Frequency-Domain Multi-Scale Early-Arrival Waveform Tomography with a Time-Domain Wavefield Modeling Engine

Huachen Yang , Juan Wang , Taikun Shi , Jianzhong Zhang

Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (3) : 679 -688.

PDF
Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (3) : 679 -688. DOI: 10.1007/s12583-018-0828-y
Applied Geophysics

Frequency-Domain Multi-Scale Early-Arrival Waveform Tomography with a Time-Domain Wavefield Modeling Engine

Author information +
History +
PDF

Abstract

Early-arrival waveform tomography (EWT) is one of the most promising techniques for building near-surface velocity model. Based on finite-frequency wave equation, EWT estimates velocities by matching calculated early-arrival waveforms with the observed ones. However, the objective function of EWT can easily converge to local minimum because of the cycle-skipping phenomenon. In order to reduce the cycle-skipping problem, a hybrid-domain early-arrival waveform tomography (HEWT) is proposed in this paper. The forward modeling of HEWT is realized in the time domain where early-arrival waveforms are easier to be selected from seismic data and less memory is needed than they are in the frequency domain. The inversion is implemented in the frequency domain where multi-scale strategy is more convenient to be realized than that in the time domain. Discrete Fourier transformation (DFT) is used to transform the time-domain wavefield to the frequency-domain wavefield. Test results show that HEWT is more competitive than EWT in both accuracy and computational time.

Keywords

early-arrival / waveform inversion / velocity model / multi-scale / hybrid domain

Cite this article

Download citation ▾
Huachen Yang, Juan Wang, Taikun Shi, Jianzhong Zhang. Frequency-Domain Multi-Scale Early-Arrival Waveform Tomography with a Time-Domain Wavefield Modeling Engine. Journal of Earth Science, 2018, 29(3): 679-688 DOI:10.1007/s12583-018-0828-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adamczyk A., Malinowski M., Górszczyk A. Full-Waveform Inversion of Conventional Vibroseis Data Recorded along a Regional Profile from Southeast Poland. Geophysical Journal International, 2015, 203(1): 351-365.

[2]

Alford R. M., Kelly K. R., Boore D. M. Accuracy of Finite— Difference Modeling of the Acoustic Wave Equation. Geophysics, 1974, 39(6): 834-842.

[3]

Berenger J. P. A Perfectly Matched Layer for the Absorption of Electromagnetic Waves. Journal of Computational Physics, 1994, 114(2): 185-200.

[4]

Bian A. F., Zou Z. H., Zhou H. W., . Evaluation of Multi-Scale Full Waveform Inversion with Marine Vertical Cable Data. Journal of Earth Science, 2015, 26(4): 481-486.

[5]

Boonyasiriwat C., Valasek P., Routh P., . An Efficient Multiscale Method for Time-Domain Waveform Tomography. Geophysics, 2009, 74(6): WCC59-WCC68.

[6]

Bunks C., Saleck F. M., Zaleski S., . Multiscale Seismic Waveform Inversion. Geophysics, 1995, 60(5): 1457-1473.

[7]

Crase E., Wideman C., Noble M., . Nonlinear Elastic Waveform Inversion of Land Seismic Reflection Data. Journal of Geophysical Research, 1992, 97(B4): 4685-4703.

[8]

Dai Y. H., Yuan Y. A Nonlinear Conjugate Gradient Method with a Strong Global Convergence Property. SIAM Journal on Optimization, 1999, 10(1): 177-182.

[9]

Fletcher R., Reeves C. M. Function Minimization by Conjugate Gradients. The Computer Journal, 1964, 7(2): 149-154.

[10]

Hager W. W., Zhang H. C. A New Conjugate Gradient Method with Guaranteed Descent and an Efficient Line Search. SIAM Journal on Optimization, 2005, 16(1): 170-192.

[11]

Hager W. W., Zhang H. C. A Survey of Nonlinear Conjugate Gradient Methods. Pacific Journal of Optimization, 2006, 2(1): 35-58.

[12]

Hanafy S. M., Yu H. Early Arrival Waveform Inversion of Shallow Seismic Land Data, 2013, 1738-1742.

[13]

Hestenes M. R., Stiefel E. Methods of Conjugate Gradients for Solving Linear Systems. Journal of Research of the National Bureau of Standards, 1952, 49(6): 409-436.

[14]

Kamei R., Pratt R. G. Wide-Band Multifrequency Waveform Inversion in the Laplace-Fourier Domain, 2012, 1-6.

[15]

Kim Y., Cho H., Min D. J., . Comparison of Frequency-Selection Strategies for 2D Frequency-Domain Acoustic Waveform Inversion. Pure and Applied Geophysics, 2011, 168(10): 1715-1727.

[16]

Komatitsch D., Tromp J. A Perfectly Matched Layer Absorbing Boundary Condition for the Second-Order Seismic Wave Equation. Geophysical Journal International, 2003, 154(1): 146-153.

[17]

Levander A. R. Fourth-Order Finite-Difference P-SV Seismograms. Geophysics, 1988, 53(11): 1425-1436.

[18]

Liu L., Ding R. W., Liu H. W., . 3D Hybrid-Domain Full Waveform Inversion on GPU. Computers & Geosciences, 2015, 83: 27-36.

