Early Cretaceous Post-Collisional Collapse of the Yidun Terrane: Geochronological and Geochemical Constraints from Calc-alkaline to Alkaline Basalts in Xiqiu Area, Southwest China

Xutuo Li , Danping Yan , Liang Qiu

Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (1) : 57 -77.

PDF
Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (1) : 57 -77. DOI: 10.1007/s12583-018-0825-1
Mineralogy and Petrogeochemistry

Early Cretaceous Post-Collisional Collapse of the Yidun Terrane: Geochronological and Geochemical Constraints from Calc-alkaline to Alkaline Basalts in Xiqiu Area, Southwest China

Author information +
History +
PDF

Abstract

Several Cretaceous Carlin-like or hydrothermal gold deposits along the Garze-Litang suture zone and Early Cretaceous hydrothermal copper mineralization along the southeastern margin of the Songpan-Garze fold belt were presumed to have a magmatic heat source. However, no actual coeval magmatic events nearby were discovered. Here, we report zircon SIMS U-Pb age, whole-rock geochemical and Sr-Nd isotopic data of the Xiqiu basalts in the southern end of the Yidun terrane, eastern Tibetan Plateau. New zircon U-Pb ages yield weighted mean 206Pb/238U age of 117.7±1.6 Ma. The basalts are classified as calc-alkaline to alkaline and have relatively high MgO (4.77 wt.%–10.84 wt.%) and Mg number values (Mg#=(100×Mg/(Mg+Fe2+)); 45.35–67.28) and positive ε Nd(t) (t=118 Ma) values (+1.86 to +3.2), suggesting a OIB-like mantle source that is consistent with the normalized patterns of trace elements and rare earth elements (REEs). Geochemical data suggest that the primary basaltic magma was generated by low degree partial melting of a peridotite-dominated mantle source with a minor component of garnet-eclogite or pyroxenite and experienced olivine+clinopyroxene dominated fractional crystallization. The primary melt compositions calculated from the high MgO samples, in turn, suggest that the Xiqiu basalts were generated at 1.6–2.9 GPa with abnormally hot mantle potential temperatures from 1 465 to 1 540 ºC. The melting temperatures are similar to the abnormally hot mantle underneath the Colorado Plateau and hotter than the mid-ocean range basalt (MORB) mantle and normal intra-continental mantle. Combined with previous studies, the Cretaceous Xiqiu basalts allow us to reconstruct a tectonic and geodynamic evolutionary model responsible for the Late Jurassic to Late Cretaceous geological records (magmatism, ore deposits and enhanced exhumation) in the Yidun terrane and southern Songpan-Garze fold belt.

Keywords

Early Cretaceous / mantle thermal state / basalt / Yidun terrane / tectonic and geodynamic model

Cite this article

Download citation ▾
Xutuo Li, Danping Yan, Liang Qiu. Early Cretaceous Post-Collisional Collapse of the Yidun Terrane: Geochronological and Geochemical Constraints from Calc-alkaline to Alkaline Basalts in Xiqiu Area, Southwest China. Journal of Earth Science, 2018, 29(1): 57-77 DOI:10.1007/s12583-018-0825-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Albarède F. How Deep do Common Basaltic Magmas form and Differentiate?. Journal of Geophysical Research, 1992, 97(B7): 10997-11009.

[2]

Aldanmaz E., Pearce J. A., Thirlwall M. F., . Petrogenetic Evolution of Late Cenozoic, Post-Collision Volcanism in Western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 2000, 102(1/2): 67-95.

[3]

Allen P. A., Allen J. R. Basin Analysis: Principles and Applications (Second Edition), 2005.

[4]

Beattie P. Olivine-Melt and Orthopyroxene-Melt Equilibria. Contributions to Mineralogy and Petrology, 1993, 115(1): 103-111.

[5]

Bown J. W., White R. S. Effect of Finite Extension Rate on Melt Generation at Rifted Continental Margins. Journal of Geophysical Research: Solid Earth, 1995, 100(B9): 18011-18029.

[6]

Burchfiel B. C., Chen Z. L. Tectonics of the Southeastern Tibetan Plateau and Its Adjacent Foreland. Geological Society of America Memoirs, 2013, 210: 1-164.

