U-Pb Geochronology, Elemental and Sr-Nd Isotopic Geochemistry of the Houyaoyu Granite Porphyries: Implication for the Genesis of Early Cretaceous Felsic Intrusions in East Qinling

Xiaohu He , Hong Zhong , Zhifang Zhao , Shucheng Tan , Weiguang Zhu , Siqi Yang , Wenjun Hu , Zhong Tang , Congfa Bao

Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (4) : 920 -938.

PDF
Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (4) : 920 -938. DOI: 10.1007/s12583-018-0788-2
Article

U-Pb Geochronology, Elemental and Sr-Nd Isotopic Geochemistry of the Houyaoyu Granite Porphyries: Implication for the Genesis of Early Cretaceous Felsic Intrusions in East Qinling

Author information +
History +
PDF

Abstract

The Early Cretaceous Houyaoyu granite porphyries are located in the south margin of the North China Craton. Field observations, petrography, geochronology, major and trace elemental and Sr-Nd isotopic compositions are reported to elucidate the genesis of the Houyaoyu granite porphyries. SIMS zircon U-Pb analyses for the Houyaoyu granite porphyries yield two concordant ages of 133.2±2.3 (2σ) and 131±1.1 (2σ) Ma, respectively. Major and trace elemental compositions indicate that these porphyries are high-K I-type granites with high contents of SiO2, K2O, Rb, U, Pb, low Nb, Ta, Ti, and P. Initial 87Sr/86Sr ratios range from 0.708 3 to 0.709 7, and ε Nd(t) values range from -9.13 to -12.3, with corresponding two-stage depleted-mantle Nd model ages (T 2DM) varying from 1.57 to 1.91 Ga. This suggests that the Houyaoyu granite porphyries were predominantly derived from ancient lower continental crust, with minor involvement of mantle-derived components. On the basis of the tectonic evolution of the Qinling Orogen and geochemical characteristics of the Houyaoyu granite porphyries, it is proposed that they were formed in an extensional tectonic setting related to lithospheric destruction of the North China Craton, and produced Mo and Pb-Zn mineralization in East Qinling Orogen.

Keywords

East Qinling / granite porphyries / ancient lower continental crust / destruction of North China Craton

Cite this article

Download citation ▾
Xiaohu He, Hong Zhong, Zhifang Zhao, Shucheng Tan, Weiguang Zhu, Siqi Yang, Wenjun Hu, Zhong Tang, Congfa Bao. U-Pb Geochronology, Elemental and Sr-Nd Isotopic Geochemistry of the Houyaoyu Granite Porphyries: Implication for the Genesis of Early Cretaceous Felsic Intrusions in East Qinling. Journal of Earth Science, 2018, 29(4): 920-938 DOI:10.1007/s12583-018-0788-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Atherton M. P., Petford N. Generation of Sodium–Rich Magmas from Newly Underplated Basaltic Crust. Nature, 1993, 362(6416): 144-146.

[2]

Bader T., Franz L., Ratschbacher L., . The Heart of China Revisited: II Early Paleozoic (Ultra)High–Pressure and (Ultra)High–Temperature Metamorphic Qinling Orogenic Collage. Tectonics, 2013, 32(4): 922-947.

[3]

Bao Z. W., Wang C. Y., Zhao T. P., . Petrogenesis of the Mesozoic Granites and Mo Mineralization of the Luanchuan Ore Field in the East Qinling Mo Mineralization Belt, Central China. Ore Geology Reviews, 2014, 57: 132-153.

[4]

Barbarin B. A Review of the Relationships between Granitoid Types, Their Origins and Their Geodynamic Environments. Lithos, 1999, 46(3): 605-626.

[5]

Belousova E. A., Griffin W. L., O’Reilly S. Y., . Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 2002, 143(5): 602-622.

[6]

Black L. P., Kamo S. L., Allen C. M., . Improved 206Pb/238U Microprobe Geochronology by the Monitoring of a Trace–Element–Related Matrix Effect; SHRIMP, ID–TIMS, ELA–ICP–MS and Oxygen Isotope Documentation for a Series of Zircon Standards. Chemical Geology, 2004, 205(1/2): 115-140.

[7]

Boynton, W. V., 1984. Geochemistry of the Rare Earth Elements: Meteorite Studies. In: Henderson, P., ed., Rare Earth Element Geochemistry. Elsevier, New York. 63–114

[8]

Castillo P. R. Adakite Petrogenesis. Lithos, 2012, 134/135: 304-316.

