Formulation of Determining the Gravity Potential Difference Using Ultra-High Precise Clocks via Optical Fiber Frequency Transfer Technique

Ziyu Shen, Wen-Bin Shen, Zhao Peng, Tao Liu, Shougang Zhang, Dingbo Chao

Journal of Earth Science ›› 2019, Vol. 30 ›› Issue (2) : 422-428.

Journal of Earth Science ›› 2019, Vol. 30 ›› Issue (2) : 422-428. DOI: 10.1007/s12583-018-0834-0
Applied Geophysics

Formulation of Determining the Gravity Potential Difference Using Ultra-High Precise Clocks via Optical Fiber Frequency Transfer Technique

Author information +
History +

Abstract

Based on gravity frequency shift effect predicted by general relativity theory, this study discusses an approach for determining the gravity potential (geopotential) difference between arbitrary two points P and Q by remote comparison of two precise optical clocks via optical fiber frequency transfer. After synchronization, by measuring the signal’s frequency shift based upon the comparison of bidirectional frequency signals from P and Q oscillators connected with two optical atomic clocks via remote optical fiber frequency transfer technique, the geopotential difference between the two points could be determined, and its accuracy depends on the stabilities of the optical clocks and the frequency transfer comparison technique. Due to the fact that the present stability of optical clocks achieves 1.6×10−18 and the present frequency transfer comparison via optical fiber provides stabilities as high as 10−19 level, this approach is prospective to determine geopotential difference with an equivalent accuracy of 1.5 cm. In addition, since points P and Q are quite arbitrary, this approach may provide an alternative way to determine the geopotential over a continent, and prospective potential to unify a regional height datum system.

Keywords

gravity frequency shift / optical fiber frequency transfer / optical clock / gravity potential

Cite this article

Download citation ▾
Ziyu Shen, Wen-Bin Shen, Zhao Peng, Tao Liu, Shougang Zhang, Dingbo Chao. Formulation of Determining the Gravity Potential Difference Using Ultra-High Precise Clocks via Optical Fiber Frequency Transfer Technique. Journal of Earth Science, 2019, 30(2): 422‒428 https://doi.org/10.1007/s12583-018-0834-0