[7]

Cao W. T., Yan D. P., Qiu L., . Structural Style and Metamorphic Conditions of the Jinshajiang Metamorphic Belt: Nature of the Paleo-Jinshajiang Orogenic Belt in the Eastern Tibetan Plateau. Journal of Asian Earth Sciences, 2015, 113: 748-765.

[8]

Castillo P. R. Origin of the Adakite-High-Nb Basalt Association and Its Implications for Postsubduction Magmatism in Baja California, Mexico. Geological Society of America Bulletin, 2008, 120(3/4): 451-462.

[9]

Castillo P. R., Rigby S. J., Solidum R. U. Origin of High Field Strength Element Enrichment in Volcanic Arcs: Geochemical Evidence from the Sulu Arc, Southern Philippines. Lithos, 2007, 97(3/4): 271-288.

[10]

Cen T., Li W. X., Wang X. C., . Petrogenesis of Early Jurassic Basalts in Southern Jiangxi Province, South China: Implications for the Thermal State of the Mesozoic Mantle beneath South China. Lithos, 2016, 256/257: 311-330.

[11]

Chen B., Wang K., Liu W., . Geotectonics of the Nujiang-Lancangjiang-Jinshajiang Region, 1987.

[12]

Chen M. H., Deng J., Chen D. Q. Origin of the Ore-Forming Matter from the Liwu Copper Orefield in Jiulong, Sichuan. Sedimentary Geology and Tethyan Geology, 2011, 31(1): 89-93.

[13]

Deng B., Liu S. G., Li Z. W., . Late Cretaceous Tectonic Change of the Eastern Margin of the Tibetan Plateau—Results from Multisystem Thermochronology. Journal of the Geological Society of India, 2012, 80(2): 241-254.

[14]

Deng J., Wang Q. F., Li G. J. Tectonic Evolution, Superimposed Orogeny, and Composite Metallogenic System in China. Gondwana Research, 2017, 50: 216-266.

[15]

Deng J., Wang Q. F., Li G. J., . Tethys Tectonic Evolution and Its Bearing on the Distribution of Important Mineral Deposits in the Sanjiang Region, SW China. Gondwana Research, 2014, 26(2): 419-437.

[16]

Ding L., Yang D., Cai F. L., . Provenance Analysis of the Mesozoic Hoh-Xil-Songpan-Ganzi Turbidites in Northern Tibet: Implications for the Tectonic Evolution of the Eastern Paleo-Tethys Ocean. Tectonics, 2013, 32(1): 34-48.

[17]

Du D. D., Qu X. M., Wang G. H., . Bidirectional Subduction of the Middle Tethys Oceanic Basin in the West Segment of Bangonghu-Nujiang Suture, Tibet: Evidence from Zircon U-Pb LAICPMS Dating and Petrogeochemistry of Arc Granites. Acta Petrologica Sinica, 2011, 27: 1993-2002.

[18]

Ellam R. M. Lithospheric Thickness as a Control on Basalt Geochemistry. Geology, 1992, 20 2 153

[19]

Falloon T. J., Danyushevsky L. V. Melting of Refractory Mantle at 1.5, 2 and 2.5 GPa under Anhydrous and H2O-Undersaturated Conditions: Implications for the Petrogenesis of High-Ca Boninites and the Influence of Subduction Components on Mantle Melting. Journal of Petrology, 2000, 41(2): 257-283.

[20]

Griffin W. L., Begg G. C., O’Reilly S. Y. Continental-Root Control on the Genesis of Magmatic Ore Deposits. Nature Geoscience, 2013, 6(11): 905-910.

[21]

Gutscher M. A., Maury R., Eissen J. P., . Can Slab Melting be Caused by Flat Subduction?. Geology, 2000, 28 6 535

[22]

Haase K. M. The Relationship between the Age of the Lithosphere and the Composition of Oceanic Magmas: Constraints on Partial Melting, Mantle Sources and the Thermal Structure of the Plates. Earth and Planetary Science Letters, 1996, 144(1/2): 75-92.

[23]

Hastie A. R., Kerr A. C., Pearce J. A., . Classification of Altered Volcanic Island Arc Rocks Using Immobile Trace Elements: Development of the Th-Co Discrimination Diagram. Journal of Petrology, 2007, 48(12): 2341-2357.