[9]

Chappell B. W., White A. J. R. Two Contrasting Granite Types. Pacific Geology, 1974, 8: 173-174.

[10]

Chappell B. W., White A. J. R. I–and S–Type Granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh: Earth Sciences, 1992, 83(1/2): 1-26.

[11]

Chen Y. J., Li C., Zhang J., . Sr and O Isotopic Characteristics of Porphyries in the Qinling Molybdenum Deposit Belt and Their Implication to Genetic Mechanism and Type. Science in China Series D: Earth Sciences, 2000, 43(S1): 82-94.

[12]

Chen Y. J., Sui Y. H., Pirajno F. Exclusive Evidences for CMF Model and a Case of Orogenic Silver Deposits: Isotope Geochemistry of the Tieluping Silver Deposit, East Qinling Orogeny. Acta Petrologica Sinica, 2003, 19(3): 551-568.

[13]

Chen Y. J., Zhao Y. C. Geochemical Characteristics and Evolution of REE in the Early Precambrian Sediments: Evidences from the Southern Margin of the North China Craton. Episodes, 1997, 20: 109-116.

[14]

Chen Y. W., Hu R. Z., Bi X. W., . Zircon U–Pb Ages and Sr–Nd–Hf Isotopic Characteristics of the Huichizi Granitic Complex in the North Qinling Orogenic Belt and Their Geological Significance. Journal of Earth Science., 2018.

[15]

Chiaradia M. Adakite–Like Magmas from Fractional Crystallization and Melting–Assimilation of Mafic Lower Crust (Eocene Macuchi Arc, Western Cordillera, Ecuador). Chemical Geology, 2009, 265(3/4): 468-487.

[16]

Cui M. L., Zhang B. L., Zhang L. C. U–Pb Dating of Baddeleyite and Zircon from the Shizhaigou Diorite in the Southern Margin of North China Craton: Constrains on the Timing and Tectonic Setting of the Paleoproterozoic Xiong’er Group. Gondwana Research, 2011, 20(1): 184-193.

[17]

Dai B. Z., Jiang S. Y., Wang X. L. Petrogenesis of the Granitic Porphyry Related to the Giant Molybdenum Deposit in Donggou, Henan Province, China: Constraints from Petrogeochemistry, Zircon U–Pb Chronology and Sr–Nd–Hf Isotopes. Acta Petrologica Sinica, 2009, 25: 2889-2901.

[18]

Defant M. J., Drummond M. S. Derivation of some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 1990, 347(6294): 662-665.

[19]

Deng J. F., Mo X. X., Zhao H. L., . A New Model for the Dynamic Evolution of Chinese Lithosphere: ‘Continental Roots–Plume Tectonics’. Earth–Science Reviews, 2004, 65(3/4): 223-275.

[20]

Deng J. F., Su S. G., Niu Y. L., . A Possible Model for the Lithospheric Thinning of North China Craton: Evidence from the Yanshanian (Jura–Cretaceous) Magmatism and Tectonism. Lithos, 2007, 96(1/2): 22-35.

[21]

DePaolo D. J., Linn A. M., Schubert G. The Continental Crustal Age Distribution: Methods of Determining Mantle Separation Ages from Sm–Nd Isotopic Data and Application to the Southwestern United States. Journal of Geophysical Research, 1991, 96(B2): 2071-2088.

[22]

Dessimoz M., Müntener O., Ulmer P. A Case for Hornblende Dominated Fractionation of Arc Magmas: The Chelan Complex (Washington Cascades). Contributions to Mineralogy and Petrology, 2012, 163(4): 567-589.

[23]

Ding L. X., Ma C. Q., Li J. W., . LA–ICPMS Zircon U–Pb Ages of the Lantian and Muhuguan Granitoid Plutons, Southern Margin of the North China Craton: Implications for Tectonic Setting. Geochimica, 2010, 39(5): 401-413.

[24]

Diwu C. R., Sun Y., Liu X. M., Wang H. L. Zircon U–Pb Ages and Hf Isotopes and Their Geological Significance of Yiyang TTG Gneisses from Henan Province, China. Acta Petrologica Sinica, 2007, 23: 253-262.