References

Akatsuka T, Takamoto M, Katori H. Optical Lattice Clocks with Non-Interacting Bosons and Fermions. Nature Physics, 2008, 4(12): 954-959.
CrossRef Google scholar
Bjerhammar A. On a Relativistic Geodesy. Bulletin Géodésique, 1985, 59(3): 207-220.
CrossRef Google scholar
Bloom B J, Nicholson T L, Williams J R, . An Optical Lattice Clock with Accuracy and Stability at the 10−18 Level. Nature, 2014, 506(7486): 71-75.
CrossRef Google scholar
Chou C W, Hume D B, Koelemeij J, . Frequency Comparison of Two High-Accuracy Al+ Optical Clocks. Physical Review Letters, 2010, 104 7 070802
CrossRef Google scholar
Chou C W, Hume D B, Rosenband T, . Optical Clocks and Relativity. Science, 2010, 329(5999): 1630-1633.
CrossRef Google scholar
Diddams S A, Bergquist J C, Jefferts S R, . Standards of Time and Frequency at the Outset of the 21st Century. Science, 2004, 306(5700): 1318-1324.
CrossRef Google scholar
Diddams S A, Udem T, Bergquist J C, . An Optical Clock Based on a Single Trapped 199Hg+ Ion. Science, 2001, 293(5531): 825-828.
CrossRef Google scholar
Droste S, Ozimek F, Udem T, . Optical-Frequency Transfer over a Single-Span 1 840 km Fiber Link. Physical Review Letters, 2013, 111 11 110801
CrossRef Google scholar
Dziewonski A M, Anderson D L. Preliminary Reference Earth Model. Physics of the Earth and Planetary Interiors, 1981, 25(4): 297-356.
CrossRef Google scholar
Flury J. Relativistic Geodesy. Journal of Physics Conference Series, 2016, 723 1 012051
CrossRef Google scholar
Grosche G, Terra O, Predehl K, . Optical Frequency Transfer via 146 km Fiber Link with 10−19 Relative Accuracy. Optics Letters, 2009, 34(15): 2270-2272.
CrossRef Google scholar
Grotti J, Koller S, Vogt S, . Geodesy and Metrology with a Transportable Optical Clock. Nature Physics, 2018, 14(5): 437-441.
CrossRef Google scholar
Guena J, Abgrall M, Rovera D, . Progress in Atomic Fountains at LNE-SYRTE. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on, 2012, 59(3): 391-409.
CrossRef Google scholar
Heiskanen W A, Moritz H. Physical Geodesy, 1967, San Francisco: Freeman and Company
Hinkley N, Sherman J A, Phillips N B, . An Atomic Clock with 10−18 Instability. Science, 2013, 341(6151): 1215-1218.
CrossRef Google scholar
Hofmann-Wellenhof, B., Moritz, H., 2006. Physical Geodesy. Springer
Huntemann N, Okhapkin M, Lipphardt B, . High-Accuracy Optical Clock Based on the Octupole Transition in 171Yb+. Physical Review Letters, 2012, 108 9 090801
CrossRef Google scholar
Jiang H, Kéfélian F, Crane S, . Long-Distance Frequency Transfer over an Urban Fiber Link Using Optical Phase Stabilization. Journal of the Optical Society of America B, 2008, 25(12): 2029-2035.
CrossRef Google scholar
Katila T, Riski K J. Measurement of the Interaction between Electromagnetic Radiation and Gravitational Field Using 67Zn Mössbauer Spectroscopy. Physics Letters A, 1981, 83(2): 51-54.
CrossRef Google scholar
Katori H. Optical Lattice Clocks and Quantum Metrology. Nature Photonics, 2011, 5(4): 203-210.
CrossRef Google scholar
Kéfélian F, Lopez O, Jiang H F, . High-Resolution Optical Frequency Dissemination on a Telecommunications Network with Data Traffic. Optics Letters, 2009, 34(10): 1573-1575.
CrossRef Google scholar
Li W Y, Liu Y X, Li B, . Hydrocarbon Exploration in the South Yellow Sea Based on Airborne Gravity, China. Journal of Earth Science, 2016, 27(4): 686-698.
CrossRef Google scholar
Lion G I, Panet I, Wolf P, . Determination of a High Spatial Resolution Geopotential Model Using Atomic Clock Comparisons. Journal of Geodesy, 2017, 91(6): 597-611.
CrossRef Google scholar
Lisdat C, Grosche G, Quintin N, . A Clock Network for Geodesy and Fundamental Science. Nature Communications, 2016, 7 12443
CrossRef Google scholar
