Great Paleozoic-Mesozoic Biotic Turnings and Paleontological Education in China: A Tribute to the Achievements of Professor Zunyi Yang

Zhong-Qiang Chen , Laishi Zhao , Xiangdong Wang , Mao Luo , Zhen Guo

Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (4) : 721 -732.

PDF
Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (4) : 721 -732. DOI: 10.1007/s12583-018-0797-1
Invited Review Article

Great Paleozoic-Mesozoic Biotic Turnings and Paleontological Education in China: A Tribute to the Achievements of Professor Zunyi Yang

Author information +
History +
PDF

Abstract

Professor Zunyi Yang is a pioneer paleontologist who established the earliest Paleontological education and research in China, and has contributed his lifetime to promotion of Chinese paleontological education and researches as well as the studies on the Permian-Triassic (P-Tr) mass extinction and its possible causes. Yang has studied six fossil clades and trace fossils, together with his colleagues, he has established 6 new species of cephalopods, 1 new genus and 15 new species of gastropods, 8 new genera and 31 new species of bivalves, 17 new genera and 66 new species of brachiopods, 1 new genus and 4 new species of ophiuroids, 2 new genera and 7 new species of triopsids (Crustacea), and 3 new ichnogenera and 7 new ichnospecies of trace fossils. Yang led the 2nd IGCP working on the P-Tr mass extinction in the world. His group’s excellent works on basic stratigraphy and paleontology enable the GSSP of P-Tr boundary (PTB) to be ratified in China. Yang’s earlier works on three-episode extinction pattern and volcanism-causing extinction hypothesis are also highlighted here to show how their first-hand data and initiative hypothesis have influenced the current and ongoing debates on the P-Tr crisis and possible causation. Yang school’s extinction pattern is reviewed here, and their 2nd phase of extinction is marked by a dramatic loss in biodiversity, pointing to a widely accepted mass extinction. The 3rd extinction is characterized by ecological collapse of ecosystem structures and disappearance of the PTB microbialite ecosystem, while the 1st extinction (also prelude extinction) is indicated by the collapses of deep-water and reef ecosystems. Updated studies show that the volcanic ashes near the PTB originated from silicic, subduction-related igneous activity with little or no basaltic input. This subduction zone activity is related to closure of the Paleo-Tethys Ocean, and the intensity and frequency of the volcanic activity appear to increase near the P-Tr extinction interval. Hg anomalies (Hg/TOC ratios and Hg isotopes) were also detected from the P-Tr extinction interval, and they are interpreted as the results of enhanced volcanic-generated atmospheric mercury, which was injected by the violate eruption of the Siberian traps. Thus, the peak felsic volcanism is coeval with violate eruption of Siberian traps, and the coupled relationship between both types of volcanisms and biotic extinction suggests a causal relationship.

Keywords

Professor Zunyi Yang / IGCP project / Permian-Triassic boundary / mass extinction / South China

Cite this article

Download citation ▾
Zhong-Qiang Chen, Laishi Zhao, Xiangdong Wang, Mao Luo, Zhen Guo. Great Paleozoic-Mesozoic Biotic Turnings and Paleontological Education in China: A Tribute to the Achievements of Professor Zunyi Yang. Journal of Earth Science, 2018, 29(4): 721-732 DOI:10.1007/s12583-018-0797-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aljinović D., Horacek M., Krystyn L., . Western Tethyan Epeiric Ramp Setting in the Early Triassic: An Example from the Central Dinarides (Croatia). Journal of Earth Science, 2018, 29(3): 806-823.

[2]

Baud A. Final Results and Recommendations of the Last 10 Years IGCP 572 and 630 Field Workshops in South Turkey, Oman, India (Kashmir) and Armenia. Journal of Earth Science, 2018, 29(4): 733-744.

[3]

Burgess S. D., Bowring S. A. High–Precision Geochronology Confirms Voluminous Magmatism before, during, and after Earth’s most Severe Extinction. Science Advances, 2015, 1(7): e1500470-e1500470.