[24]

Hastie A. R., Mitchell S. F., Kerr A. C., . Geochemistry of Rare High-Nb Basalt Lavas: Are They Derived from a Mantle Wedge Metasomatised by Slab Melts?. Geochimica et Cosmochimica Acta, 2011, 75(17): 5049-5072.

[25]

Herzberg C., Asimow P. D., Arndt N., . Temperatures in Ambient Mantle and Plumes: Constraints from Basalts, Picrites, and Komatiites. Geochemistry, Geophysics, Geosystems, 2007, 8(2): 1-34.

[26]

Herzberg C., O’Hara M. J. Plume-Associated Ultramafic Magmas of Phanerozoic Age. Journal of Petrology, 2002, 43(10): 1857-1883.

[27]

Hou Z. Q. Tectono-Magmatic Evolution of the Yidun Island-Arc and Geodynamic Setting of Kuroko-Type Sulfide Deposits in Sanjiang Region, SW China. Resource Geology, 1993, 17: 336-350.

[28]

Hou Z. Q., Yang Y. Q., Wang H. P., . Collision-Orogenic Progress and Mineralization System of Yidun Arc, 2003.

[29]

Hronsky J. M. A., Groves D. I., Loucks R. R., . A Unified Model for Gold Mineralisation in Accretionary Orogens and Implications for Regional-Scale Exploration Targeting Methods. Mineralium Deposita, 2012, 47(4): 339-358.

[30]

Hu R. Z., Wen H. J., Su W. C., . Some Advances in Ore Deposit Geochemistry in Last Decade. Bulletin of Mineralogy, Petrology and Geochemistry, 2014, 33(2): 128-144.

[31]

Huan W. J., Li N., Yuan W. M., . Fission Track Constrain on Mineralization Time and Tectonic Events in Ganzi-Litang Gold Belt, Tibet Plateau. Acta Petrologica Sinica, 2013, 29(4): 1338-1346.

[32]

Huan W. J., Yuan W. M., Li N. Study on the Mineral Electron Microprobe Evidence of the Formation Conditions and Fission Track of Gold Deposits in Garze-Litang Gold Belt, Western Sichuan Province. Geosciences, 2011, 25: 261-270.

[33]

Jahn B. M., Wu F. Y., Lo C. H., . Crust-Mantle Interaction Induced by Deep Subduction of the Continental Crust: Geochemical and Sr-Nd Isotopic Evidence from Post-Collisional Mafic-Ultramafic Intrusions of the Northern Dabie Complex, Central China. Chemical Geology, 1999, 157(1/2): 119-146.

[34]

Jian P., Liu D. Y., Kröner A., . Devonian to Permian Plate Tectonic Cycle of the Paleo-Tethys Orogen in Southwest China (II): Insights from Zircon Ages of Ophiolites, Arc/Back-Arc Assemblages and Within-Plate Igneous Rocks and Generation of the Emeishan CFB Province. Lithos, 2009, 113(3/4): 767-784.

[35]

Kapp P., DeCelles P. G., Gehrels G. E., . Geological Records of the Lhasa-Qiangtang and Indo-Asian Collisions in the Nima Area of Central Tibet. Geological Society of America Bulletin, 2007, 119(7/8): 917-933.

[36]

Kapp P., Yin A., Harrison T. M., . Cretaceous–Tertiary Shortening, Basin Development, and Volcanism in Central Tibet. Geological Society of America Bulletin, 2005, 117 7 865

[37]

Katz R. F., Spiegelman M., Langmuir C. H. A New Parameterization of Hydrous Mantle Melting. Geochemistry, Geophysics, Geosystems, 2003, 4(9): 1-19.

[38]

Kelley K. A., Plank T., Grove T. L., . Mantle Melting as a Function of Water Content beneath Back-Arc Basins. Journal of Geophysical Research, 2006, 111(B9): 1-27.

[39]

Kepezhinskas P., McDermott F., Defant M. J., . Trace Element and Sr-Nd-Pb Isotopic Constraints on a Three-Component Model of Kamchatka Arc Petrogenesis. Geochimica et Cosmochimica Acta, 1997, 61(3): 577-600.

[40]

Lai Q. Z., Ding L., Wang H. W., . Constraining the Stepwise Migration of the Eastern Tibetan Plateau Margin by Apatite Fission Track Thermochronology. Science in China Series D: Earth Sciences, 2007, 50(2): 172-183.