[19]

Liu Y., Li C. C., Mou Y. G. Finite-Difference Numerical Modeling of any even Order Accuracy. Oil Geophysical Prospecting, 1998, 33(1): 1-10.

[20]

Liu Y., Sen M. K. A New Time-Space Domain High-Order Finite-Difference Method for the Acoustic Wave Equation. Journal of Computational Physics, 2009, 228(23): 8779-8806.

[21]

Luo Y., Schuster G. T. Wave-Equation Traveltime Inversion. Geophysics, 1991, 56(5): 645-653.

[22]

Malinowski M., Operto S., Ribodetti A. High-Resolution Seismic At tenuation Imaging from Wide-Aperture Onshore Data by Visco-Acoustic Frequency-Domain Full-Waveform Inversion. Geophysical Journal International, 2011, 186(3): 1179-1204.

[23]

Mora P. Nonlinear Two-Dimensional Elastic Inversion of Multioffset Seismic Data. Geophysics, 1987, 52(9): 1211-1228.

[24]

Plessix R. E. A Review of the Adjoint-State Method for Computing the Gradient of a Functional with Geophysical Applications. Geophysical Journal International, 2006, 167(2): 495-503.

[25]

Polak E., Ribiere G. Note Sur La Convergence de Méthodes de Directions Conjuguées. Revue Française d’Informatique et de Recherche opéRationnelle Série Rouge, 1969, 3(16): 35-43.

[26]

Powell M. J. D. Convergence Properties of a Class of Minimization Algorithms. Nonlinear Programming, 1975, 2: 1-27.

[27]

Pratt R. G. Seismic Waveform Inversion in the Frequency Domain, Part 1: Theory and Verification in a Physical Scale Model. Geophysics, 1999, 64(3): 888-901.

[28]

Qi Q., Geers T. L. Evaluation of the Perfectly Matched Layer for Computational Acoustics. Journal of Computational Physics, 1998, 139(1): 166-183.

[29]

Ravaut C., Operto S., Improta L., . Multiscale Imaging of Complex Structures from Multifold Wide-Aperture Seismic Data by Frequency-Domain Full-Waveform Tomography: Application to a Thrust Belt. Geophysical Journal International, 2004, 159(3): 1032-1056.

[30]

Shen X. Near-Surface Velocity Estimation by Weighted Early-Arrival Waveform Inversion, 2010, 1975-1979.

[31]

Sheng J., Leeds A., Buddensiek M., . Early Arrival Waveform Tomography on Near-Surface Refraction Data. Geophysics, 2006, 71(4): U47-U57.

[32]

Shi T. K., Zhang J. Z., Huang Z. L., . A Layer-Stripping Method for 3D Near-Surface Velocity Model Building Using Seismic First-Arrival Times. Journal of Earth Science, 2015, 26(4): 502-507.

[33]

Sirgue L., Pratt R. G. Efficient Waveform Inversion and Imaging: A Strategy for Selecting Temporal Frequencies. Geophysics, 2004, 69(1): 231-248.

[34]

Sirgue L., Etgen J. T. Albertin U. 3D Frequency Domain Waveform Inversion Using Time Domain Finite Difference Methods, 2008.

[35]

Song Z. M., Williamson P. R., Pratt R. G. Frequency-Domain Acoustic-Wave Modeling and Inversion of Crosshole Data: Part II—Inversion Method, Synthetic Experiments and Real-Data Results. Geophysics, 1995, 60(3): 796-809.

[36]

Tarantola A. Inverse Problem Theory: Methods for Data Fitting and Parameter Estimation, 1987.

[37]

Virieux J., Operto S. An Overview of Full-Waveform Inversion in Exploration Geophysics. Geophysics, 2009, 74(6): WCC1-WCC26.

[38]

Xu K., McMechan G. A. 2D Frequency-Domain Elastic Full-Waveform Inversion Using Time-Domain Modeling and a Multistep-Length Gradient Approach. Geophysics, 2014, 79(2): R41-R53.

[39]

Yu H., Hanafy S. M. An Application of Multiscale Early Arrival Waveform Inversion to Shallow Seismic Data. Near Surface Geophysics, 2014, 12(4): 549-557.

[40]

Zhang J. Z., Huang Y. Q., Song L. P., . Fast and Accurate 3-D Ray Tracing Using Bilinear Traveltime Interpolation and the Wave Front Group Marching. Geophysical Journal International, 2011, 184(3): 1327-1340.

[41]

Zhang J. Z., Shi T. K., Zhao Y. S., . Static Corrections in Mountainous Areas Using Fresnel-Wavepath Tomography. Journal of Applied Geophysics, 2014, 111: 242-249.

[42]

Zhang J. Z., Liu H., Zou Z. H., . Velocity Modeling and Inversion Techniques for Locating Microseismic Events in Unconventional Reservoirs. Journal of Earth Science, 2015, 26(4): 495-501.

[43]

Zhou C. X., Cai W. Y., Luo Y., . Acoustic Wave-Equation Traveltime and Waveform Inversion of Crosshole Seismic Data. Geophysics, 1995, 60(3): 765-773.

AI Summary AI Mindmap
PDF

127

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/