[4]

Burgess S. D., Bowring S. A., Shen S. Z. High–Precision Timeline for Earth’s most Severe Extinction. Proceedings of the National Academy of Sciences, USA, 2014, 111(9): 3316-3321.

[5]

Burgess S. D., Muirhead J. D., Bowring S. A. Initial Pulse of Siberian Traps Sills as the Trigger of the End–Permian Mass Extinction. Nature Communications, 2017, 8 1 164e

[6]

Cawood P. A. Terra Australis Orogen: Rodinia Breakup and Development of the Pacific and Iapetus Margins of Gondwana during the Neoproterozoic and Paleozoic. Earth–Science Reviews, 2005, 69(3/4): 249-279.

[7]

Chang S., Feng Q. L., Zhang L. New Siliceous Microfossils from the Terreneuvian (Cambrian) Yanjiahe Formation, South China: The Possible Earliest Radiolarian Fossil Record. Journal of Earth Science, 2018, 29(4): 912-919.

[8]

Chen Z. Q., Yang H., Luo M., . Complete Biotic and Sedimentary Records of the Permian–Triassic Transition from Meishan Section, South China: Ecologically Assessing Mass Extinction and Its Aftermath. Earth–Science Reviews, 2015, 149: 67-107.

[9]

Chen Z.Q., Benton M. J. The Timing and Pattern of Biotic Recovery Following the End–Permian Mass Extinction. Nature Geoscience, 2012, 5(6): 375-383.

[10]

Chen Z.Q., Kaiho K., George A. D. Survival Strategies of Brachiopod Faunas from the End–Permian Mass Extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 224(1/2/3): 232-269.

[11]

Chen Z.Q., Kaiho K., George A. D., . Survival Brachiopod Faunas of the End–Permian Mass Extinction from the Southern Alps (Italy) and South China. Geological Magazine, 2006, 143(3): 301-327.

[12]

Chen Z.Q., Tong J. N., Liao Z. T., . Structural Changes of Marine Communities over the Permian–Triassic Transition: Ecologically Assessing the End–Permian Mass Extinction and Its Aftermath. Global and Planetary Change, 2010, 73(1/2): 123-140.

[13]

Chen Z.Q., Tong J. N., Zhang K. X., . Environmental and Biotic Turnover Across the Permian–Triassic Boundary on a Shallow Carbonate Platform in Western Zhejiang, South China. Australian Journal of Earth Sciences, 2009, 56(6): 775-797.

[14]

Conaway C. H., Squire S., Mason R. P., . Mercury Speciation in the San Francisco Bay Estuary. Marine Chemistry, 2003, 80(2/3): 199-225.

[15]

Dey J., Sen S. Sequence Stratigraphic Model of Middle Permian Barakar Formation from a Marginal Gondwana Basin, India. Journal of Earth Science, 2018, 29(4): 745-754.

[16]

Dickins M. J., Yang Z. Y., Yin H. F., . Late Palaeozoic and Early Mesozoic Circum–Pacific Events and Their Global Correlation., 1992, Cambridge: World and Regional Geology 10. Cambridge University Press

[17]

Dong S. W., Yang Z. Y. Three Decades of IGCP in China. Episodes, 2004, 27(1): 56-58.

[18]

Fang Y. H., Chen Z.Q., Kershaw S., . Permian–Triassic Boundary Microbialites at Zuodeng Section, Guangxi Province, South China: Geobiology and Palaeoceanographic Implications. Global and Planetary Change, 2017, 152: 115-128.

[19]

Forel M. B. Heterochronic Growth of Ostracods (Crustacea) from Microbial Deposits in the Aftermath of the End–Permian Extinction. Journal of Systematic Palaeontology, 2014, 13(4): 315-349.