[25]

Dong Y. P., Zhang G. W., Neubauer F., . Tectonic Evolution of the Qinling Orogen, China: Review and Synthesis. Journal of Asian Earth Sciences, 2011, 41(3): 213-237.

[26]

Dong Y. P., Liu X. M., Zhang G. W., . Triassic Diorites and Granitoids in the Foping Area: Constraints on the Conversion from Subduction to Collision in the Qinling Orogen, China. Journal of Asian Earth Sciences, 2012, 47: 123-142.

[27]

Dong Y. P., Santosh M. Tectonic Architecture and Multiple Orogeny of the Qinling Orogenic Belt, Central China. Gondwana Research, 2016, 29(1): 1-40.

[28]

Gao S., Rudnick R. L., Carlson R. W., . Re–Os Evidence for Replacement of Ancient Mantle Lithosphere beneath the North China Craton. Earth and Planetary Science Letters, 2002, 198(3/4): 307-322.

[29]

Gao S., Rudnick R. L., Yuan H. L., . Recycling Lower Continental Crust in the North China Craton. Nature, 2004, 432(7019): 892-897.

[30]

Gao X. Y., Zhao T. P., Bao Z. W., . Petrogenesis of the Early Cretaceous Intermediate and Felsic Intrusions at the Southern Margin of the North China Craton: Implications for Crust–Mantle Interaction. Lithos, 2014, 206/207: 65-78.

[31]

Gao Y. L., Zhang J. M., Ye Y. S., . Geological Characteristics and Molybdenite Re–Os Isotopic Dating of Shiyaogou Porphyry Molybdenum Deposit in the East Qinling. Acta Petrologica Sinica, 2010, 26(3): 729-739.

[32]

Ghosh S. C., Nandi A., Ahmed G., . Study of Permo–Triassic Boundary in Gondwana Sequence of Raniganj Basin. In: Proceedings IXth international Gondwana Symposium., 1996, New Delhi: Oxford and IBH Publisher, 195-206.

[33]

Goldfarb R. J., Hart C., Davis G., . East Asian Gold: Deciphering the Anomaly of Phanerozoic Gold in Precambrian Cratons. Economic Geology, 2007, 102(3): 341-345.

[34]

Griffin, W. L., Zhang, A., O’ Reilly, S. Y., et al., 1998. Phanerozoic Evolution of the Lithosphere beneath the Sino–Korean Craton. In: Flower, M. F., Chung, S. L., Lo, C. H., et al., eds., Mantle Dynamics and Plate Interaction in East Asia. American Geophysical Union Geodynamics Series 27, Washington, D.C. 107–126

[35]

Guo B., Zhu L. M., Li B., . Zircon U–Pb Age and Hf Isotope Composition of the Huashan and Heyu Granite Plutons at the Southern Margin of North China Craton: Implications for Geodynamic Setting. Acta Petrologica Sinica, 2009, 25: 265-281.

[36]

Gutscher M. A., Maury R., Eissen J. P., . Can Slab Melting be Caused by Flat Subduction. Geology, 2000, 28 6 535

[37]

Hastie A. R., Kerr A. C., Pearce J. A., . Classification of Altered Volcanic Island Arc Rocks Using Immobile Trace Elements: Development of the Th–Co Discrimination Diagram. Journal of Petrology, 2007, 48(12): 2341-2357.

[38]

He X. H., Zhong H., Zhu W. G., . Enrichment of Platinum–Group Elements (PGE) and Re–Os Isotopic Tracing for Porphyry Copper (Gold) Deposits. Acta Geologica Sinica: English Edition, 2014, 88(4): 1288-1309.

[39]

He Y. H., Zhao G. C., Sun M., . Petrogenesis and Tectonic Setting of Volcanic Rocks in the Xiaoshan and Waifangshan Areas along the Southern Margin of the North China Craton: Constraints from Bulk–Rock Geochemistry and Sr–Nd Isotopic Composition. Lithos, 2010, 114(1/2): 186-199.

[40]

Hou Z. Q., Gao Y. F., Qu X. M., . Origin of Adakitic Intrusives Generated during Mid–Miocene East–West Extension in Southern Tibet. Earth and Planetary Science Letters, 2004, 220(1/2): 139-155.

