Mixed Carbonate-Siliciclastic Deposits in a Channel Complex in the Northern South China Sea

Benjun Ma, Shiguo Wu, Lijun Mi, Thomas Lüdmann, Jinwei Gao, Wei Gao

Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (3) : 707-720.

Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (3) : 707-720. DOI: 10.1007/s12583-018-0830-4
Environmental Geology and Marine Geology

Mixed Carbonate-Siliciclastic Deposits in a Channel Complex in the Northern South China Sea

Author information +
History +

Abstract

New high-resolution 3D seismic data image a submarine channel complex in the northern slope of the South China Sea. The channel complex stretches hundreds of kilometers across the slope and flows into the deepsea from the siliciclastic shelf margin, linking neritic environment to the pelagic plain. The evolution of the channel complex developed two sedimentary stages, stage I (19.1–18.5 Ma) and stage II (18.5–17.5 Ma), separated by erosional surfaces. In the first stage, the complex was filled with pure siliciclastic sediments, forming thick-massive sandstone intercalated by thin layers of mudstone. During the stage II, the channel complex was deposited five carbonate-siliciclastic cycles. The unexpected channel-fill carbonate deposits present allochthonous characteristics, suggesting the siliciclastic channel was surprisingly used to transport carbonate sediment from the adjacent neritic carbonate platform. By analyzing the periodical carbonate sedimentary process in the siliciclastic channel complex, we infer that it was related to the in situ carbonate production of the neritic carbonate platform and was most likely to be controlled by the relative sea-level changes. Unlike line-source carbonate slope aprons or small-sized carbonate channels, the large-sized siliciclastic channel complex links directly neritic carbonate platform to deepwater basin and can transport large volumes of neritic carbonates to the pelagic environment in a short period. The new findings help to estimate the contributions of neritic siliciclastic shelf and carbonate platform to deepwater slope more accurately. This study suggests that channel systems are more complex than expected and have significant implications on the conceptual models describing the deepwater sedimentary theory.

Keywords

submarine channels / mixed carbonate-siliciclastic deposits / allochthonous carbonate / sediment flux / sedimentology / South China Sea

Cite this article

Download citation ▾
Benjun Ma, Shiguo Wu, Lijun Mi, Thomas Lüdmann, Jinwei Gao, Wei Gao. Mixed Carbonate-Siliciclastic Deposits in a Channel Complex in the Northern South China Sea. Journal of Earth Science, 2018, 29(3): 707‒720 https://doi.org/10.1007/s12583-018-0830-4

