Paleoecological Response of Corals to the End-Triassic Mass Extinction: An Integrational Analysis

George D. Stanley, Hannah M. E. Shepherd, Autumn J. Robinson

Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (4) : 879-885.

Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (4) : 879-885. DOI: 10.1007/s12583-018-0793-5
Invited Review Article

Paleoecological Response of Corals to the End-Triassic Mass Extinction: An Integrational Analysis

Author information +
History +

Abstract

The end-Triassic (also Triassic-Jurassic) mass extinction severely affected life on planet Earth 200 million years ago. Paleoclimate change triggered by the volcanic eruptions of the Central Atlantic Magmatic Province (CAMP) caused a great loss of marine biodiversity, among which 96% coral genera were get lost. However, there is precious little detail on the paleoecology and growth forms lost between the latest Triassic extinction and the Early Jurassic recovery. Here a new pilot study was conducted by analyzing corallite integration levels among corals from the latest Triassic and Early Jurassic times. Integration levels in corals from the Late Triassic and Early Jurassic were determined through both the Paleobiology Database as well as from a comprehensive museum collection of fossil corals. Results suggest that in addition to a major loss of diversity following the end-Triassic mass extinction, there also was a significant loss of highly integrated corals as clearly evidenced by the coral data from the Early Jurassic. This confirms our hypothesis of paleoecological selectivity for corals following the end-Triassic mass extinction. This study highlights the importance of assigning simple to advanced paleoecological characters with integration levels, which opens a useful approach to understanding of mass extinction and the dynamics of the recovery.

Keywords

coral loss / integration level / end-Triassic mass extinction / paleoecology

Cite this article

Download citation ▾
George D. Stanley, Hannah M. E. Shepherd, Autumn J. Robinson. Paleoecological Response of Corals to the End-Triassic Mass Extinction: An Integrational Analysis. Journal of Earth Science, 2018, 29(4): 879‒885 https://doi.org/10.1007/s12583-018-0793-5