Lopez O, Haboucha A, Chanteau B, . Ultra-Stable Long Distance Optical Frequency Distribution Using the Internet Fiber Network. Optics Express, 2012, 20 21 23518
CrossRef Google scholar
Lopez O, Kanj A, Pottie P E, . Simultaneous Remote Transfer of Accurate Timing and Optical Frequency over a Public Fiber Network. Applied Physics B, 2013, 110(1): 3-6.
CrossRef Google scholar
Ludlow A D, Zelevinsky T, Campbell G K, . Sr Lattice Clock at 1×10−16 Fractional Uncertainty by Remote Optical Evaluation with a Ca Clock. Science, 2008, 319(5871): 1805-1808.
CrossRef Google scholar
Ma L S, Bartels A, Robertsson L, . Optical Frequency Synthesis and Comparison with Uncertainty at the 10−19 Level. Science, 2004, 303(5665): 1843-1845.
CrossRef Google scholar
Ma L S, Jungner P, Ye J, . Delivering the Same Optical Frequency at Two Places: Accurate Cancellation of Phase Noise Introduced by an Optical Fiber or other Time-Varying Path. Optics Letters, 1994, 19(21): 1777-1779.
CrossRef Google scholar
Madej A A, Dubé P, Zhou Z C, . 88Sr+ 445-THz Single-Ion Reference at the 10−17 Level via Control and Cancellation of Systematic Uncertainties and Its Measurement against the SI Second. Physical Review Letters, 2012, 109 20 203002
CrossRef Google scholar
Mai E. Time, Atomic Clocks, and Relativistic Geodesy, 2013, München: Verlag der Bayerischen Akademie der Wissenschaften
Marra G, Slavík R, Margolis H S, . High-Resolution Microwave Frequency Transfer over an 86-km-Long Optical Fiber Network Using a Mode-Locked Laser. Optics Letters, 2011, 36 4 511
CrossRef Google scholar
Müller H, Peters A, Chu S. A Precision Measurement of the Gravitational Redshift by the Interference of Matter Waves. Nature, 2010, 463(7283): 926-929.
CrossRef Google scholar
Newbury, N. R., Swann, W. C., Coddington, I., et al., 2007a. Fiber Laser-Based Frequency Combs with High Relative Frequency Stability. Frequency Control Symposium, 2007 Joint with the 21st European Frequency and Time Forum. IEEE International. 980–983. https://doi.org/10.1109/FREQ.2007.4319226
Newbury N R, Williams P A, Swann W C. Coherent Transfer of an Optical Carrier over 251 km. Optics Letters, 2007, 32(21): 3056-3058.
CrossRef Google scholar
Pound R V, Rebka G A Jr.. Gravitational Red-Shift in Nuclear Resonance. Physical Review Letters, 1959, 3(9): 439-441.
CrossRef Google scholar
Pound R V, Rebka G A Jr.. Attempts to Detect Resonance Scattering InZn67; The Effect of Zero-Point Vibrations. Physical Review Letters, 1960, 4(8): 397-399.
CrossRef Google scholar
Pound R V, Rebka G A Jr.. Variation with Temperature of the Energy of Recoil-Free Gamma Rays from Solids. Physical Review Letters, 1960, 4(6): 274-275.
CrossRef Google scholar
Pound R V, Snider J L. Effect of Gravity on Gamma Radiation. Physical Review, 1965, 140(3B): B788-B803.
CrossRef Google scholar
Predehl K, Grosche G, Raupach S M F, . A 920-Kilometer Optical Fiber Link for Frequency Metrology at the 19th Decimal Place. Science, 2012, 336(6080): 441-444.
CrossRef Google scholar
Primas, L. E., Lutes, G. F., Sydnor, R. L., 1988. Fiber Optic Frequency Transfer Link. Proceedings of 42nd Annual Symposium on Frequency Control, June 1–3, 1988, Baltimore, MD. 478–484
Raupach, S. M. F., Grosche, G., 2013. Chirped Frequency Transfer with an Accuracy of 10−18 and Its Application to the Remote Synchronization of Timescales. arXiv: 1308.6725v2 [physics.optics] (2013-9-30)
Raupach S M F, Koczwara A, Grosche G. Optical Frequency Transfer via a 660 km Underground Fiber Link Using a Remote Brillouin Amplifier. Optics Express, 2014, 22(22): 26537-26547.
CrossRef Google scholar
Rosenband T, Hume D B, Schmidt P O, . Frequency Ratio of Al+ and Hg+ Single-Ion Optical Clocks, Metrology at the 17th Decimal Place. Science, 2008, 319(5871): 1808-1812.
