Nitrogen and Carbon Isotope Data of Olenekian to Anisian Deposits from Kamenushka/South Primorye, Far-Eastern Russia and Their Palaeoenvironmental Significance

Yuri D. Zakharov , Micha Horacek , Alexander M. Popov , Liana G. Bondarenko

Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (4) : 837 -853.

PDF
Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (4) : 837 -853. DOI: 10.1007/s12583-018-0792-6
Article

Nitrogen and Carbon Isotope Data of Olenekian to Anisian Deposits from Kamenushka/South Primorye, Far-Eastern Russia and Their Palaeoenvironmental Significance

Author information +
History +
PDF

Abstract

The Kamenushka Formation, exposed in the northern part of South Primorye (Kamenushka-1 and Kamenushka-2 sections), is one of the few localities in the world with richly fossiliferous Lower–Upper Olenekian sedimentary successions. Lower to Middle Triassic ammonoid-, brachiopod- and conodont-bearing silty-clayey deposits of the Kamenushka-1 and Kamenushka-2 sections have been isotope-geochemically investigated in detail. As a result, these sections, together with the previously investigated Abrek Section, exposed in the southern part of South Primorye, provide almost complete 15Norg- and 13Corg- records for the Lower Triassic of this region. Nine N-isotope intervals and the five negative C-isotope excursions, reflecting, apparently, unstable climatic and hydrological conditions, have been distinguished in the Lower Triassic of South Primorye. On the basis of the new C-isotope data the Mesohedenstroemia bosphorensis Zone (upper part), Shimanskyites shimanskyi and Neocolumbites insignis zones of South Primorye are correlated now with the Lower Smithian part of the Yinkeng Formation, the Upper Smithian part of the Helongshan Formation and the Middle Spathian part of the Nanlinghu Formation in South China, respectively, as has been observed in the Abrek, Kamenushka-2, West Pingdingshan and Majiashan sections.

Keywords

Triassic / N- and C-isotopes / palaeoclimatology / bio-and chemostratigraphy / Primorye, Russia

Cite this article

Download citation ▾
Yuri D. Zakharov, Micha Horacek, Alexander M. Popov, Liana G. Bondarenko. Nitrogen and Carbon Isotope Data of Olenekian to Anisian Deposits from Kamenushka/South Primorye, Far-Eastern Russia and Their Palaeoenvironmental Significance. Journal of Earth Science, 2018, 29(4): 837-853 DOI:10.1007/s12583-018-0792-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Altabet M. A. Hutzinger O. V. Isotopic Tracers of the Marine Nitrogen Cycle: Present and Past. The Handbook of Environmental Chemistry. 2. Marine Organic Matter: Chemical and Biological markers., 2005, Berlin: Springer, 251-294.

[2]

Algeo T. J., Meyers P. A., Robinson R. S., . Icehouse–Greenhouse Variations in Marine Denitrification. Biogeosciences, 2014, 11: 1273-1295.

[3]

Algeo T. J., Rowe H., Hower J. C., . Changes in Ocean Denitrification during Late Carboniferous Glacial–Interglacial Cycles. Nature Geoscience, 2008, 1(10): 709-714.

[4]

Altabet M. A., Francois R., Murray D. W., . Climate–Related Variations in Denitrification in the Arabian Sea from Sediment 15N/14N Ratios. Nature, 1995, 373(6514): 506-509.

[5]

Baud A. M., Magaritz M., Holser W. T. Permian–Triassic of the Tethys: Carbon Isotope Studies. Geologische Rundschau, 1989, 78(2): 649-677.

[6]

Bauersachs T., Schouten S. C. J., . Nitrogen Isotopic Fractionation Associated with Growth on Dinitrogen Gas and Nitrate by Cyanobacteria. Limnology and Oceanography, 2009, 54(4): 1403-1411.

[7]

Bondarenko L. G., Buryi G. I., Zakharov Y. D., . Late Smithian (Early Triassic) Conodonts from Artyom, South Primorye, Russian Far East. The Triassic System. New Mexico Museum of Natural History and Science, Bulletin, 2013, 61: 55-66.

[8]

Bondarenko L. G., Zakharov Y. D., Guravskaya G. I., . Lower Triassic Zonation of Southern Primorye. Article 2. First Conodont Findings in Churkites Cf. Syaskoi Beds at the Western Coast of the Ussuri Gulf. Russian Journal of Pacific Geology, 2015, 9(3): 203-214.