References

Barbeitos M. S., Romano S. L., Lasker H. R. Repeated Loss of Coloniality and Symbiosis in Scleractinian Corals. Proceedings of the National Academy of Sciences, USA, 2010, 107(26): 11877-11882.
CrossRef Google scholar
Bertrand H. Chronology of the Central Atlantic Magmatic Province: Implications for the Central Atlantic Rifting Processes and the Triassic–Jurassic Biotic Crisis. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 244: 326-344.
Burke L., Reytar K., Spalding M., . Reefs at Risk Revisited., 2011, Washington, DC: World Resources Institute, 1-130.
Cairns S. D. Review of Octocorallia (Cnidaria: Anthozoa) from Hawai’I and Adjacent Seamounts. Part 3: Genera Thouarella, Plumarella, Callogorgia, Fanellia, and Parastenella. Pacific Science, 2010, 64: 431-440.
Caruthers A. H., Stanley G. D. Jr. Systematic Analysis of Upper Triassic Silicified Scleractinian Corals from Wrangellia and the Alexander Terrane, Alaska and British Columbia. Journal of Paleontology, 2008, 82(3): 470-491.
CrossRef Google scholar
Coates A. G., Jackson J. B. C. Clonal Growth, Algal Symbiosis, and Reef Formation by Corals. Paleobiology, 1987, 13(4): 363-378.
CrossRef Google scholar
Coates A. G., Oliver W. A. Jr.. Boardman R. S., Cheetham A. H., Oliver W. A. Jr.. Coloniality in Zoantharian Corals. Animal Colonies: Development and Function through Time., 1973, 3-27.
Cohen A. S., Coe A. L. New Geochemical Evidence for the Onset of Volcanism in the Central Atlantic Magmatic Province and Environmental Change at the Triassic–Jurassic Boundary. Geology, 2002, 30 3 267
CrossRef Google scholar
Damborenea S. E., Echevarría J., Ros–Franch S. Biotic Recovery after the End–Triassic Extinction Event: Evidence from Marine Bivalves of the Neuquén Basin, Argentina. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 487: 93-104.
CrossRef Google scholar
Duncan P. M. A Monograph of the British Fossil Corals., 1884, Cambridge: Cambridge University Press, 1-66.
Echevarría J., Hodges M. S., Damborenea S. E., . Recovery of Scleractinian Morphologic Diversity during the Early Jurassic in Mendoza Province, Argentina. Ameghiniana, 2017, 54(1): 70-82.
CrossRef Google scholar
Faure G., Pichon M., Benzoni F., . Knowledge Base of the Mascarene’s Corals, Vol. 2., 2007.
Flügel, E., 2002, Triassic Reef Patterns. In: Kiessling, W., Flügel, E., Golonka, J., eds., Phanerozoic Reef Patterns, v. 72. SEPM, Tulsa. 391–463
Frankowiak K., Wang X. T., Sigman D. M., . Photosymbiosis and the Expansion of Shallow–Water Corals. Science Advances, 2016, 2 11 e1601122
CrossRef Google scholar
Frech F. Die Korallen der Trias.–I. Die Korallen der Juvavischen Triasprovinz. Paleontogarphica, 1890, 37: 1-116.
González–León C., Stanley G. D. Jr., Lawton T. F., . The Triassic/ Jurassic Boundary and the Jurassic Stratigraphy and Biostratigraphy of Northern Sonora, Northwest Mexico. Boletín de la Sociedad Geológica Mexicana, 2017, 69(3): 711-738.
CrossRef Google scholar
Greene S. E., Martindale R. C., Ritterbush K. A., . Recognising Ocean Acidification in Deep Time: An Evaluation of the Evidence for Acidification across the Triassic–Jurassic Boundary. Earth–Science Reviews, 2012, 113: 72-93.
Gretz M., Lathuilière B., Martini R., . The Hettangian Corals of the Isle of Skye (Scotland): An Opportunity to Better Understand the Palaeoenvironmental Conditions during the Aftermath of the Triassic–Jurassic Boundary Crisis. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 376: 132-148.
CrossRef Google scholar
Hautmann M. Extinction: End–Triassic Mass Extinction., 2012, Chichester: John Wiley & Sons, Ltd
Hautmann M., Benton M. J., Tomašových A. Catastrophic Ocean Acidification at the Triassic–Jurassic Boundary. Neues Jahrbuch für Geologie und Paläontologie–Abhandlungen, 2008, 249(1): 119-127.
CrossRef Google scholar
Hodges M. S., Stanley G. D. Jr. North American Coral Recovery after the End–Triassic Mass Extinction, New York Canyon, Nevada, USA. GSA Today, 2015, 15(10): 4-9.
CrossRef Google scholar
Kiessling W., Simpson C. On the Potential for Ocean Acidification to be a General Cause of Ancient Reef Crises. Global Change Biology, 2011, 17(1): 56-67.
CrossRef Google scholar
Kiessling W., Aberhan M., Brenneis B., . Extinction Trajectories of Benthic Organisms across the Triassic–Jurassic Boundary. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 244(1/2/3/4): 201-222.
CrossRef Google scholar
Kiessling W., Roniewicz E., Villier L., . An Early Hettangian Coral Reef in Southern France: Implications for the End–Triassic Reef Crisis. Palaios, 2009, 24(10): 657-671.
CrossRef Google scholar
Lathuilière B., Marchal D. Extinction, Survival and Recovery of Corals from the Triassic to Middle Jurassic Time. Terra Nova, 2009, 21(1): 57-66.
CrossRef Google scholar
Lindström S., van de Schootbrugge B., Hansen K. H., . A New Correlation of Triassic–Jurassic Boundary Successions in NW Europe, Nevada and Peru, and the Central Atlantic Magmatic Province: A Time–Line for the End–Triassic Mass Extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 478: 80-102.
CrossRef Google scholar
Lipps, J. H., Stanley, G. D. Jr., 2016. Photosymbiosis in the Past and Present Reefs. In: Hubbard, D. K., ed., Coral Reefs at the Crossroads. Coral Reefs of the World 6. Springer Science Publishers, Dordrecht. 47–68. doi 10.1007/978–94–017–7567–0_3
Lucas, S. G., Tanner, L. H., 2008. Reexamination of the End–Triassic Mass Extinction. In: Elewa, A. M. T., ed., Mass Extinction. Springer Verlag, New York. 66–103