[41]

Langmuir C. H., Klein E. M., Plank T. Petrological Systematics of Mid-Ocean Ridge Basalts: Constraints on Melt Generation beneath Ocean Ridges. In: Mantle Flow and Melt Generation at Mid-Ocean Ridges. American Geophysical Union, Geophysical Monograph, 1992, 71: 183-280.

[42]

Le Roux V., Lee C. T. A., Turner S. J. Zn/Fe Systematics in Mafic and Ultramafic Systems: Implications for Detecting Major Element Heterogeneities in the Earth’s Mantle. Geochimica et Cosmochimica Acta, 2010, 74(9): 2779-2796.

[43]

Lee C. T. A., Luffi P., Plank T., . Constraints on the Depths and Temperatures of Basaltic Magma Generation on Earth and Other Terrestrial Planets Using New Thermobarometers for Mafic Magmas. Earth and Planetary Science Letters, 2009, 279(1/2): 20-33.

[44]

Li D. P., Chen Y. L., Luo Z. H., . Zircon^SHRIMP U-Pb Dating and Neoproterozoic Metamorphism of Kangding and Yuanmou Intrusive Complexes, Sichuan and Yunnan. Journal of Earth Science, 2009, 20(6): 897-908.

[45]

Li H. L., Zhang Y. Q., Zhang C. H., . Middle Jurassic Syn-Kinematic Magmatism, Anatexis and Metamorphism in the Zheduo-Gonggar Massif, Implication for the Deformation of the Xianshuihe Fault Zone, East Tibet. Journal of Asian Earth Sciences, 2015, 107: 35-52.

[46]

Li J. K., Li W. C., Wang D. H., . Re-Os Dating for Ore Forming Event in the Late of Yanshan Epoch and Research of Ore-Forming Regularity in Zhongdian Arc. Acta Petrologica Sinica, 2007, 23: 2415-2422.

[47]

Li T. Z., Dai Y. P., Ma G. T., . SHRIMP zircon U-Pb Dating of the Wulaxi Granite in the Western Margin of the Yangtze Block and Its Geological Significance. Bulletin of Mineralogy, Petrology and Geochemistry, 2016, 35(4): 744-749.

[48]

Li T. Z., Zhou Q., Zhang H. H., . Ore Geology and Molybdenite Re-Os Dating of the Wulaxi Tungsten Deposit in Western Sichuan. Geological Journal of China Universities, 2016, 22(3): 423-430.

[49]

Li X. H., Liu Y., Li Q. L., . Precise Determination of Phanerozoic Zircon Pb/Pb Age by Multicollector SIMS without External Standardization, 2009, Geochemistry, Geophysics, Geosystems, 10(4): Q04010

[50]

Li X. H., Tang G. Q., Gong B., . Qinghu Zircon: A Working Reference for Microbeam Analysis of U-Pb Age and Hf and O Isotopes. Chinese Science Bulletin, 2013, 58(36): 4647-4654.

[51]

Li Y. J., Wei J. H., Chen H. Y., . Petrogenesis of the Xiasai Early Cretaceous A-Type Granite from the Yidun Island Arc Belt, SW China: Constraints from Zircon U-Pb Age, Geochemistry and Hf Isotope. Geotectonica et Metallogenia, 2014, 38(4): 939-954.

[52]

Liang Q. Determination of Trace Elements in Granites by Inductively Coupled Plasma Mass Spectrometry. Talanta, 2000, 51(3): 507-513.

[53]

Liu S. S., Fan W. Y., Nie F., . Geological Characteristics and Ore-Controlling Factors Analysis of Suoluogou Gold Deposit, Muli County, Sichuan Province. Gold, 2015, 6(36): 98-13.

[54]

Liu Y. S., Gao S., Kelemen P. B., . Recycled Crust Controls Contrasting Source Compositions of Mesozoic and Cenozoic Basalts in the North China Craton. Geochimica et Cosmochimica Acta, 2008, 72(9): 2349-2376.

[55]

Ludwig K. R. User’s Manual for Isoplot/EX, Version 3.70. A Geochronological Toolkit for Microsoft Excel, Special Publication 4, 2003.