References

Abreu V., Sullivan M., Pirmez C., . Lateral Accretion Packages (LAPs): An Important Reservoir Element in Deep Water Sinuous Channels. Marine and Petroleum Geology, 2003, 20(6/7/8): 631-648.
CrossRef Google scholar
Basilone L., Sulli A. A Facies Distribution Model Controlled by a Tectonically Inherited Sea Bottom Topography in the Carbonate Rimmed Shelf of the Upper Tithonian–Valanginian Southern Tethyan Continental Margin (NW Sicily, Italy). Sedimentary Geology, 2016, 342: 91-105.
CrossRef Google scholar
Beaufort L., Lancelot Y., Camberlin P., . Insolation Cycles as a Major Control of Equatorial Indian Ocean Primary Production. Science, 1997, 278(5342): 1451-1454.
CrossRef Google scholar
Betzler C., Fürstenau J., Lüdmann T., . Sea-Level and Ocean-Current Control on Carbonate-Platform Growth, Maldives, Indian Ocean. Basin Research, 2012, 25(2): 172-196.
CrossRef Google scholar
Betzler C., Hübscher C., Lindhorst S., . Monsoon-Induced Partial Carbonate Platform Drowning (Maldives, Indian Ocean). Geology, 2009, 37(10): 867-870.
CrossRef Google scholar
Boardman M. R., Neumann A. C. Sources of Periplatform Carbonates: Northwest Providence Channel, Bahamas: REPLY. SEPM Journal of Sedimentary Research, 1984, 55: 1110-1123.
Braga J. C., Martin J. M., Wood J. L. Submarine Lobes and Feeder Channels of Redeposited, Temperate Carbonate and Mixed Siliciclastic-Carbonate Platform Deposits (Vera Basin, Almeria, Southern Spain). Sedimentology, 2001, 48(1): 99-116.
CrossRef Google scholar
Brandano M., Ronca S. Depositional Processes of the Mixed Carbonate-Siliciclastic Rhodolith Beds of the Miocene Saint-Florent Basin, Northern Corsica. Facies, 2014, 60(1): 73-90.
CrossRef Google scholar
Brandano M., Tomassetti L., Bosellini F., . Depositional Model and Paleodepth Reconstruction of a Coral-Rich, Mixed Siliciclastic-Carbonate System: The Burdigalian of Capo Testa (northern Sardinia, Italy). Facies, 2010, 56(3): 433-444.
CrossRef Google scholar
Brenchley P. J., Carden G. A., Hints L., . High-Resolution Stable Isotope Stratigraphy of Upper Ordovician Sequences: Constraints on the Timing of Bioevents and Environmental Changes Associated with Mass Extinction and Glaciation. Geological Society of America Bulletin, 2003, 115(1): 89-104.
CrossRef Google scholar
Camacho H., Busby C.J., Kneller B. A New Depositional Model for the Classical Turbidite Locality at San Clemente State Beach, California. AAPG Bulletin, 2002, 86: 1543-1560.
Chen D. X., Wu S. G., Völker D., . Tectonically Induced, Deep-Burial Paleo-Collapses in the Zhujiang Miocene Carbonate Platform in the Northern South China Sea. Marine Geology, 2015, 364: 43-52.
CrossRef Google scholar
Chen J. S., Xu S. C., Sang J. Y. The Depositional Characteristics and Oil Potential of Paleo Pearl River Delta Systems in the Pearl River Mouth Basin, South China Sea. Tectonophysics, 1994, 235(1/2): 1-11.
CrossRef Google scholar
Clark J. D., Pickering K. T. Submarine Channels: Process and Architecture, 1996, 13-172.
Clift P. D. Controls on the Erosion of Cenozoic Asia and the Flux of Clastic Sediment to the Ocean. Earth and Planetary Science Letters, 2006, 241(3/4): 571-580.
CrossRef Google scholar
Clift P. D., Lee J. I., Clark M. K., . Erosional Response of South China to Arc Rifting and Monsoonal Strengthening: A Record from the South China Sea. Marine Geology, 2002, 184(3/4): 207-226.
Cronin B. T., Hurst A., Celik H., . Superb Exposure of a Channel, Levee and Overbank Complex in an Ancient Deep-Water Slope Environment. Sedimentary Geology, 2000, 132(3/4): 205-216.
CrossRef Google scholar
Cronin B. T., Kidd R. B. Heterogeneity and Lithotype Distribution in Ancient Deep-Sea Canyons: Point Lobos Deep-Sea Canyon as a Reservoir Analogue. Sedimentary Geology, 1998, 115(1/2/3/4): 315-349.
CrossRef Google scholar
