Elasticity and Anisotropy of the Pyrite-Type FeO2H-FeO2 System in Earth’s Lowermost Mantle

Shengxuan Huang, Shan Qin, Xiang Wu

Journal of Earth Science ›› 2019, Vol. 30 ›› Issue (6) : 1293-1301.

Journal of Earth Science ›› 2019, Vol. 30 ›› Issue (6) : 1293-1301. DOI: 10.1007/s12583-018-0836-y
Metamorphism and Orogenic Belts—Response from Micro- to Macro-Scale

Elasticity and Anisotropy of the Pyrite-Type FeO2H-FeO2 System in Earth’s Lowermost Mantle

Author information +
History +

Abstract

The pyrite-type FeO2H-FeO2 system has been experimentally confirmed to be stable in Earth’s lowermost mantle but there is limited information about its physical properties at high pressures constraining our understanding of its potential geophysical implications for the deep Earth. Here, static calculations demonstrate that the pyrite-type FeO2H-FeO2 system has a high density and Poisson’s ratio and ultra-low seismic velocities at conditions of Earth’s lowermost mantle. It provides a plausible mechanism for the origin of ultra-low velocity zones at Earth’s D″ layer. The incorporation of hydrogen in the pyrite-type FeO2H-FeO2 system tends to decrease the S wave velocity (V S) but increase the bulk sound velocity (V Φ), and can potentially explain the observed anti-correlation of V S and V Φ in the lowermost mantle. Additionally, FeO2H exhibits nearly isotropic whereas FeO2 is highly anisotropic, which may help understand some seismic anisotropies at the core-mantle boundary.

Keywords

FeO2H / FeO2 / ultra-low velocity zones / D″ layer / anisotropy

Cite this article

Download citation ▾
Shengxuan Huang, Shan Qin, Xiang Wu. Elasticity and Anisotropy of the Pyrite-Type FeO2H-FeO2 System in Earth’s Lowermost Mantle. Journal of Earth Science, 2019, 30(6): 1293‒1301 https://doi.org/10.1007/s12583-018-0836-y