[56]

Luo H. C., Kan Z. Z., Yang H., . Mineralogy and Metamorphism of the Changqiang Metamorphic Dome. Journal of Sichuan Geology, 2012, 32(2): 133-138.

[57]

Ma G. T., Wang M. J., Yao P., . 40Ar-39Ar Dating of Biotite from the Heiniudong Copper Deposit in Jiulong County, Sichuan Province, and Its Geological Significance. Acta Geologica Sinica, 2009, 83(5): 673-679.

[58]

McKenzie D., Bickle M. J. The Volume and Composition of Melt Generated by Extension of the Lithosphere. Journal of Petrology, 1988, 29(3): 625-679.

[59]

McKenzie D., O’Nions R. K. Partial Melt Distributions from Inversion of Rare Earth Element Concentrations. Journal of Petrology, 1991, 32(5): 1021-1091.

[60]

Moucha R., Forte A. M., Rowley D. B., . Mantle Convection and the Recent Evolution of the Colorado Plateau and the Rio Grande Rift Valley. Geology, 2008, 36 6 439

[61]

Moyen J. F. High Sr/Y and La/Yb Ratios: The Meaning of the “Adakitic Signature”. Lithos, 2009, 112(3/4): 556-574.

[62]

Nie F., Fan W. Y., Liu S. S., . Structural Characteristics of the Suoluogou Gold Deposit in Muli County, West Sichuan Province. Acta Geologica Sinica—English Edition, 2015, 89(5): 1773-1774.

[63]

Pan G. T., Li X. Z., Wang L. Q., . Preliminary Division of Tectonic Units of the Qinghai-Tibet Plateau and Its Adjacent Regions. Geological Bulletin of China, 2002, 21: 701-707.

[64]

Pan G. T., Wang L. Q., Li R. S., . Tectonic Evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 2012, 53: 3-14.

[65]

Pearce J. A. A User’s Guide to Basalt Discrimination Diagrams. Trace Element Geochemistry of Volcanic Rocks: Applications of Massive Sulphide Exploration. Geological Association of Canada, Short Course Notes, 1996, 12: 79-113.

[66]

Pearce J. A. Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 2008, 100(1/2/3/4): 14-48.

[67]

Plank T., Langmuir C. H. The Chemical Composition of Subducting Sediment and Its Consequences for the Crust and Mantle. Chemical Geology, 1998, 145(3/4): 325-394.

[68]

Putirka K. D., Mikaelian H., Ryerson F., . New Clinopyroxene-Liquid Thermobarometers for Mafic, Evolved, and Volatile-Bearing Lava Compositions, with Applications to Lavas from Tibet and the Snake River Plain, Idaho. American Mineralogist, 2003, 88(10): 1542-1554.

[69]

Putirka K. D., Perfit M., Ryerson F. J., . Ambient and Excess Mantle Temperatures, Olivine Thermometry, and Active vs. Passive Upwelling. Chemical Geology, 2007, 241(3/4): 177-206.

[70]

Qu X. M., Hou Z. Q., Tang S. H. Age of Intraplate Volcanism in the Back-Arc Area of Yidun Island Arc and Its Significance. Petrol. Mineral., 2003, 22: 131-137.

[71]

Reid A. J., Fowler A. P., Phillips D., . Thermochronology of the Yidun Arc, Central Eastern Tibetan Plateau: Constraints from 40Ar/39Ar K-Feldspar and Apatite Fission Track Data. Journal of Asian Earth Sciences, 2005, 25(6): 915-935.

[72]

Reid A. J., Wilson C. J. L., Liu S. Structural Evidence for the Permo-Triassic Tectonic Evolution of the Yidun Arc, Eastern Tibetan Plateau. Journal of Structural Geology, 2005, 27(1): 119-137.

[73]

Reid A. J., Wilson C. J. L., Liu S., . Mesozoic Plutons of the Yidun Arc, SW China: U/Pb Geochronology and Hf Isotopic Signature. Ore Geology Reviews, 2007, 31(1/2/3/4): 88-106.

[74]

Roger F., Jolivet M., Cattin R., . Mesozoic–Cenozoic Tectonothermal Evolution of the Eastern Part of the Tibetan Plateau (Songpan-Garze, Longmen Shan Area): Insights from Thermochronological Data and Simple Thermal Modelling. Geological Society, London, Special Publications, 2011, 353(1): 9-25.