De Garidel-Thoron T., Beaufort L., Linsley B. K., . Millennial-Scale Dynamics of the East Asian Winter Monsoon during the Last 200 000 Years. Paleoceanography, 2001, 16(5): 491-502.
CrossRef Google scholar
Deptuck M. E., Sylvester Z., Pirmez C., . Migration-Aggradation History and 3-D Seismic Geomorphology of Submarine Channels in the Pleistocene Benin-Major Canyon, Western Niger Delta Slope. Marine and Petroleum Geology, 2007, 24(6/7/8/9): 406-433.
CrossRef Google scholar
Di Celma C. Sedimentology, Architecture, and Depositional Evolution of a Coarse-Grained Submarine Canyon Fill from the Gelasian (Early Pleistocene) of the Peri-Adriatic Basin, Offida, Central Italy. Sedimentary Geology, 2011, 238(3/4): 233-253.
CrossRef Google scholar
Dong D. D., Wu S. G., Li J. B., . Tectonic Contrast between the Conjugate Margins of the South China Sea and the Implication for the Differential Extensional Model. Science China Earth Sciences, 2013, 57(6): 1415-1426.
CrossRef Google scholar
Dong D. D., Zhang G. C., Zhong K., . Tectonic Evolution and Dynamics of Deepwater Area of Pearl River Mouth Basin, Northern South China Sea. Journal of Earth Science, 2009, 20(1): 147-159.
CrossRef Google scholar
Droxler A. W., Schlager W. Glacial Versus Interglacial Sedimentation Rates and Turbidite Frequency in the Bahamas. Geology, 1985, 13 11 799
CrossRef Google scholar
Droxler A. W., Schlager W., Whallon C. C. Quaternary Aragonite Cycles and Oxygen-Isotope Record in Bahamian Carbonate Ooze. Geology, 1983, 11 4 235
CrossRef Google scholar
Erlich R.N., Barrett S.F., Ju G.B. Seismic and Geologic Characteristics of Drowning Events on Carbonate Platforms: ABSTRACT. AAPG Bulletin, 1990, 74: 1523-1537.
Feng Z., Zheng W. Tectonic Evolution of Zhujiangkou (Pearl-River-Mouth) Basin and Origin of South China Sea. Acta Geologica Sinica, 1982, 56: 212-222.
Ferro C. E., Droxler A. W., Anderson J. B., . Late Quaternary Shift of Mixed Siliciclastic-Carbonate Environments Induced by Glacial Eustatic Sea-Level Fluctuations in Belize, 1999, 385-411.
Francis J. M., Daniell J. J., Droxler A. W., . Deep Water Geomorphology of the Mixed Siliciclastic-Carbonate System, Gulf of Papua. Journal of Geophysical Research, 2008, 113(F1): 1-22.
CrossRef Google scholar
Glaser K. S., Droxler A. W. High Production and Highstand Shedding from Deeply Submerged Carbonate Banks, Northern Nicaragua Rise. Journal of Sedimentary Research, 1991, 61(1): 128-142.
Gong C. L., Steel R. J., Wang Y. M., . Grain Size and Transport Regime at Shelf Edge as Fundamental Controls on Delivery of Shelf-Edge Sands to Deepwater. Earth-Science Reviews, 2016, 157: 32-60.
CrossRef Google scholar
Gong C. L., Wang Y. M., Steel R. J., . Flow Processes and Sedimentation in Unidirectionally Migrating Deep-Water Channels: from a Three-Dimensional Seismic Perspective. Sedimentology, 2016, 63(3): 645-661.
CrossRef Google scholar
Gong C. L., Wang Y. M., Zhu W. L., . Upper Miocene to Quaternary Unidirectionally Migrating Deep-Water Channels in the Pearl River Mouth Basin, Northern South China Sea. AAPG Bulletin, 2013, 97(2): 285-308.
CrossRef Google scholar
Gong C. L., Wang Y. M., Zhu W., . The Central Submarine Canyon in the Qiongdongnan Basin, Northwestern South China Sea: Architecture, Sequence Stratigraphy, and Depositional Processes. Marine and Petroleum Geology, 2011, 28: 1690-1702.
CrossRef Google scholar
Gong Z., Jin Q., Qiu Z., . Geology, Tectonics and Evolution of the Pearl River Mouth Basin. Chinese Sedimentary Basins, 1989, 181-196.
Grossman E. L., Ku T. L. Oxygen and Carbon Isotope Fractionation in Biogenic Aragonite: Temperature Effects. Chemical Geology: Isotope Geoscience section, 1986, 59: 59-74.
CrossRef Google scholar
Hanebuth T. J. J., Stattegger K., Schimanski A., . Late Pleistocene Forced-Regressive Deposits on the Sunda Shelf (Southeast Asia). Marine Geology, 2003, 199(1/2): 139-157.