[20]

Forel M. B. Heterochronic Growth of Ostracods (Crustacea) from Microbial Deposits in the Aftermath of the End–Permian Extinction. Journal of Systematic Palaeontology, 2015, 13(4): 315-349.

[21]

Forel M. B., Crasquin S., Kershaw S., . In the Aftermath of the End–Permian Extinction: The Microbialite Refuge?. Terra Nova, 2012, 25(2): 137-143.

[22]

Foster W. J., Lehrmann D. J., Yu M., . Persistent Environmental Stress Delayed the Recovery of Marine Communities in the Aftermath of the Latest Permian Mass Extinction. Paleoceanography and Paleoclimatology, 2018, 33(4): 338-353.

[23]

Foster W. J., Twitchett R. J. Functional Diversity of Marine Ecosystems after the Late Permian Mass Extinction Event. Nature Geoscience, 2014, 7(3): 233-238.

[24]

Gamboa Ruiz W. L., Tomiyasu T. Distribution of Mercury in Sediments from Kagoshima Bay, Japan, and its Relationship with Physical and Chemical Factors. Environmental Earth Sciences, 2015, 74(2): 1175-1188.

[25]

Gao Q. L., Chen Z. Q., Zhang N., . Ages, Trace Elements and Hf–Isotopic Compositions of Zircons from Claystones around the Permian–Triassic Boundary in the Zunyi Section, South China: Implications for Nature and Tectonic Setting of the Volcanism. Journal of Earth Science, 2015, 26(6): 872-882.

[26]

Gao Q. L., Zhang N., Xia W. C., . Origin of Volcanic Ash Beds across the Permian–Triassic Boundary, Daxiakou, South China: Petrology and U–Pb Age, Trace Elements and Hf–Isotope Composition of Zircon. Chemical Geology, 2013, 360/361: 41-53.

[27]

Grasby S. E., Shen W. J., Yin R. S., . Isotopic Signatures of Mercury Contamination in Latest Permian Oceans. Geology, 2017, 45(1): 55-58.

[28]

He B., Zhong Y. T., Xu Y. G., . Triggers of Permo–Triassic Boundary Mass Extinction in South China: The Siberian Traps or Paleo–Tethys Ignimbrite Flare–Up?. Lithos, 2014, 204: 258-267.

[29]

Huang Y. F., Tong J. N., Fraiser M. L. A Griesbachian (Early Triassic) Mollusc Fauna from the Sidazhai Section, Southwest China, with Paleoecological Insights on the Proliferation of Genus Claraia (Bivalvia). Journal of Earth Science, 2018, 29(3): 794-805.

[30]

Jin Y. G., Wang Y., Wang W., . Pattern of Marine Mass Extinction near the Permian–Triassic Boundary in South China. Science, 2000, 289(5478): 432-436.

[31]

Kaiho K., Chen Z. Q., Kawahata H., . Close–up of the End–Permian Mass Extinction Horizon Recorded in the Meishan Section, South China: Sedimentary, Elemental, and Biotic Characterization and a Negative Shift of Sulfate Sulfur Isotope Ratio. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 239(3/4): 396-405.

[32]

Kaiho K., Kajiwara Y., Nakano T., . End–Permian Catastrophe by a Bolide Impact: Evidence of a Gigantic Release of Sulfur from the Mantle. Geology, 2001, 29(9): 815-818.

[33]

Kershaw S., Crasquin S., Li Y., . Microbialites and Global Environmental Change Across the Permian–Triassic Boundary: A Synthesis. Geobiology, 2012, 10(1): 25-47.

[34]

Lucas S. G. Permian–Triassic Charophytes: Distribution, Biostratigraphy and Biotic Events. Journal of Earth Science, 2018, 29(4): 778-793.

[35]

Luo M., Gong Y.M., Shi G. R., . Palaeoecological Analysis of Trace Fossil Sinusichnus sinuosus from the Middle Triassic Guanling Formationin Southwestern China. Journal of Earth Science, 2018, 29(4): 854-863.