[75]

Roger F., Jolivet M., Malavieille J. The Tectonic Evolution of the Songpan-Garze (North Tibet) and Adjacent Areas from Proterozoic to Present: A Synthesis. Journal of Asian Earth Sciences, 2010, 39(4): 254-269.

[76]

Roy M., Jordan T. H., Pederson J. Colorado Plateau Magmatism and Uplift by Warming of Heterogeneous Lithosphere. Nature, 2009, 459(7249): 978-982.

[77]

Shellnutt J. G., Zhou M. F., Yan D. P., . Longevity of the Permian Emeishan Mantle Plume (SW China): 1 Ma, 8 Ma or 18 Ma?. Geological Magazine, 2008, 145(3): 373-388.

[78]

Sláma J., Košler J., Condon D. J., . Plešovice Zircon—A New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis. Chemical Geology, 2008, 249(1/2): 1-35.

[79]

Sun S. S., McDonough W. F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 1989, 42(1): 313-345.

[80]

Taylor S. R., Mclennan S. M. The Continental Crust: Its Composition and Evolution, an Examination of the Geochemical Record Preserved in Sedimentary Rocks, 1985.

[81]

Tian Y. T., Kohn B. P., Gleadow A. W., . A Thermochronological Perspective on the Morphotectonic Evolution of the Southeastern Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 2014, 119(1): 676-698.

[82]

Tschegg C., Ntaflos T., Akinin V. V. Polybaric Petrogenesis of Neogene Alkaline Magmas in an Extensional Tectonic Environment: Viliga Volcanic Field, Northeast Russia. Lithos, 2011, 122(1/2): 13-24.

[83]

Wan C. H. Mesozoic Granitoids of the Southern Part, Songpan-Garze Fold Belt: Petrology, Geochemical Composition and Petrogenesis: [Dissertation], 2015.

[84]

Wang B. Q., Wang W., Chen W. T., . Constraints of Detrital Zircon U-Pb Ages and Hf Isotopes on the Provenance of the Triassic Yidun Group and Tectonic Evolution of the Yidun Terrane, Eastern Tibet. Sedimentary Geology, 2013, 289: 74-98.

[85]

Wang B. Q., Zhou M. F., Chen W. T., . Petrogenesis and Tectonic Implications of the Triassic Volcanic Rocks in the Northern Yidun Terrane, Eastern Tibet. Lithos, 2013, 175/176: 285-301.

[86]

Wang B. Q., Zhou M. F., Li J. W., . Late Triassic Porphyritic Intrusions and Associated Volcanic Rocks from the Shangri-La Region, Yidun Terrane, Eastern Tibetan Plateau: Adakitic Magmatism and Porphyry Copper Mineralization. Lithos, 2011, 127(1/2): 24-38.

[87]

Wang C. Y., Zhou M. F., Keays R. R. Geochemical Constraints on the Origin of the Permian Baimazhai Mafic-Ultramafic Intrusion, SW China. Contributions to Mineralogy and Petrology, 2006, 152(3): 309-321.

[88]

Wang C. Y., Zhou M. F., Qi L. Permian Flood Basalts and Mafic Intrusions in the Jinping (SW China)-Song Da (Northern Vietnam) District: Mantle Sources, Crustal Contamination and Sulfide Segregation. Chemical Geology, 2007, 243(3/4): 317-343.

[89]

Wang Q. W., Wang K. M., Kan Z. Z. Granites and Related Mineralization in Western Sichuan, 2008.

[90]

Wang S. W., Liao Z. W., Sun X. M., . The Yanshanian Lithospheric Evolution in the Kangdian Area: Restriction from SHRIMP Zircons U-Pb Age and Geochemistry of Mafic Dykes in Dongchuan, Yunan Province, SW China. Acta Geologica Snica, 2014, 88(3): 299-317.

[91]

Wang X. C., Li X. H., Li Z. X., . The Willouran Basic Province of South Australia: Its Relation to the Guibei Large Igneous Province in South China and the Breakup of Rodinia. Lithos, 2010, 119(3/4): 569-584.

[92]

Wang X. C., Li Z. X., Li X. H., . Temperature, Pressure, and Composition of the Mantle Source Region of Late Cenozoic Basalts in Hainan Island, SE Asia: A Consequence of a Young Thermal Mantle Plume Close to Subduction Zones?. Journal of Petrology, 2012, 53(1): 177-233.