CrossRef Google scholar
Harris D. L., Webster J. M., Vila-Concejo A., . Late Holocene Sea-Level Fall and Turn-Off of Reef Flat Carbonate Production: Rethinking Bucket Fill and Coral Reef Growth Models. Geology, 2015, 43(2): 175-178.
CrossRef Google scholar
Hopley D. The Geomorphology of the Great Barrier Reef: Quaternary Development of Coral Reefs, 1982.
Iryu Y., Nakamori T., Matsuda S., . Distribution of Marine Organisms and Its Geological Significance in the Modern Reef Complex of the Ryukyu Islands. Sedimentary Geology, 1995, 99(3/4): 243-258.
CrossRef Google scholar
Jorry S. J., Droxler A. W., Francis J. M. Deepwater Carbonate Deposition in Response to Re-Flooding of Carbonate Bank and Atoll-Tops at Glacial Terminations. Quaternary Science Reviews, 2010, 29(17/18): 2010-2026.
CrossRef Google scholar
Kane I. A., Kneller B. C., Dykstra M., . Anatomy of a Submarine Channel–levee: An Example from Upper Cretaceous Slope Sediments, Rosario Formation, Baja California, Mexico. Marine and Petroleum Geology, 2007, 24(6/7/8/9): 540-563.
CrossRef Google scholar
Kier J. S., Pilkey O. H. The Influence of Sea Level Changes on Sediment Carbonate Mineralogy, Tongue of the Ocean, Bahamas. Marine Geology, 1971, 11(3): 189-200.
CrossRef Google scholar
Kolla V., Posamentier H. W., Wood L. J. Deep-Water and Fluvial Sinuous Channels—Characteristics, Similarities and Dissimilarities, and Modes of Formation. Marine and Petroleum Geology, 2007, 24(6/7/8/9): 388-405.
CrossRef Google scholar
Kominz M. A., Browning J. V., Miller K. G., . Late Cretaceous to Miocene Sea-Level Estimates from the New Jersey and Delaware Coastal Plain Coreholes: An Error Analysis. Basin Research, 2008, 20(2): 211-226.
CrossRef Google scholar
Kreisa R. D. Storm-Generated Sedimentary Structures in Subtidal Marine Facies with Examples from the Middle and Upper Ordovician of Southwestern Virginia. SEPM Journal of Sedimentary Research, 1981, 51: 823-848.
Leyla B. H., Ren J. Y., Zhang J., . En Echelon Faults and Basin Structure in Huizhou Sag, South China Sea: Implications for the Tectonics of the SE Asia. Journal of Earth Science, 2015, 26(5): 690-699.
CrossRef Google scholar
Lüdmann T., Wong H. K. Neotectonic Regime on the Passive Continental Margin of the Northern South China Sea. Tectonophysics, 1999, 311(1/2/3/4): 113-138.
CrossRef Google scholar
Lantzsch H., Roth S., Reijmer J. J. G., . Sea-Level Related Resedimentation Processes on the Northern Slope of Little Bahama Bank (Middle Pleistocene to Holocene). Sedimentology, 2007, 54(6): 1307-1322.
CrossRef Google scholar
Li T. G., Zhao J. T., Nan Q. Y., . Palaeoproductivity Evolution in the Centre of the Western Pacific Warm Pool during the Last 250 ka. Journal of Quaternary Science, 2011, 26(5): 478-484.
CrossRef Google scholar
Li T. G., Zhao J. T., Sun R. T., . The Variation of Upper Ocean Structure and Paleoproductivity in the Kuroshio Source Region during the Last 200 kyr. Marine Micropaleontology, 2010, 75(1/2/3/4): 50-61.
CrossRef Google scholar
Lubeseder S., Redfern J., Boutib L. Mixed Siliciclastic-Carbonate Shelf Sedimentation—Lower Devonian Sequences of the SW Anti-Atlas, Morocco. Sedimentary Geology, 2009, 215(1/2/3/4): 13-32.
CrossRef Google scholar
Ma B. J., Wu S. G., Sun Q. L., . The Late Cenozoic Deep-Water Channel System in the Baiyun Sag, Pearl River Mouth Basin: Development and Tectonic Effects. Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 122: 226-239.
CrossRef Google scholar
McHargue T., Pyrcz M. J., Sullivan M. D., . Architecture of Turbidite Channel Systems on the Continental Slope: Patterns and Predictions. Marine and Petroleum Geology, 2011, 28(3): 728-743.
CrossRef Google scholar