CrossRef Google scholar
Shen W-B. Relativistic Physical Geodesy: [Dissertation], 1998, Graz: Graz Technical University
Shen, W.-B., 2013a. Orthometric Height Determination Based upon Optical Clocks and Fiber Frequency Transfer Technique. 2013 Saudi International Electronics, Communications and Photonics Conference (SIECPC), April 27–30, 2013, Riyadh, Saudi Arabia. https://doi.org/10.1109/SIECPC.2013.6550987
Shen W-B. Orthometric Height Determination Using Optical Clocks. EGU General Assembly Conference Abstracts, 2013, 15 5214.
Shen W-B, Chao D, Jin B. On Relativistic Geoid. Bollettino di Geodesia e Scienze Affini, 1993, 52(3): 207-216.
Shen W-B, Ning J S, Chao D B, . A Proposal on the Test of General Relativity by Clock Transportation Experiments. Advances in Space Research, 2009, 43(1): 164-166.
CrossRef Google scholar
Shen W-B, Ning J S, Liu J N, . Determination of the Geopotential and Orthometric Height Based on Frequency Shift Equation. Natural Science, 2011, 3(5): 388-396.
CrossRef Google scholar
Shen W.-B., Peng, Z., 2012. Gravity Potential Determination Using Remote Optical Fiber. International Symposium on Gravity, Geoid and Height Systems GGHS 2012. Dec. 3, 2012, Venice, Italy
Shen Z Y, Shen W-B, Zhang S X. Formulation of Geopotential Difference Determination Using Optical-Atomic Clocks Onboard Satellites and on Ground Based on Doppler Cancellation System. Geophysical Journal International, 2016, 206(2): 1162-1168.
CrossRef Google scholar
Shen Z Y, Shen W-B, Zhang S X. Determination of Gravitational Potential at Ground Using Optical-Atomic Clocks on Board Satellites and on Ground Stations and Relevant Simulation Experiments. Surveys in Geophysics, 2017, 38(4): 757-780.
CrossRef Google scholar
Snider J L. New Measurement of the Solar Gravitational Red Shift. Physical Review Letters, 1972, 28(13): 853-856.
CrossRef Google scholar
Soffel M, Herold H, Ruder H, . Relativistic Geodesy: The Concept of Asymptotically Fixed Reference Frames. Manuscr. Geod, 1988, 13(3): 139-142.
Soffel M, Herold H, Ruder H, . Relativistic Theory of Gravimetric Measurements and Definition of the Geoid. Manuscr. Geod, 1988, 13: 143-146.
Takano T, Takamoto M, Ushijima I, . Geopotential Measurements with Synchronously Linked Optical Lattice Clocks. Nature Photonics, 2016, 10(10): 662-666.
CrossRef Google scholar
Tenzer R, Bagherbandi M. Theoretical Deficiencies of Isostatic Schemes in Modeling the Crustal Thickness along the Convergent Continental Tectonic Plate Boundaries. Journal of Earth Science, 2016, 27(6): 1045-1053.
CrossRef Google scholar
Turneaure J P, Will C M, Farrell B F, . Test of the Principle of Equivalence by a Null Gravitational Red-Shift Experiment. Physical Review D, 1983, 27(8): 1705-1714.
CrossRef Google scholar
Ushijima I, Takamoto M, Das M, . Cryogenic Optical Lattice Clocks. Nature Photonics, 2015, 9(3): 185-189.
CrossRef Google scholar
Vessot R F C, Levine M W. A Test of the Equivalence Principle Using a Space-Borne Clock. General Relativity and Gravitation, 1979, 10(3): 181-204.
CrossRef Google scholar
Vessot R F C, Levine M W, Mattison E M, . Test of Relativistic Gravitation with a Space-Borne Hydrogen Maser. Physical Review Letters, 1980, 45(26): 2081-2084.
CrossRef Google scholar
Wada M, Watabe K-I, Okubo S, . A Precise Frequency Comparison System Using an Optical Carrier. Electronics and Communications in Japan, 2015, 98: 19-27.
CrossRef Google scholar
Weinberg S. Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, 1972, New York: Wiley
Ye J, Peng J-L, Jones R J, . Delivery of High-Stability Optical and Microwave Frequency Standards over an Optical Fiber Network. Journal of the Optical Society of America B, 2003, 20 7 1459
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/