[93]

Wang X. C., Wilde S. A., Li Q. L., . Continental Flood Basalts Derived from the Hydrous Mantle Transition Zone, 2015, 6 7700.

[94]

Wang X. S., Bi X. W., Leng C. B., . Geochronology and Geochemistry of Late Cretaceous Igneous Intrusions and Mo-Cu-(W) Mineralization in the Southern Yidun Arc, SW China: Implications for Metallogenesis and Geodynamic Setting. Ore Geology Reviews, 2014, 61: 73-95.

[95]

Wang X. S., Hu R. Z., Bi X. W., . Petrogenesis of Late Cretaceous I-Type Granites in the Southern Yidun Terrane: New Constraints on the Late Mesozoic Tectonic Evolution of the Eastern Tibetan Plateau. Lithos, 2014, 208/209: 202-219.

[96]

Wiedenbeck M., Allé P., Corfu F., . Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses. Geostandards and Geoanalytical Research, 1995, 19(1): 1-23.

[97]

Wilson M. Igneous Petrogenesis, 1989

[98]

Wu T., Xiao L., Gao R., . Petrogenesis and Tectonic Setting of the Queershan Composite Granitic Pluton, Eastern Tibetan Plateau: Constraints from Geochronology, Geochemistry and Hf Isotope Data. Science China Earth Sciences, 2014, 57(11): 2712-2725.

[99]

Wu T., Xiao L., Ma C. Q. U-Pb Geochronology of Detrital and Inherited Zircons in the Yidun Arc Belt, Eastern Tibet Plateau and Its Tectonic Implications. Journal of Earth Science, 2016, 27(3): 461-473.

[100]

Xu C., Huang Z. L., Qi L., . Geochemistry of Cretaceous Granites from Mianning in the Panxi Region, Sichuan Province, Southwestern China: Implications for Their Generation. Journal of Asian Earth Sciences, 2007, 29(5/6): 737-750.

[101]

Xu G. Q., Kamp P. J. J. Tectonics and Denudation Adjacent to the Xianshuihe Fault, Eastern Tibetan Plateau: Constraints from Fission Track Thermochronology. Journal of Geophysical Research: Solid Earth, 2000, 105(B8): 19231-19251.

[102]

Xu Y. G., Chung S. L., Jahn B. M., . Petrologic and Geochemical Constraints on the Petrogenesis of Permian–Triassic Emeishan Flood Basalts in Southwestern China. Lithos, 2001, 58(3/4): 145-168.

[103]

Yan D. P., Zhou M. F., Li S. B., . Structural and Geochronological Constraints on the Mesozoic–Cenozoic Tectonic Evolution of the Longmen Shan Thrust Belt, Eastern Tibetan Plateau. Tectonics, 2011, 30 6 TC6005

[104]

Yan D. P., Zhou M. F., Song H. L., . Structural Style and Tectonic Significance of the Jianglang Dome in the Eastern Margin of the Tibetan Plateau, China. Journal of Structural Geology, 2003, 25(5): 765-779.

[105]

Yang L. Q., Deng J., Dilek Y., . Melt Source and Evolution of I-Type Granitoids in the SE Tibetan Plateau: Late Cretaceous Magmatism and Mineralization Driven by Collision-Induced Transtensional Tectonics. Lithos, 2016, 245: 258-273.

[106]

Yang L. Q., Deng J., Gao X., . Timing of Formation and Origin of the Tongchanggou Porphyry-Skarn Deposit: Implications for Late Cretaceous Mo-Cu Metallogenesis in the Southern Yidun Terrane, SE Tibetan Plateau. Ore Geology Reviews, 2017, 81: 1015-1032.

[107]

Yang T. N., Ding Y., Zhang H. R., . Two-Phase Subduction and Subsequent Collision Defines the Paleotethyan Tectonics of the Southeastern Tibetan Plateau: Evidence from Zircon U-Pb Dating, Geochemistry, and Structural Geology of the Sanjiang Orogenic Belt, Southwest China. Geological Society of America Bulletin, 2014, 126(11/12): 1654-1682.