Mellere D., Plink-Bjorklund P., Steel R. Anatomy of Shelf Deltas at the Edge of a Prograding Eocene Shelf Margin, Spitsbergen. Sedimentology, 2002, 49(6): 1181-1206.
CrossRef Google scholar
Miller K. G., Kominz M. A., Browning J. V., . The Phanerozoic Record of Global Sea-Level Change. Science, 2005, 310: 1293-1298.
CrossRef Google scholar
Mitchum R. M. Jr., Vail P. R. T., III S. Seismic Stratigraphy and Global Changes of Sea levEl: Part 2. The Depositional Sequence as a Basic Unit for Stratigraphic Analysis: Section 2. Application of Seismic Reflection Configuration to Stratigraphic Interpretation. AAPG Special Volumes, 1977, 165: 53-62.
Mount J. F. Mixing of Siliciclastic and Carbonate Sediments in Shallow Shelf Environments. Geology, 1984, 12 7 432
CrossRef Google scholar
Mutti E., Normark W. R. An Integrated Approach to the Study of Turbidite Systems, 1991, 75-106.
Lancelot Y., Beaufort L. Insolation Cycles as a Major Control of Equatorial Indian Ocean Primary Production. Science, 1997, 278: 1451-1454.
CrossRef Google scholar
Normark W. R. Fan Valleys, Channels, and Depositional Lobes on Modern Submarine Fans: Characters for Recognition of Sandy Turbidite Environments. AAPG Bulletin, 1978, 62: 912-931.
Normark W. R., Piper D. J. W. Deep-Sea Fan-Valleys, Past and Present. Geological Society of America Bulletin, 1969, 80 9 1859
CrossRef Google scholar
Pang X., Chen C. M., Peng D. J., . Sequence Stratigraphy of Deep-Water Fan System of Pearl River, South China Sea. Earth Science Frontiers, 2007, 14(1): 220-229.
CrossRef Google scholar
Payros A., Pujalte V. Calciclastic Submarine Fans: An Integrated Overview. Earth-Science Reviews, 2008, 86(1/2/3/4): 203-246.
CrossRef Google scholar
Porębski S. J., Steel R. J. Shelf-Margin Deltas: Their Stratigraphic Significance and Relation to Deepwater Sands. Earth-Science Reviews, 2003, 62(3/4): 283-326.
CrossRef Google scholar
Puga-Bernabéu, Webster J. M., Beaman R. J., . Morphology and Controls on the Evolution of a Mixed Carbonate–siliciclastic Submarine Canyon System, Great Barrier Reef Margin, North-Eastern Australia. Marine Geology, 2011, 289(1/2/3/4): 100-116.
CrossRef Google scholar
Reading H. G., Richards M. T. The Classification of Deep-Water Siliciclastic Depositional Systems by Grain Size and Feeder Systems. AAPG Bulletin, 1994, 78: 792-822.
Sattler U., Immenhauser A., Schlager W., . Drowning History of a Miocene Carbonate Platform (Zhujiang Formation, South China Sea). Sedimentary Geology, 2009, 219(1/2/3/4): 318-331.
CrossRef Google scholar
Sattler U., Zampetti V., Schlager W., . Late Leaching under Deep Burial Conditions: A Case Study from the Miocene Zhujiang Carbonate Reservoir, South China Sea. Marine and Petroleum Geology, 2004, 21(8): 977-992.
CrossRef Google scholar
Shanmugam G. 50 Years of the Turbidite Paradigm (1950s–1990s): Deep-Water Processes and Facies Models—A Critical Perspective. Marine and Petroleum Geology, 2000, 17(2): 285-342.
CrossRef Google scholar
Su N., He Z. The Characteristics of Fault Activities in the Pearl River Mouth Basin and Their Control of Hydrocarbons, Collection of Papers from the International Petroleum Geological Convention, Northern South China Sea Continental Shelf, China. China Oil Magazine (Hong Kong)., 1987, 2: 191-216.
Sun Q. L., Wu S. G., Cartwright J., . Shallow Gas and Focused Fluid Flow Systems in the Pearl River Mouth Basin, Northern South China Sea, 2012, 1-14.
Sun Q. L., Wu S. G., Cartwright J., . Neogene Igneous Intrusions in the Northern South China Sea: Evidence from High-Resolution Three Dimensional Seismic Data. Marine and Petroleum Geology, 2014, 54: 83-95.
CrossRef Google scholar
Sun Q. L., Alves T., Xie X. N., . Free Gas Accumulations in Basal Shear Zones of Mass-Transport Deposits (Pearl River MouthBasin, South China Sea): An Important Geohazard on Continental Slope Basins. Marine and Petroleum Geology, 2017, 81: 17-32.