[41]

Hou Z. Q., Zheng Y. C., Yang Z. M., . Contribution of Mantle Components within Juvenile Lower–Crust to Collisional Zone Porphyry Cu Systems in Tibet. Mineralium Deposita, 2013, 48(2): 173-192.

[42]

Hu H., Li J. W., Deng X. D. LA–ICP–MS Zircon U–Pb Dating of Granitoid Intrusions Related to Iron–Copper Polymetallic Deposits in Luonan–Lushi Area of Southern North China Craton and Its Geological Implications. Mineral Deposits, 2010, 30: 979-1001.

[43]

Hu S. X., Lin Q. L. Geology and Mineralization in Convergence Belt between North China Craton and South China Block., 1988, Nanjing: Nanjing University Press, 1-277.

[44]

Huang F., Li S. G., Dong F., . High–Mg Adakitic Rocks in the Dabie Orogen, Central China: Implications for Foundering Mechanism of Lower Continental Crust. Chemical Geology, 2008, 255(1/2): 1-13.

[45]

Jacobsen S. B., Wasserburg G. J. Nd and Sr Isotopic Study of the Bay of Islands Ophiolite Complex and the Evolution of the Source of Midocean Ridge Basalts. Journal of Geophysical Research: Solid Earth, 1979, 84(B13): 7429-7445.

[46]

Kay R. W., Kay S. M. Delamination and Delamination Magmatism. Tectonophysics, 1993, 219(1/2/3): 177-189.

[47]

Li C. Y., Wang F. Y., Hao X. L., . Formation of the World’s Largest Molybdenum Metallogenic Belt: A Plate–Tectonic Perspective on the Qinling Molybdenum Deposits. International Geology Review, 2012, 54(9): 1093-1112.

[48]

Li D., Zhang S. T., Yan C. H., . Late Mesozoic Time Constraints on Tectonic Changes of the Luanchuan Mo Belt, East Qinling Orogen, Central China. Journal of Geodynamics, 2012, 61: 94-104.

[49]

Li H. Y., Wang X. X., Ye H. S., . Emplacement Ages and Petrogenesis of the Molybdenum–Bearing Granites in the Jinduicheng Area of East Qinling, China: Constraints from Zircon U–Pb Ages and Hf Isotopes. Acta Geologica Sinica–English Edition, 2012, 86(3): 661-679.

[50]

Li J. W., Zhao X. F., Zhou M. F., . Late Mesozoic Magmatism from the Daye Region, Eastern China: U–Pb Ages, Petrogenesis, and Geodynamic Implications. Contributions to Mineralogy and Petrology, 2009, 157(3): 383-409.

[51]

Li N., Chen Y. J., Pirajno F., . LA–ICP–MS Zircon U–Pb Dating, Trace Element and Hf Isotope Geochemistry of the Heyu Granite Batholith, Eastern Qinling, Central China: Implications for Mesozoic Tectono–Magmatic Evolution. Lithos, 2012, 142/143: 34-47.

[52]

Li N., Chen Y. J., Zhang H., . Molybdenum Deposits in East Qinling. Earth Science Frontiers, 2007, 14: 186-198.

[53]

Li N., Chen Y. J., Santosh M., . Compositional Polarity of Triassic Granitoids in the Qinling Orogen, China: Implication for Termination of the Northernmost Paleo–Tethys. Gondwana Research, 2015, 27(1): 244-257.

[54]

Li N., Chen Y. J., McNaughton N. J., . Formation and Tectonic Evolution of the Khondalite Series at the Southern Margin of the North China Craton: Geochronological Constraints from a 1.85–Ga Mo Deposit in the Xiong’ershan Area. Precambrian Research, 2015, 269: 1-17.

[55]

Li Q. L., Li X. H., Liu Y., . Precise U–Pb and Pb–Pb Dating of Phanerozoic Baddeleyite by SIMS with Oxygen Flooding Technique. Journal of Analytical Atomic Spectrometry, 2010, 25 7 1107

[56]

Li S. G., Xiao Y. L., Liou D. L., . Collision of the North China and Yangtse Blocks and Formation of Coesite–Bearing Eclogites: Timing and Processes. Chemical Geology, 1993, 109(1/2/3/4): 89-111.