[9]

Buryi G. I. Nizhnetriasovye Konodonty Yuzhnogo Primorya (Lower Triassic Conodonts of South Primorye). ‘Izdatel’stvo ‘Nauka’, 1979, 144.

[10]

Chumakov N. M. Leonov Y. G. Climate and Permian and Early Triassic Climatic Zonation. Klimat v Epokhi Biosfernykh Perestroyek, 2004, Moscow: ‘Izdatel’stvo ‘Nauka’, 230-256.

[11]

Diener C. Triadische Cephalopodenfaunen der Ostsibirischen Küstenprovinz. Mémoires du Comité Geologique, 1895, 14(3): 1-59.

[12]

Dustira A. M., Wignall P. B., Joachimski M., . Gradual Onset of Anoxia across the Permian–Triassic Boundary in Svalbard, Norway. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 374: 303-313.

[13]

Erwin D. H. The Permo–Triassic Extinction. Nature, 1994, 367(6460): 231-236.

[14]

Galfetti T., Bucher H., Brayard A., . Late Early Triassic Climate Change: Insights from Carbonate Carbon Isotopes, Sedimentary Evolution and Ammonoid Paleobiogeography. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 243(3/4): 394-411.

[15]

Glud R. N., Thamdrup B., Stahl H., . Nitrogen Cycling in a Deep Ocean Margin Sediment (Sagami Bay, Japan). Limnology and Oceanography, 2009, 54(3): 723-734.

[16]

Golozubov V. V. Tektonika Yurskikh i Nizhnemelovykh Kompleksov Severo–Zapadnogo Obramleniya Tikhogo Okeana, 2006, Moscow: ‘Izdatel’stvo ‘Nauka’, 240.

[17]

Goudemand N., Romano C., Brayard A., . Comment on “Lethally Hot Temperatures during the Early Triassic Greenhouse”. Science, 2013, 339(6123): 1033-1033.

[18]

Grasby S. E., Beauchamp B. Intrabasin Variability of the Carbon–Isotope Record across the Permian–Triassic Transition, Sverdrup Basin, Arctic Canada. Chemical Geology, 2008, 253(3/4): 141-150.

[19]

Grasby S. E., Beauchamp B., Bond D. P. G., . Progressive Environmental Deterioration in Northwestern Pangea Leading to the Latest Permian Extinction. Geological Society of America Bulletin, 2015, 127(9/10): 1331-1347.

[20]

Grasby S. E., Beauchamp B., Knies J. Early Triassic Productivity Crises Delayed Recovery from World’s Worst Mass Extinction. Geology, 2016, 44(9): 779-782.

[21]

Grigoryan A. G., Alekseev A. S., Joachimski M. M., . Nurgaliev D. K., . Permian–Triassic Biotic Crisis: A Multidisciplinary Study of Armenian Sections. XVIII International Congress on the Carboniferous and Permian, 2015, Kazan: Kazan University Press

[22]

Gruszczynski M., Halas S., Hoffman A., . A Brachiopod Calcite Record of the Oceanic Carbon and Oxygen Isotope Shifts at the Permian/Triassic Transition. Nature, 1989, 337(6202): 64-68.

[23]

Hermann E., Hochuli P. A., Bucher H., . A Close–up View of the Permian–Triassic Boundary Based on Expanded Organic Carbon Isotope Records from Norway (Trøndelag and Finnmark Platform). Global and Planetary Change, 2010, 74(3/4): 156-167.

[24]

Hermann E., Hochuli P. A., Méhay S., . Organic Matter and Palaeoenvironmental Signals during the Early Triassic Biotic Recovery: The Salt Range and Surghar Range Records. Sedimentary Geology, 2011, 234(1/2/3/4): 19-41.

[25]

Higgins M. B., Robinson R. S., Carter S. J., . Evidence from Chlorin Nitrogen Isotopes for Alternating Nutrient Regimes in the Eastern Mediterranean Sea. Earth and Planetary Science Letters, 2010, 290(1/2): 102-107.

[26]

Holser W. T., Magaritz M. Events near the Permian–Triassic Boundary. Modern Geology, 1987, 11: 155-180.