[36]

Lyu Z. Y., Orchard M. J., Chen Z.Q., . A Taxonomic Re–Assessment of the Novispathodus waageni Group and Its Role in Defining the Base of the Olenekian (Lower Triassic). Journal of Earth Science, 2018, 29(4): 824-836.

[37]

Nowak H. S., Hermann E., Kustatscher E. Correlation of Lopingian to Middle Triassic Palynozones. Journal of Earth Science, 2018, 29(4): 755-777.

[38]

Pei Y., Chen Z. Q., Fang Y. H., . Volcanism, Redox Conditions, and Microbialite Growth Linked with the End–Permian Mass Extinction: Evidence from the Xiajiacao Section (western Hubei Province), South China. Palaeogeography, Palaeoclimatology, Palaeoecology., 2018.

[39]

Pojeta J., Zhang R. J., Yang Z. Y. Systematic Paleontology of Devonian Pelecypods of Guangxi and Michigan. Professional Paper of the United States Geological Survey, 1986, 1394: 57-108.

[40]

Sanei H., Grasby S. E., Beauchamp B. Contaminants in Marine Sedimentary Deposits from Coal Fly Ash during the Latest Permian Extinction. Environmental Contaminants, Developments in Paleoenvironmental Research I, 2015, 18: 89-99.

[41]

Shen S. Z., Crowley J. L., Wang Y., . Calibrating the End–Permian Mass Extinction. Science, 2011, 334(6061): 1367-1372.

[42]

Smirčić D., Kolar–Jurkovšek T., Aljinović D., . Stratigraphic Definition and Correlation of Middle Triassic Volcaniclastic Facies in the External Dinarides: Croatia and Bosnia and Herzegovina. Journal of Earth Science, 2018, 29(4): 864-878.

[43]

Song H. J., Wignall P. B., Tong J. N., . Two Pulses of Extinction during the Permian–Triassic Crisis. Nature Geoscience, 2013, 6(1): 52-56.

[44]

Song H., Tong J., Chen Z.Q. Two Episodes of Foraminiferal Extinction near the Permian–Triassic Boundary at the Meishan Section, South China. Australian Journal of Earth Sciences, 2009, 56(6): 765-773.

[45]

Stanley G. D. Jr. Paleoecological Response of Corals to the End–Triassic Mass Extinction: An Integrational Analysis. Journal of Earth Science, 2018, 29(4): 879-885.

[46]

Stanley S. M. Evidence from Ammonoids and Conodonts for Multiple Early Triassic Mass Extinctions. Proceedings of the National Academy of Sciences, USA, 2009, 106(36): 15264-15267.

[47]

Sweet W. C., Yang Z. Y., Dickins J. M., Yin H. F. Permo–Triassic Events in the Eastern Tethys: Stratigraphy Classification and Relations with the Western Tethys., 1992, Cambridge: World and Regional Geology 2. Cambridge University Press

[48]

Thibodeau A. M., Ritterbush K., Yager J. A., . Mercury Anomalies and the Timing of Biotic Recovery Following the End–Triassic Mass Extinction. Nature Communications, 2016, 7 11147e

[49]

Tohver E., Schmieder M., Lana C., . End–Permian Impactogenic Earthquake and Tsunami Deposits in the Intracratonic Paraná Basin of Brazil. GSA Bulletin, 2018, 130(7/8): 1099-1120.

[50]

Tu C. Y., Chen Z.Q., Harper D. A. T. Permian–Triassic Evolution of the Bivalvia: Extinction–Recovery Patterns Linked to Ecologic and Taxonomic Selectivity. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 459: 53-62.

[51]

Wang X. D., Cawood P. A., Zhao H., . Mercury Anomalies across the End Permian Mass Extinction in South China from Shallow and Deep Water Depositional Environments. Earth and Planetary Science Letters, 2018, 496: 159-167.