[57]

Li X. H., Liu Y., Li Q. L., . Precise Determination of Phanerozoic Zircon Pb/Pb Age by Multicollector SIMS without External Standardization. Geochemistry, Geophysics, Geosystems, 2009, 10 4 Q04010

[58]

Li Y. F., Mao J. W., Guo B. J., . Re–Os Dating of Molybdenite from the Nannihu Mo(–W) Orefield in the East Qinling and Its Geodynamic Significance. Acta Geologica Sinica: English Edition, 2004, 78(2): 463-470.

[59]

Lin W., Faure M. M. P., . Mesozoic Extensional Tectonics in Eastern Asia: The South Liaodong Peninsula Metamorphic Core Complex (NE China). The Journal of Geology, 2008, 116(2): 134-154.

[60]

Liu J. L., Davis G. A., Lin Z. Y., . The Liaonan Metamorphic Core Complex, Southeastern Liaoning Province, North China: A Likely Contributor to Cretaceous Rotation of Eastern Liaoning, Korea and Contiguous Areas. Tectonophysics, 2005, 407(1/2): 65-80.

[61]

Liu S. W., Yang P. T., Li Q. G., . Indosinian Granitoids and Orogenic Processes in the Middle Segment of the Qinling Orogen: China. Journal of Jilin University (Earth Science Edition), 2011, 41: 1928-1943.

[62]

Loiselle M. C., Wones D. R. Characteristics and Origin of Anorogenic Granites. Geological Society of America Abstracts with Programs, 1979, 11 468.

[63]

Lu J. S., Wang G. D., Wang H., . Zircon SIMS U–Pb Geochronology of the Lushan Terrane: Dating Metamorphism of the Southwestern Terminal of the Palaeoproterozoic Trans–North China Orogen. Geological Magazine, 2015, 152(2): 367-377.

[64]

Lu X. X. Revealing the Process of Orogenic Evolution from Granites in the Qinling—Research Progress of the Qinling Granite. Advances in Earth Sciences, 1998, 13(2): 213-214.

[65]

Ludwig K. R. User–Manual for Isoplot/Ex Revsion 2.49. Berkeley Geochronology Centre, Special Publication, Berkeley. 4, 2001.

[66]

Macpherson C. G., Dreher S. T., Thirlwall M. F. Adakites without Slab Melting: High Pressure Differentiation of Island Arc Magma, Mindanao, the Philippines. Earth and Planetary Science Letters, 2006, 243(3/4): 581-593.

[67]

Mao J. W., Pirajno F., Xiang J. F., . Mesozoic Molybdenum Deposits in the East Qinling–Dabie Orogenic Belt: Characteristics and Tectonic Settings. Ore Geology Reviews, 2011, 43(1): 264-293.

[68]

Mao J. W., Xie G. Q., Pirajno F., . Late Jurassic–Early Cretaceous Granitoid Magmatism in Eastern Qinling, Central–Eastern China: SHRIMP Zircon U–Pb Ages and Tectonic Implications. Australian Journal of Earth Sciences, 2010, 57(1): 51-78.

[69]

Martin H., Smithies R. H., Rapp R., . An Overview of Adakite, Tonalite–Trondhjemite–Granodiorite (TTG), and Sanukitoid: Relationships and Some Implications for Crustal Evolution. Lithos, 2005, 79(1/2): 1-24.

[70]

Maruyama S., Isozaki Y., Kimura G., . Paleogeographic Maps of the Japanese Islands: Plate Tectonic Synthesis from 750 Ma to the Present. The Island Arc, 1997, 6(1): 121-142.

[71]

Meng Q. R., Zhang G. W. Timing of Collision of the North and South China Blocks: Controversy and Reconciliation. Geology, 1999, 27 2 123

[72]

Meng Q. R., Zhang G. W. Geologic Framework and Tectonic Evolution of the Qinling Orogen, Central China. Tectonophysics, 2000, 323(3/4): 183-196.

[73]

Menzies, M. A., Xu, Y. G., 1998. Geodynamics of the North Chinacraton. In: Flower, M. F., Chung, S. L., Lo, C. H., et al., eds., Mantle Dynamics and Plate Interaction in East Asia. American Geophysical Union Geodynamics Series 27, Washington, D.C. 115–165

[74]

Middlemost E. A. K. Magmas and Magmatic Rocks., 1985, London: Longman, 1-266.

[75]

Middlemost E. A. K. Naming Materials in the Magma/igneous Rock System. Earth–Science Reviews, 1994, 37(3/4): 215-224.