[27]

Horacek M., Brandner R., Abart R. Carbon Isotope Record of the P/T Boundary and the Lower Triassic in the Southern Alps: Evidence for Rapid Changes in Storage of Organic Carbon. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 252(1/2): 347-354.

[28]

Horacek M., Richoz S., Brandner R., . Evidence for Recurrent Changes in Lower Triassic Oceanic Circulation of the Tethys: The d13C Record from Marine Sections in Iran. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 252(1/2): 355-369.

[29]

Horacek M., Wang X., Grossman E. L., . The Carbon–Isotope Curve from the Chaohu Section, China: Different Trends at the Induan–Olenekian Boundary or Diagenesis. Albertiana, 2007, 35: 40-45.

[30]

Horacek M., Koike T., Richoz S. Lower Triassic d13C Isotope Curve from Shallow–Marine Carbonates in Japan, Panthalassa Realm: Confirmation of the Tethys d13C Curve. Journal of Asian Earth Sciences, 2009, 36(6): 481-490.

[31]

Horacek M., Brandner R., Richoz S., . Lower Triassic Sulphur Isotope Curve of Marine Sulphates from the Dolomites, N–Italy. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 290(1/2/3/4): 65-70.

[32]

Horacek M., Povoden E., Richoz S., . High–Resolution Carbon Isotope Changes, Litho–and Magnetostratigraphy across Permian–Triassic Boundary Sections in the Dolomites, N–Italy. New Constraints for Global Correlation. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 290(1/2/3/4): 58-64.

[33]

Isozaki Y. Permo–Triassic Boundary Superanoxia and Stratified Superocean: Records from Lost Deep Sea. Science, 1997, 276(5310): 235-238.

[34]

Isozaki Y., Aoki K., Sakata S., . The Eastern Extension of Paleozoic South China in NE Japan Evidenced by Detrital Zircon. GFF, 2014, 136(1): 116-119.

[35]

Isozaki Y., Nakahata H., Zakharov Y. D., . Greater South China Extended to the Khanka Block: Detrital Zircon Geochronology of Middle–Upper Paleozoic Sandstones in Primorye, Far East Russia. Journal of Asian Earth Sciences, 2017, 145: 565-575.

[36]

Jenkyns H. C., Gröcke D. R., Hesselbo S. P. Nitrogen Isotope Evidence for Water Mass Denitrification during the Early Toarcian (Jurassic) Oceanic Anoxic Event. Paleoceanography, 2001, 16(6): 593-603.

[37]

Joachimski M. M., Lai X., Shen S., . Climate Warming in the Latest Permian and the Permian–Triassic Mass Extinction. Geology, 2012, 40(3): 195-198.

[38]

Junium C. K., Arthur M. A. Nitrogen Cycling during the Cretaceous, Cenomanian–Turonian Oceanic Anoxic Event II. Geochemistry, Geophysics, Geosystems, 2007, 8(3): 1-18.

[39]

Kaiho K., Chen Z. Q., Sawada K. Possible Causes for a Negative Shift in the Stable Carbon Isotope Ratio Before, during and after the End–Permian Mass Extinction in Meishan, South China. Australian Journal of Earth Sciences, 2009, 56(6): 799-808.

[40]

Kaiho K., Kajiwara Y., Nakano T., . End–Permian Catastrophe by a Bolide Impact: Evidence of a Gigantic Release of Sulfur from the Mantle. Geology, 2001, 29(9): 815-818.

[41]

Kemkin I. V. Geodinamic Evolution of the Sikhote–Alin and the Sea of Japan Region in the Mesozoic., 2006, Moscow: ‘Uzdatel’stvo ‘Nauka’, 258.

[42]

Khanchuk A. I., Kemkin I. V., Kruk N. N. The Sikhote–Alin Orogenic Belt, Russian South East: Terranes and the Formation of Continental Lithosphere Based on Geological and Isotopic Data. Journal of Asian Earth Sciences, 2016, 120: 117-138.

[43]

Khanchuk A. I., Ratkin V. V., Ryazantseva M. D., . Geologiya i Poleznye Iskopaemye Primorskogo Kraya: Ocherk (Outline on Geology and Minerals of Primorye Region)., 1995.

[44]

Kiparisova L. D. Palaeontological Basis of Triassic Stratigraphy of Primorye Region. I. Cephalopods. Trudy VSEGEI, New Series, 1961, 48: 1-278.