References

Andrault D., Pesce G., Bouhifd M. A., . Melting of Subducted Basalt at the Core-Mantle Boundary. Science, 2014, 344(6186): 892-895.
Bindi L., Nishi M., Tsuchiya J., . Crystal Chemistry of Dense Hydrous Magnesium Silicates: The Structure of Phase H, MgSiH2O4, Synthesized at 45 GPa and 1 000 ºC. American Mineralogist, 2014, 99(8/9): 1802-1805.
Birch F. Finite Elastic Strain of Cubic Crystals. Physical Review, 1947, 71(11): 809-824.
Birch F. Elasticity and Constitution of the Earth's Interior. Journal of Geophysical Research, 1952, 57(2): 227-286.
Blöchl P. E. Projector Augmented-Wave Method. Physical Review B, 1994, 50(24): 17953-17979.
Born M., Huang K. Dynamical Theory of Crystal Lattices, 1954.
Dudarev S. L., Botton G. A., Savrasov S. Y., . Electron-Energy-Loss Spectra and the Structural Stability of Nickel Oxide: An LSDA+U Study. Physical Review B, 1998, 57(3): 1505-1509.
Dziewonski A. M., Anderson D. L. Preliminary Reference Earth Model. Physics of the Earth and Planetary Interiors, 1981, 25(4): 297-356.
Garnero E. J. Heterogeneity of the Lowermost Mantle. Annual Review of Earth and Planetary Sciences, 2000, 28(1): 509-537.
Garnero E. J., Helmberger D. V. Seismic Detection of a Thin Laterally Varying Boundary Layer at the Base of the Mantle beneath the Central-Pacific. Geophysical Research Letters, 1996, 23(9): 977-980.
Garnero E. J., McNamara A. K., Shim S. H. Continent-Sized Anomalous Zones with Low Seismic Velocity at the Base of Earthʼs Mantle. Nature Geoscience, 2016, 9(7): 481-489.
Gleason A. E., Quiroga C. E., Suzuki A., . Symmetrization Driven Spin Transition in ε-FeOOH at High Pressure. Earth and Planetary Science Letters, 2013, 379: 49-55.
Hu Q. Y., Kim D. Y., Yang W. G., . FeO2 and FeOOH under Deep Lower-Mantle Conditions and Earth’s Oxygen-Hydrogen Cycles. Nature, 2016, 534(7606): 241-244.
Hu Q. Y., Kim D. Y., Liu J., . Dehydrogenation of Goethite in Earth’s Deep Lower Mantle. Proceedings of the National Academy of Sciences, 2017, 114(7): 1498-1501.
Hill R. The Elastic Behavior of a Crystalline Aggregate. Proceedings of the Physical Society of London Section A, 1952, 65(389): 349-355.
Iitaka T., Hirose K., Kawamura K., . The Elasticity of the MgSiO3 Post-Perovskite Phase in the Earthʼs Lowermost Mantle. Nature, 2004, 430(6998): 442-445.
Jang B. G., Kim D. Y., Shim J. H. Metal-Insulator Transition and the Role of Electron Correlation in FeO2. Physical Review B, 2017, 95 7 075144.
Karki B. B., Stixrude L., Wentzcovitch R. M. High-Pressure Elastic Properties of Major Materials of Earthʼs Mantle from First Principles. Reviews of Geophysics, 2001, 39(4): 507-534.
Kresse G., Furthmüller J. Efficient Iterative Schemes for ab initio Total-Energy Calculations Using a Plane-Wave Basis Set. Physical Review B, 1996, 54(16): 11169-11186.
Kresse G., Joubert D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Physical Review B, 1999, 59(3): 1758-1775.
Lay T., Williams Q., Garnero E. J. The Core-Mantle Boundary Layer and Deep Earth Dynamics. Nature, 1998, 392(6675): 461-468.
Li X. Y., Mao Z., Sun N., . Elasticity of Single-Crystal Superhydrous Phase B at Simultaneous High Pressure-Temperature Conditions. Geophysical Research Letters, 2016, 43(16): 8458-8465.
Li M. M., McNamara A. K., Garnero E. J., . Compositionally-Distinct Ultra-Low Velocity Zones on Earth’s Core-Mantle Boundary. Nature Communications, 2017, 8 1 177.
Liu J., Hu Q. Y., Kim D. Y., . Hydrogen-Bearing Iron Peroxide and the Origin of Ultralow-Velocity Zones. Nature, 2017, 551(7681): 494-497.
Mainprice D. A FORTRAN Program to Calculate Seismic Anisotropy from the Lattice Preferred Orientation of Minerals. Computers & Geosciences, 1990, 16(3): 385-393.
Mainprice D., Barruol G., Ismail W. B. The Seismic Anisotropy of the Earth’s Mantle: From Single Crystal to Polycrystal, 2000, 237-264.
Mao W. L., Mao H. K., Sturhahn W., . Iron-Rich Post-Perovskite and the Origin of Ultralow-Velocity Zones. Science, 2006, 312(5773): 564-565.
Mao H. K., Hu Q. Y., Yang L. X., . When Water Meets Iron at Earthʼs Core-Mantle Boundary. National Science Review, 2017, 4(6): 870-878.
Mashino I., Murakami M., Ohtani E., . Sound Velocities of δ-AlOOH up to Core-Mantle Boundary Pressures with Implications for the Seismic Anomalies in the Deep Mantle. Journal of Geophysical Research:Solid Earth, 2016, 121(2): 595-609.
Masters G., Laske G., Bolton H., . The Relative Behavior of Shear Velocity, Bulk Sound Speed, and Compressional Velocity in the Mantle: Implications for Chemical and Thermal Structure, 2000, 63-87.
McNamara A. K., Garnero E. J., Rost S. Tracking Deep Mantle Reservoirs with Ultra-Low Velocity Zones. Earth and Planetary Science Letters, 2010, 299(1/2): 1-9.