CrossRef Google scholar
Tcherepanov E. N., Droxler A. W., Lapointe P., . Neogene Evolution of the Mixed Carbonate-Siliciclastic System in the Gulf of Papua, Papua New Guinea. Journal of Geophysical Research, 2008, 113(F1): 1-15.
CrossRef Google scholar
Tcherepanov E. N., Droxler A. W., Lapointe P., . Siliciclastic Influx and Burial of the Cenozoic Carbonate System in the Gulf of Papua. Marine and Petroleum Geology, 2010, 27(2): 533-554.
CrossRef Google scholar
Turner N. L. The Lower Miocene Liuhua Carbonate Reservoir, Pearl River Mouth Basin, Offshore Peoples Republic of China: Abstract. AAPG Bulletin, 1990, 74: 1006-1007.
Vail P. R., Mitchum R. M. T. Jr, III S. Seismic Stratigraphy and Global Changes of Sea Level: Part 4, 1977, Global Cycles of Relative Changes of Sea Level: Section 2, 83-97.
Valladares M. I. Siliciclastic-Carbonate Slope Apron in an Immature Tensional Margin (Upper Precambrian–Lower Cambrian), Central Iberian Zone, Salamanca, Spain. Sedimentary Geology, 1995, 94(3/4): 165-186.
CrossRef Google scholar
Van Wagoner J. C., Posamentier H. W., Mitchum R. M. An Overview of the Fundamentals of Sequence Stratigraphy and Key Definitions. Sea-Level Changes—An Integrated Approach SEPM Special Publication, 1988, 42: 39-45.
CrossRef Google scholar
Vecsei A., Sanders D. G. K. Sea-Level Highstand and Lowstand Shedding Related to Shelf Margin Aggradation and Emersion, Upper Eocene–Oligocene of Maiella Carbonate Platform, Italy. Sedimentary Geology, 1997, 112(3/4): 219-234.
CrossRef Google scholar
Vigorito M., Murru M., Simone L. Anatomy of a Submarine Channel System and Related Fan in a Foramol/Rhodalgal Carbonate Sedimentary Setting: A Case History from the Miocene Syn-Rift Sardinia Basin, Italy. Sedimentary Geology, 2005, 174(1/2): 1-30.
CrossRef Google scholar
Vigorito M., Murru M., Simone L. Architectural Patterns in a Multistorey Mixed Carbonate–siliciclastic Submarine Channel, Porto Torres Basin, Miocene, Sardinia, Italy. Sedimentary Geology, 2006, 186(3/4): 213-236.
CrossRef Google scholar
Wan S. M., Clift P. D., Li A. C., . Geochemical Records in the South China Sea: Implications for East Asian Summer Monsoon Evolution over the Last 20 Ma. Geological Society, London, Special Publications, 2010, 342(1): 245-263.
CrossRef Google scholar
Wan S. M., Li A. C., Clift P. D., . Increased Contribution of Terrigenous Supply from Taiwan to the Northern South China Sea since 3 Ma. Marine Geology, 2010, 278(1/2/3/4): 115-121.
CrossRef Google scholar
Wang G. H., Wang H., Gan H. J., . Paleogene Tectonic Evolution Controls on Sequence Stratigraphic Patterns in the Fushan Sag, Northern South China Sea. Journal of Earth Science, 2016, 27(4): 654-669.
CrossRef Google scholar
Wilson P. A., Roberts H. H. Carbonate-Periplatform Sedimentation by Density Flows: A Mechanism for Rapid Off-Bank and Vertical Transport of Shallow-Water Fines. Geology, 1992, 20 8 713
CrossRef Google scholar
Wilson P. A., Roberts H. H. Density Cascading: Off-Shelf Sediment Transport, Evidence and Implications, Bahama Banks. SEPM Journal of Sedimentary Research, 1995, 65A: 45-56.
Xie H., Zhou D., Li Y. P., . Cenozoic Tectonic Subsidence in Deepwater Sags in the Pearl River Mouth Basin, Northern South China Sea. Tectonophysics, 2014, 615/616: 182-198.
CrossRef Google scholar
Zhou D., Sun Z., Liao J., . Filling History and Post-Breakup Acceleration of Sedimentation in Baiyun Sag, Deepwater Northern South China Sea. Journal of Earth Science, 2009, 20(1): 160-171.
CrossRef Google scholar
Zhu M. Z., Graham S., Pang X., . Characteristics of Migrating Submarine Canyons from the Middle Miocene to Present: Implications for Paleoceanographic Circulation, Northern South China Sea. Marine and Petroleum Geology, 2010, 27(1): 307-319.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/