[45]

Korte C., Kozur H. W. Carbon–Isotope Stratigraphy Across the Permian–Triassic Boundary: A Review. Journal of Asian Earth Sciences, 2010, 39(4): 215-235.

[46]

Korte C., Pande P., Kalia P., . Massive Volcanism at the Permian–Triassic Boundary and Its Impact on the Isotopic Composition of the Ocean and Atmosphere. Journal of Asian Earth Sciences, 2010, 37(4): 293-311.

[47]

Krull E. S., Retallack G. J., Campbell H. J., . d13Corg Chemostratigraphy of the Permian–Triassic Boundary in the Maitai Group, New Zealand: Evidence for High–Latitudinal Methane Release. New Zealand Journal of Geology and Geophysics, 2000, 43(1): 21-32.

[48]

Luo G. M., Wang Y. B., Algeo T. J., . Enhanced Nitrogen Fixation in the Immediate Aftermath of the Latest Permian Marine Mass Extinction. Geology, 2011, 39(7): 647-650.

[49]

Nakanishi T., Minagawa M. Stable Carbon and Nitrogen Isotopic Compositions of Sinking Particles in the Northeast Japan Sea. Geochemical Journal, 2003, 37(2): 261-275.

[50]

Nakrem H. A., Orchard M. J., Weitschat W., . Triassic Conodonts from Svalbard and Their Boreal Correlations. Polar Research, 2008, 27(3): 523-537.

[51]

Popov A. M., Zakharov Y. D. Olenekian Brachiopods from the Kamenushka River Basin, South Primorye: New Data on the Brachiopod Recovery after the End–Permian Mass Extinction. Paleontological Journal, 2017, 51(7): 735-745.

[52]

Renne P. R., Black M. T., Zichao Z., . Synchrony and Causal Relations between Permian–Triassic Boundary Crises and Siberian Flood Volcanism. Science, 1995, 269(5229): 1413-1416.

[53]

Robinson R. S., Kienast M. L., Albuquerque A., . A Review of Nitrogen Isotopic Alteration in Marine Sediments. Paleoceanography, 2012, 27(4): 1-13.

[54]

Romano C., Goudemand N., Vennemann T. W., . Climatic and Biotic Upheavals Following the End–Permian Mass Extinction. Nature Geoscience, 2013, 6(1): 57-60.

[55]

Saitoh M., Ueno Y., Nishizawa M., . Nitrogen Isotope Chemostratigraphy across the Permian–Triassic Boundary at Chaotian, Sichuan, South China. Journal of Asian Earth Sciences, 2014, 93: 113-128.

[56]

Schobben M., Joachimski M. M., Korn D., . Palaeotethys Seawater Temperature Rise and an Intensified Hydrological Cycle Following the End–Permian Mass Extinction. Gondwana Research, 2014, 26(2): 675-683.

[57]

Shigeta Y., Zakaharov Y. D., Maeda H., . The Lower Triassic System in the Abrek Bay Area, South Primorye, Russia. National Museum of Nature and Science Monographs, 2009, 38: 1-218.

[58]

Sigman D. M., Karsh K. L., Casciotti K. L. Steele J. H., Turekian K. K., Thorpe S. A. Ocean Process Tracers: Nitrogen Isotopes in the Ocean. Encyclopedia of Ocean Sciences (Second Ed.), 2009, London: Academic Press, 40-54

[59]

Sobolev S. V., Sobolev A. V., Kuzmin D. V., . Linking Mantle Plumes, Large Igneous Provinces and Environmental Catastrophes. Nature, 2011, 477(7364): 312-316.

[60]

Song H. Y., Tong J. N., Algeo T. J., . Large Vertical ?13CDIC Gradients in Early Triassic Seas of the South China Craton: Implications for Oceanographic Changes Related to Siberian Traps Volcanism. Global and Planetary Change, 2013, 105: 7-20.

[61]

Song H. Y., Tong J. N., Algeo T. J., . Early Triassic Seawater Sulfate Drawdown. Geochimica et Cosmochimica Acta, 2014, 128: 95-113.

[62]

Smyshlyaeva O. P., Zakharov Y. D. Phylogenetic Relationships of Early Triassic Ammonoids (New Data on the Inner Shell Structure of some Olenekian Ammonoids of Southern Primorye). Paleontological Journal, 2017, 51(7): 727-734.

