engineering, 1991, 5(1): 36-47.
Tang M., Wang X. L., Xu X. S., . Neoproterozoic Subducted Materials in the Generation of Mesozoic Luzong Volcanic Rocks: Evidence from Apatite Geochemistry and Hf-Nd Isotopic Decoupling. Gondwana Research, 2012, 21(1): 266-280.
CrossRef Google scholar
Taylor S. R., McLennan S. M. The Continental Crust: Its Composition and Evolution, 1985.
Tsuboi M. The Use of Apatite as a Record of Initial 87Sr/86Sr Ratios and Indicator of Magma Processes in the Inagawa Pluton, Ryoke Belt, Japan. Chemical Geology, 2005, 221(3/4): 157-169.
CrossRef Google scholar
Watson E. B. Apatite Saturation in Basic to Intermediate Magmas. Geophysical Research Letters, 1979, 6(12): 937-940.
CrossRef Google scholar
Watson E. B. Apatite and Phosphorus in Mantle Source Regions: An Experimental Study of Apatite/Melt Equilibria at Pressures to 25Kbar. Earth and Planetary Science Letters, 1980, 51(2): 322-335.
CrossRef Google scholar
Watson E. B., Green T. H. Apatite/liquid Partition Coefficients for the Rare Earth Elements and Strontium. Earth and Planetary Science Letters, 1981, 56: 405-421.
CrossRef Google scholar
Webster J. D., Piccoli P. M. Magmatic Apatite: A Powerful, yet Deceptive, Mineral. Elements, 2015, 11(3): 177-182.
CrossRef Google scholar
Xie G. Q., Mao J. W., Li R. L., . Geochemistry and Nd-Sr Isotopic Studies of Late Mesozoic Granitoids in the Southeastern Hubei Province, Middle–Lower Yangtze River Belt, Eastern China: Petrogenesis and Tectonic Setting. Lithos, 2008, 104(1/2/3/4): 216-230.
CrossRef Google scholar
Xie G. Q., Mao J. W., Zhao H. J., . Zircon U-Pb and Phlogopite 40Ar-39Ar Age of the Chengchao and Jinshandian Skarn Fe Deposits, Southeast Hubei Province, Middle–Lower Yangtze River Valley Metallogenic Belt, China. Mineralium Deposita, 2012, 47(6): 633-652.
CrossRef Google scholar
Xie G. Q., Zhu Q. Q., Yao L., . Discussion on Regional Metal Mineral Deposit Model of Late Mesozoic Cu-Fe-Au Polymetallic Deposits in the Southeast Hubei Province. Bulletin of Mineralogy, Petrology and Geochemisty, 2013, 32(4): 418-426.
Yan J., Chen J. F., Xu X. S. Geochemistry of Cretaceous Mafic Rocks from the Lower Yangtze Region, Eastern China: Characteristics and Evolution of the Lithospheric Mantle. Journal of Asian Earth Sciences, 2008, 33(3/4): 177-193.
CrossRef Google scholar
Yue Y. Z. Characteristics of the Apatites of the Volcanic Complex in Lujiang-Zhongyang. Journal of Mineralogy and Petrology, 1983, 4: 12-16.
Zeng L. P., Zhao X. F., Li X. C., . In situ Elemental and Isotopic Analysis of Fluorapatite from the Taocun Magnetite-Apatite Deposit, Eastern China: Constraints on Fluid Metasomatism. American Mineralogist, 2016, 101(11): 2468-2483.
CrossRef Google scholar
Zhai Y. S., Yao S. Z., Lin X. D., . Regularities of Metallogenesis for Copper (Gold) Deposits in the Middle and Lower Reaches of the Yangtze River Area, 1992, 1-120.
Zhao H. J., Mao J. W., Xiang J. F., . Mineralogy and Sr-Nd-Pb Isotopic Compositions of Quartz Diorite in Tonglushan Deposit, Hubei Province. Acta Petrologica Sinica, 2010, 26(3): 768-784.
Zhao Z. H. Trace Element Geochemistry of Accesory Minerals and Its Applications in Petrogenesis and Metallogenesis. Earth Science Frontiers, 2010, 17(1): 267-286.

Accesses

Citations

Detail

Sections
Recommended

/