[108]

Yang T. N., Hou Z. Q., Wang Y., . Late Paleozoic to Early Mesozoic Tectonic Evolution of Northeast Tibet: Evidence from the Triassic Composite Western Jinsha-Garze-Litang Suture. Tectonics, 2012, 31 4 TC4004

[109]

Yao P., Wang M. J., Li J. Z., . Isotopic Tracing of the Liwu-Type Cu-Rich Deposits and Its Ore-Forming Geological Significance. Acta Geologica Sinica, 2008, 29(6): 691-696.

[110]

Zhang K. J., Zhang Y. X., Tang X. C., . Late Mesozoic Tectonic Evolution and Growth of the Tibetan Plateau Prior to the Indo-Asian Collision. Earth-Science Reviews, 2012, 114(3/4): 236-249.

[111]

Zhang Y., Wang Q. F., Zhang J., . Geological Characteristics and Genesis of Ajialongwa Gold Deposit in Ganzi-Litang Suture Zone, West Sichuan. Acta Petrologica Sinica, 2012, 28(2): 691-701.

[112]

Zhang Z. C., Wang F. S., Hao Y. L., . Geochemistry of the Picrites and Associated Basalts from the Emeishan Large Igneous Basalt Province and Constraints on Their Source Region. Acta Geologica Sinica, 2004, 78: 171-180.

[113]

Zheng M. H., Yang Z. X., Gu X. X. Metallogenic Environment and Genetic Model of Erze Karst-Type Gold Deposit of Muli, Sichuan Province. Scientia Geologica Sinica, 1995, 30: 363-373.

[114]

Zhou J. Y., Tan H. Q., Gong D. X., . Zircon^LA-ICP-MS U-Pb Dating and Hf Isotopic Composition of Xinhuoshan Granite in the Core of Jianglang Dome, Western Sichuan, China. J. Mineral. Petrol., 2013, 33(4): 42-52.

[115]

Zhou M. F., Robinson P. T., Wang C. Y., . Heterogeneous Mantle Source and Magma Differentiation of Quaternary Arc-Like Volcanic Rocks from Tengchong, SE Margin of the Tibetan Plateau. Contributions to Mineralogy and Petrology, 2012, 163(5): 841-860.

[116]

Zhou M. F., Yan D. P., Kennedy A. K., . SHRIMP^U-Pb Zircon Geochronological and Geochemical Evidence for Neoproterozoic Arc-Magmatism along the Western Margin of the Yangtze Block, South China. Earth and Planetary Science Letters, 2002, 196(1/2): 51-67.

[117]

Zhou M. F., Yan D. P., Wang C. L., . Subduction-Related Origin of the 750 Ma Xuelongbao Adakitic Complex (Sichuan Province, China): Implications for the Tectonic Setting of the Giant Neoproterozoic Magmatic Event in South China. Earth and Planetary Science Letters, 2006, 248(1/2): 286-300.

[118]

Zhou M. F., Ma Y., Yan D. P., . The Yanbian Terrane (Southern Sichuan Province, SW China): A Neoproterozoic Arc Assemblage in the Western Margin of the Yangtze Block. Precambrian Research, 2006, 144(1/2): 19-38.

[119]

Zhu D. C., Li S. M., Cawood P. A., . Assembly of the Lhasa and Qiangtang Terranes in Central Tibet by Divergent Double Subduction. Lithos, 2016, 245: 7-17.

[120]

Zi J. W., Cawood P. A., Fan W. M., . Late Permian–Triassic Magmatic Evolution in the Jinshajiang Orogenic Belt, SW China and Implications for Orogenic Processes Following Closure of the Paleo-Tethys. American Journal of Science, 2013, 313(2): 81-112.

[121]

Zu B., Xue C. J., Chi G. X., . Geology, Geochronology and Geochemistry of Granitic Intrusions and the Related Ores at the Hongshan Cu-Polymetallic Deposit: Insights into the Late Cretaceous Post-Collisional Porphyry-Related Mineralization Systems in the Southern Yidun Arc, SW China. Ore Geology Reviews, 2016, 77: 25-42.

[122]

Zu B., Xue C. J., Zhao Y., . Late Cretaceous Metallogeny in the Zhongdian Area: Constraints from Re-Os Dating of Molybdenite and Pyrrhotite from the Hongshan Cu Deposit, Yunnan, China. Ore Geology Reviews, 2015, 64: 1-12.

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/