[63]

Sun Y., Joachimski M. M., Wignall P. B., . Lethally Hot Temperatures during the Early Triassic Greenhouse. Science, 2012, 338(6105): 366-370.

[64]

Takahashi S., Kaiho K., Hori R. S., . Sulfur Isotope Profiles in the Pelagic Panthalassic Deep Sea during the Permian–Triassic Transition. Global and Planetary Change, 2013, 105: 68-78.

[65]

Takahashi S., Kaiho K., Oba M., . A Smooth Negative Shift of Organic Carbon Isotope Ratios at an End–Permian Mass Extinction Horizon in Central Pelagic Panthalassa. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 292(3/4): 532-539.

[66]

Tong J. N., Zakharov Y. D., Orchard M. J., . Proposal of Chaohu Section as the GGGP Candidate of the Induan–Olenekian Boundary. Albertiana, 2004, 29: 13-28.

[67]

Wang X. T., Sigman D. M., Cohen A. L., . Isotopic Composition of Skeleton–Bound Organic Nitrogen in Reef–Building Symbiotic Corals: A New Method and Proxy Evaluation at Bermuda. Geochimica et Cosmochimica Acta, 2015, 148: 179-190.

[68]

Wignall P. B., Bond D. P. G., Sun Y. D., . Ultra–Shallow–Marine Anoxia in an Early Triassic Shallow–Marine Clastic Ramp (Spitsbergen) and the Suppression of Benthic Radiation. Geological Magazine, 2015, 153(2): 316-331.

[69]

Wignall P. B., Morante R., Newton R. The Permo–Triassic Transition in Spitsbergen: d13Corg Chemostratigraphy, Fe and S Geochemistry, Facies, Fauna and Trace Fossils. Geological Magazine, 1998, 135(1): 47-62.

[70]

Yin H. F., Xie S. C., Luo G. M., . Two Episodes of Environmental Change at the Permian–Triassic Boundary of the GSSP Section Meishan. Earth–Science Reviews, 2012, 115(3): 163-172.

[71]

Zakharov Y. D. Biostratigraphy and Ammonoids of the Lower Triassic of South Primorye, 1968, Moscow: Izdatel’stvo Nauka, 175.

[72]

Zakharov Y. D. Early Triassic ammonoids of the east USSR., 1978, Moscow: Izdatel’stvo Nauka, 224.

[73]

Zakharov Y. D. Embry A. F., Beachamp B., Glass D. J. New Data on the Problem of the Permian–Triassic Boundary in the Far East. Pangea: Global Environments and Resources., 1994, 845-856.

[74]

Zakharov Y. D., Biakov A. S., Horacek M. Global Correlation of Basal Triassic Layers in the Light of the First Carbon Isotope Data on the Permian–Triassic Boundary in Northeast Asia. Russian Journal of Pacific Geology, 2014, 8(1): 1-17.

[75]

Zakharov Y. D., Horacek M., Shigeta Y., . N and C Isotopic Compositions of the Lower Triassic of Southern Primorye and Reconstruction of Habitat Conditions of Marine Organisms after Mass Extinction at the End of the Permian. Doklady Earth Sciences, 2018, 478(2): 161-165.

[76]

Zakharov Y. D., Horacek M., Smyshlyaeva O. P., . Barskov I. S., Ivanov A. V., Leonova T. B., . Early Olenekian Ammonoids from the Kamenushka River Basin, South Primorye and Their Environment. Zolotoj vek Rossijskoj Malakologii, 2016, 167-177.

[77]

Zakharov Y. D., Moussavi Abnavi N. The Ammonoid Recovery after the End–Permian Mass Extinction: Evidence from the Iran–Transcaucasia Area, Siberia, Primorye, and Kazakhstan. Acta Palaeontologica Polonica, 2013, 58(1): 127-147.

[78]

Zakharov Y. D., Oleinikov A., Kotlyar G. V. Dickins J. M. Late Changxingian Ammonoids, Bivalves and Brachiopods in South Primorye. Late Palaeozoic and Early Mesozoic Events and Their Global Correlation., 1997, Cambridge: Cambridge University Press, 142-146

[79]

Zakharov Y. D., Smyshlyaeva O. P. New Middle Olenekian (Early Triassic) Ammonoids of South Primorye. Paleontological Journal, 2016, 50(3): 229-238.

AI Summary AI Mindmap
PDF

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/