[52]

Wang X. D., Cawood P. A., Zhao L. S., . Convergent Continental Margin Volcanic Source for Ash Beds at the Permian–Triassic Boundary, South China: Constraints from Trace Elements and Hf–Isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology., 2018.

[53]

Wang Y., Sadler P. M., Shen S. Z., . Quantifying the Process and Abruptness of the End–Permian Mass Extinction. Paleobiology, 2014, 40(1): 113-129.

[54]

Wignall P. B., Hallam A. Griesbachian (Earliest Triassic) Palaeoenvironmental Changes in the Salt Range, Pakistan and Southeast China and their Bearing on the Permo–Triassic Mass Extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 1993, 102(3/4): 215-237.

[55]

Wu S. Q., Chen Z.Q., Fang Y. H., . A Permian–Triassic Boundary Microbialite Deposit from the Eastern Yangtze Platform (Jiangxi Province, South China): Geobiologic Features, Ecosystem Composition and Redox Conditions. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 486: 58-73.

[56]

Yang H., Chen Z.Q., Ou W. Q. Microconchids from Microbialites near the Permian–Triassic Boundary in the Zuodeng Section, Baise Area, Guangxi Zhuang Autonomous Region, South China and Their Paleoenvironmental Implications. Journal of Earth Science, 2015, 26(2): 157-165.

[57]

Yang H., Chen Z.Q., Wang Y. B., . Palaeoecology of Microconchids from Microbialites near the Permian–Triassic Boundary in South China. Lethaia, 2015, 48(4): 497-508.

[58]

Yang H., Chen Z.Q., Wang Y. B., . Composition and Structure of Microbialite Ecosystems Following the End–Permian Mass Extinction in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 308(1/2): 111-128.

[59]

Yang Z. Y. Permo–Carboniferous Brachiopods of Shihchientan Formation, Shihchientan, Northeastern Sinkiang. Science Reports of the National Tsinghua University, Series C: Geological, Geographical and Meteorological Sciences, 1948, 1: 196-214.

[60]

Yang Z. Y. Middle Ordovician Mulluscs from the Paiyangho Region, Chilienshan (“Nanshan”). Acta Palaeontologica Sinica, 1959, 7: 484-498.

[61]

Yang Z. Y. On the Discovery of a Scythic Ophiuroid from Kueichou, China. Acta Palaeontologica Sinica, 1960, 8: 159-163.

[62]

Yang Z. Y., Ding P. Z., Yin H. F., . The Brachiopod Fauna of Carboniferous, Permian and Triassic in the Qilianshan Region. In: Institute of Geology and Palaeontology, Chinese Academy of Sciences, Institute of Geology, 1962, 1-134.

[63]

Yang Z. Y., Hong Y. C. Discovery of Fresh–Water Triopsids from the Upper Jurassic Dabeigou Formation of Weichang, Hebei, China and Its Bearing on the Classification of the Family Triopsidae Martalent. Acta Palaeontologica Sinica, 1980, 19: 91-98.

[64]

Yang Z. Y., Hong Y. C. Fossil Fresh–Water Triopsids, a New Family Xinjiangiopsidae Fam. Nov.. Bulletin of the Chinese Academy of Geological Sciences, 1986, 12: 85-91.

[65]

Yang Z. Y., Nie Z. T. New Jurassic Ophiuroids from the Ngari Area of Xizang (Tibet), China. Acta Palaeontologica Sinica, 1982, 21: 83-86.

[66]

Yang Z. Y., Qian J. X. Fossil Gastropods from Ngari, Xizang (Tibet). Earth Science–Journal of China University of Geosciences, 1988, 13: 457-471.

[67]

Yang Z. Y., Sheng J. Z., Yin H. F. The Permian–Triassic Boundary––The Global Stratotype Section and Point (GSSP). Episodes, 1995, 18(1/2): 49-53.