Martindale R. C., Berelson W. M., Corsetti F. A., . Constraining Carbonate Chemistry at a Potential Ocean Acidification Event (the Triassic–Jurassic Boundary) Using the Presence of Corals and Coral Reefs in the Fossil Record. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 350–352: 114-123.
CrossRef Google scholar
Marzoli A., Renne P. R., Piccirillo E. M., . Extensive 200–Million–Year–Old Continental Flood Basalts of the Central Atlantic Magmatic Province. Science, 1999, 284(5414): 616-618.
CrossRef Google scholar
Melnikova, G. K., 2001. Chapter on Corals. In: Rozanov, A. Y., Shevyrev, A. A., eds., Atlas of Triassic Invertebrates of the Pamirs. Nauka, Moscow. 30–80
Melnikova G. K., Roniewicz E. Early Jurassic Corals of the Pamir Mountains—A New Triassic–Jurassic Transitional Fauna. Geologica Belgica, 2012, 15: 376-381.
Melnikova G. K., Roniewicz E. Early Jurassic Corals with Dominating Solitary Growth Forms from the Kasamurg Mountains, Central Asia. Palaeoworld, 2017, 26(1): 124-148.
CrossRef Google scholar
Negus P. E. Distribution of the British Jurassic Corals. Proceedings of the Geologists’ Association, 1983, 94(3): 251-257.
CrossRef Google scholar
Negus P. E. Stratigraphical Table of Scleractinian Coral Genera and Species Occurring in the British Jurassic. Proceedings of the Geologists’ Association, 1991, 102(4): 251-259.
CrossRef Google scholar
Nomade S., Knight K. B., Beutel E., . Chronology of the Central Atlantic Magmatic Province: Implications for the Central Atlantic Rifting Processes and the Triassic–Jurassic Biotic Crisis. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 244(1/2/3/4): 326-344.
CrossRef Google scholar
Riedel P. Korallen in der Trias der Tethys: Stratigraphische Reichweiten, Diversitätsmuster, Entwicklungstren. Mitt. Ges. Geol. Berbaustud Österreich, 1991, 37: 97-118.
Roniewicz E. Triassic Scleractinian Corals of the Zlambach Beds, Northern Calcareous Alps, Austria. Österreichische Akademie der Wissenschaften Mathematisch–Naturwissenschaftliche Klasse Denkschriften, 1989, 126: 1-152.
Roniewicz E. Upper Triassic Solitary Corals from the Gosaukamm and other North Alpine Regions.Österreichische Akademie der Wissenschaften Sitzungsberichte Mathematisch–Naturwissenschaftliche Klasse Abt. I, 1996, 202: 3-41.
Roniewicz E., Morycowa E. Triassic Scleractinia and the Triassic/ Liassic Boundary. Memoirs of the Association of Australasian Palaeontologists, 1989, 8: 347-354.
Smith J. P. Upper Triassic Marine Invertebrate Faunas of North America. U.S. Geological Survey Professional Paper, 1927, 141: 1-262.
Squires D. F. A New Triassic Coral Fauna from Idaho. American Museum Novitiates, 1956, 1797: 1-121.
Stanley G. D. Jr. Ecology: Photosymbiosis and the Evolution of Modern Coral Reefs. Science, 2006, 312(5775): 857-858.
CrossRef Google scholar
Stanley G. D. Jr., Beauvais L. Corals from an Early Jurassic Coral Reef in British Columbia: Refuge on an Oceanic Island Reef. Lethaia, 1994, 27(1): 35-47.
CrossRef Google scholar
Stanley G. D. Jr., Cairns S. D. Constructional Azooxanthellate Coral Communities: An Overview with Implications for the Fossil Record. Palaios, 1988, 3 2 233
CrossRef Google scholar
Stanley G. D. Jr., Lipps J. H. Photosymbiosis: The Driving Force for Reef Success and Failure. Paleontological Society Paper, 2011, 17: 33-60.
Stanley G. D. Jr., McRoberts C. A. A Coral Reef in the Telkwa Range, British Columbia: The Earliest Jurassic Example. Canadian Journal of Earth Sciences, 1993, 30(4): 819-831.
CrossRef Google scholar
Stanley G. D. Jr., Swart P. K. Evolution of the Coral–Zooxanthellae Symbiosis during the Triassic: A Geochemical Approach. Paleobiology, 1995, 21(2): 179-199.
CrossRef Google scholar
Stanley, G. D. Jr., van de Schootbrugge, B., 2018. The Evolution of the Coral––Algal Symbiosis and Coral Bleaching in the Geologic Past. In: van Oppen, M. J. H., Lough, J. M., eds., Coral Bleaching: Patterns, Processes, Causes and Consequences (2 ed.): Ecological Studies, 233. Springer, Berlin. 7–19
Stolarski J., Russo A. Microstructural Diversity of the Stylophyllid [Scleractinia] Skeleton. Acta Palaeontologica Polonica, 2002, 47: 651-666.
Swain T., Bold E. C., Osborn P. C., . Physiological Integration of Coral Colonies is Correlated with Bleaching Resistance. Marine Ecology Progress Series, 2018, 586: 1-10.
CrossRef Google scholar
Talent J. A. Organic Reef–Building: Episodes of Extinction and Symbiosis. Senckenbergiana Lethaea, 1988, 69: 315-368.
Tanner L. H., Lucas S. G., Chapman M. G. Assessing the Record and Causes of Late Triassic Extinctions. Earth–Science Reviews, 2004, 65(1/2): 103-139.
Tornabene C., Martindale R. C., Wang X. T., . Detecting Photosymbiosis in Fossil Scleractinian Corals. Scientific Reports, 2017, 7 e9465
CrossRef Google scholar
van de Schootbrugge B., Tremolada F., Rosenthal Y., . End–Triassic Calcification Crisis and Blooms of Organic–Walled ‘Disaster Species’. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 244(1/2/3/4): 126-141.
CrossRef Google scholar
Wells, J. W., 1956. Scleractinia. In: Moore, R. C., ed., Treatise on Invertebrate Paleontology, Volume F, Coelenterata. Geological Society of America and University of Kansas Press, Lawrence, KS. 353–367
Wood R. Reef Evolution., 1999, Oxford: Oxford University Press, 1-414.

Accesses

Citations

Detail

Sections
Recommended

/