Murnaghan F. D. The Compressibility of Media under Extreme Pressures. Proceedings of the National Academy of Sciences of the United States of America, 1944, 30(9): 244-247.
Nakagawa T. On the Numerical Modeling of the Deep Mantle Water Cycle in Global-Scale Mantle Dynamics: The Effects of the Water Solubility Limit of Lower Mantle Minerals. Journal of Earth Science, 2017, 28(4): 563-577.
Nishi M., Irifune T., Tsuchiya J., . Stability of Hydrous Silicate at High Pressures and Water Transport to the Deep Lower Mantle. Nature Geoscience, 2014, 7(3): 224-227.
Nishi M., Kuwayama Y., Tsuchiya J., . The Pyrite-Type High-Pressure Form of FeOOH. Nature, 2017, 547(7662): 205-208.
Oganov A. R., Ono S. Theoretical and Experimental Evidence for a Post-Perovskite Phase of MgSiO3 in Earthʼs D″ Layer. Nature, 2004, 430(6998): 445-448.
Ohira I., Ohtani E., Sakai T., . Stability of a Hydrous δ-Phase, AlOOH-MgSiO2(OH)2, and a Mechanism for Water Transport into the Base of Lower Mantle. Earth and Planetary Science Letters, 2014, 401: 12-17.
Ohtani E. Hydrous Minerals and the Storage of Water in the Deep Mantle. Chemical Geology, 2015, 418: 6-15.
Ohtani E., Toma M., Kubo T., . In situ X-Ray Observation of Decomposition of Superhydrous Phase B at High Pressure and Temperature. Geophysical Research Letters, 2003, 30 2 1029.
Ohtani E., Amaike Y., Kamada S., . Stability of Hydrous Phase H MgSiO4H2 under Lower Mantle Conditions. Geophysical Research Letters, 2014, 41(23): 8283-8287.
Pamato M. G., Myhill R. B. B. T., . Lower-Mantle Water Reservoir Implied by the Extreme Stability of a Hydrous Aluminosilicate. Nature Geoscience, 2015, 8(1): 75-79.
Panero W. R., Caracas R. Stability of Phase H in the MgSiO4H2-AlOOH-SiO2 System. Earth and Planetary Science Letters, 2017, 463: 171-177.
Perdew J. P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple. Physical Review Letters, 1996, 77(18): 3865-3868.
Stacey F. D., Loper D. E. The Thermal Boundary-Layer Interpretation of D″ and Its Role as a Plume Source. Physics of the Earth and Planetary Interiors, 1983, 33(1): 45-55.
Thompson E. C., Campbell A. J., Tsuchiya J. Elasticity of ε-FeOOH: Seismic Implications for Earthʼs Lower Mantle. Journal of Geophysical Research: Solid Earth, 2017, 122(7): 5038-5047.
Trønnes R. G. Structure, Mineralogy and Dynamics of the Lowermost Mantle. Mineralogy and Petrology, 2010, 99(3/4): 243-261.
Tsuchiya J. First Principles Prediction of a New High-Pressure Phase of Dense Hydrous Magnesium Silicates in the Lower Mantle. Geophysical Research Letters, 2013, 40(17): 4570-4573.
Tsuchiya J., Mookherjee M. Crystal Structure, Equation of State and Elasticity of Phase H (MgSiO4H2) at Earth’s Lower Mantle Pressures. Scientific Reports, 2015, 5 1 15534.
Tsuchiya J., Tsuchiya T. Elastic Properties of δ-AlOOH under Pressure: First Principles Investigation. Physics of the Earth and Planetary Interiors, 2009, 174(1/2/3/4): 122-127.
Walter M. J., Thomson A. R., Wang W., . The Stability of Hydrous Silicates in Earthʼs Lower Mantle: Experimental Constraints from the Systems MgO-SiO2-H2O and MgO-Al2O3-SiO2-H2O. Chemical Geology, 2015, 418: 16-29.
Wicks J. K., Jackson J. M., Sturhahn W. Very Low Sound Velocities in Iron-Rich (Mg,Fe)O: Implications for the Core-Mantle Boundary Region, 2010, Geophysical Research Letters, 37(15): L15304
Wicks J. K., Jackson J. M., Sturhahn W., . Sound Velocity and Density of Magnesiowüstites: Implications for Ultralow-Velocity Zone Topography. Geophysical Research Letters, 2017, 44(5): 2148-2158.
Williams Q., Garnero E. J. Seismic Evidence for Partial Melt at the Base of Earthʼs Mantle. Science, 1996, 273(5281): 1528-1530.
Williams Q., Revenaugh J., Garnero E. A Correlation between Ultra-Low Basal Velocities in the Mantle and Hot Spots. Science, 1998, 281(5376): 546-549.
Wu X., Wu Y., Lin J. F. Two-Stage Spin Transition of Iron in FeAl-Bearing Phase D at Lower Mantle. Journal of Geophysical Research: Solid Earth, 2016, 121(9): 6411-6420.
Wu X., Lin J. F., Kaercher P., . Seismic Anisotropy of the D″ Layer Induced by (001) Deformation of Post-Perovskite. Nature Communications, 2017, 8 14669.
Yang D. P., Wang W. Z., Wu Z. Elasticity of Superhydrous Phase B at the Mantle Temperatures and Pressures: Implications for 800 km Discontinuity and Water Flow into the Lower Mantle. Journal of Geophysical Research: Solid Earth, 2017, 122(7): 5026-5037.
Zhang X. L., Niu Z. W., Tang M., . First-Principles Thermoelasticity and Stability of Pyrite-Type FeO2 under High Pressure and Temperature. Journal of Alloys and Compounds, 2017, 719: 42-46.

Accesses

Citations

Detail

Sections
Recommended

/