[68]

Yang Z. Y., Wu S. B. Late Jurassic–Early Cretaceous Belemnites from Southern Tibet, China. Acta Palaeontologica Sinica, 1964, 12: 187-216.

[69]

Yang Z. Y., Wu S. B., Yin H. F., . Permo–Triassic Events of South China., 1993, Beijing: Geological Publishing House, 1-153.

[70]

Yang Z. Y., Xu G. R. Triassic Brachiopods of Central Gueizhou (Kueichow) Province, China., 1966, Beijing: China Industry Publishing House, 151.

[71]

Yang Z. Y., Yin H. F., Lin H. M. Marine Triassic Faunas from Shihchienfeng Group in the Northern Weihe River Basin, Shannxi Province. Acta Palaeontologica Sinica, 1979, 18: 465-474.

[72]

Yang Z. Y., Yin H. F., Wu S. B., . Permian–Triassic Boundary Stratigraphy and Fauna of South China., 1987, Beijing: Geological Publishing House, 1-379.

[73]

Yang Z. Y., Yin J. C., He T. G. Early Cambrian Trace Fossils from the Emei–Ganluo Region, Sichuan, and Other Localities. Geological Review, 1982, 28: 291-298.

[74]

Yang Z. Y., Nie Z. T., Wu S. B., . Cretaceous Rudists from Ngari, Xizang (Tibet), Autonomous Region, China and Their Geologic Significance. Acta Geologica Sinica, 1982, 56: 293-303.

[75]

Yi Y. H., Yuan A. H., Aitchison J. C., . Upper Darriwilian (Middle Ordovician) Radiolarians and Ostracods from the Hulo Formation, Zhejiang Provicnce, South China. Journal of Earth Science, 2018, 29(4): 886-899.

[76]

Yin H. F., Feng Q. L., Baud A., . The Prelude of the End–Permian Mass Extinction Predates a Postulated Bolide Impact. International Journal of Earth Sciences, 2007, 96(5): 903-909.

[77]

Yin H. F., Feng Q. L., Lai X. L., . The Protracted Permo–Triassic Crisis and Multi–Episode Extinction around the Permian–Triassic Boundary. Global and Planetary Change, 2007, 55(1/2/3): 1-20.

[78]

Yin H. F., Huang S. J., Zhang K. X., . Sweet W. C., Yang Z. Y., Dickins J. M., . The Effects of Volcanism on the Permo–Triassic Mass Extinction in South China. Permo–Triassic Events in the Eastern Tethys., 1992, Cambridge: Cambridge University Press, 169-174.

[79]

Yin H. F., Sweet W. C., Glenister B. F., . Recommendation of the Meishan Section as Global Stratotype Section and Point for Basal Boundary of Triassic System. Newsletters on Stratigraphy, 1996, 34(2): 81-108.

[80]

Yin H. F., Zhang K. X., Tong J. N., . The Global Stratotype Section and Point (GSSP) of the Permian–Triassic Boundary. Episodes, 2001, 24(2): 102-114.

[81]

Zakharov Y. D., Horacek M., Popov A. M., . Nitrogen and Carbon Isotope Data of Olenekian to Anisian Deposits from Kamenushka/South Primorye, Far–Eastern Russia and Their Palaeoenvironmental Significance. Journal of Earth Science, 2018, 29(4): 837-853.

[82]

Zhang K., Yuan A. H., Feng Q. L. The Upper Ordovician Microfossil Assemblages from the Pagoda Formation in Zigui, Hubei Province. Journal of Earth Science, 2018, 29(4): 900-911.

[83]

Zhao L. S., Chen Z.Q., Algeo T. J., . Rare–Earth Element Patterns in Conodont Albid Crowns: Evidence for Massive Inputs of Volcanic Ash during the Latest Permian Biocrisis?. Global and Planetary Change, 2013, 105: 135-151.

AI Summary AI Mindmap
PDF

166

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/