[76]

Muir R. J., Weaver S. D., Bradshaw J. D., . The Cretaceous Separation Point Batholith, New Zealand: Granitoid Magmas Formed by Melting of Mafic Lithosphere. Journal of the Geological Society, 1995, 152(4): 689-701.

[77]

Ni Z. Y., Zhang H., Xue L. W. Pb–Sr–Nd Isotope Constraints on the Source of Ore–Forming Elements of the Dahu Au–Mo Deposit, Henan Province. Acta Petrologica Sinica, 2009, 25(11): 2823-2832.

[78]

Peccerillo A., Taylor S. R. Geochemistry of Eocene Calc–Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 1976, 58(1): 63-81.

[79]

Qi L., Hu J., Gregoire D. C. Determination of Trace Elements in Granites by Inductively Coupled Plasma Mass Spectrometry. Talanta, 2000, 51(3): 507-513.

[80]

Qi Q. J., Wang X. X., Ke C. H., . Geochronology and Origin of the Laoniushan Complex in the Southern Margin of North China Craton and Their Implications: New Evidences from Zircon Dating, Hf Isotopes and Geochemistry. Acta Petrologica Sinica, 2012, 28: 279-301.

[81]

Richards J. P., Kerrich R. Special Paper: Adakite–Like Rocks: Their Diverse Origins and Questionable Role in Metallogenesis. Economic Geology, 2007, 102(4): 537-576.

[82]

Shi Q. Z., Qin G. Q., Li M. L., . Detachment Extensional Structure and Gold Mineralization of the Post–Orogenic Stage in the West Henan Province. Henan Geology, 1993, 11: 27-36.

[83]

Sláma J., Košler J., Condon D. J., . Plešovice Zircon—A New Natural Reference Material for U–Pb and Hf Isotopic Microanalysis. Chemical Geology, 2008, 249(1/2): 1-35.

[84]

Stacey J. S., Kramers J. D. Approximation of Terrestrial Lead Isotope Evolution by a Two–Stage Model. Earth and Planetary Science Letters, 1975, 26(2): 207-221.

[85]

Sun S. S., McDonough W. F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 1989, 42(1): 313-345.

[86]

Wang J. P., Liu Z. J., Liu J. J., . Trace Element Compositions of Pyrite from the Shuangwang Gold Breccias, Western Qinling Orogen, China: Implications for Deep Ore Prediction. Journal of Earth Science, 2018, 29(3): 564-572.

[87]

Wang Q., Wyman D. A., Xu J. F., . Early Cretaceous Adakitic Granites in the Northern Dabie Complex, Central China: Implications for Partial Melting and Delamination of Thickened Lower Crust. Geochimica et Cosmochimica Acta, 2007, 71(10): 2609-2636.

[88]

Wang X. S., Hu R. Z., Bi X. W., . Petrogenesis of Late Cretaceous I–Type Granites in the Southern Yidun Terrane: New Constraints on the Late Mesozoic Tectonic Evolution of the Eastern Tibetan Plateau. Lithos, 2014, 208/209: 202-219.

[89]

Wang X. X., Wang T., Qi Q. J., . Temporal–Spatial Variations, Origin and Their Tectonic Significance of the Late Mesozoic Granites in the Qinling, Central China. Acta Petrologica Sinica, 2011, 27(6): 1573-1593.

[90]

Wiedenbeck M. A. P., Corfu F., . Three Natural Zircon Standards for U–Th–Pb, Lu–Hf, Trace Element and REE Analyses. Geostandards and Geoanalytical Research, 1995, 19(1): 1-23.

[91]

Wu F. Y., Lin J. Q., Wilde S. A., . Nature and Significance of the Early Cretaceous Giant Igneous Event in Eastern China. Earth and Planetary Science Letters, 2005, 233(1/2): 103-119.

[92]

Wu Y. B., Zheng Y. F. Genesis of Zircon and its Constraints on Interpretation of U–Pb Age. Chinese Science Bulletin, 2004, 49(15): 1554-1569.

[93]

Wu Y. B., Zheng Y. F. Southward Accretion of the North China Block and the Tectonic Evolution of the Qinling–Tongbai–Hong’an Orogenic Belt. Chinese Science Bulletin, 2013, 58: 2246-2250.

[94]

Wu Y. B., Zheng Y. F. Tectonic Evolution of a Composite Collision Orogen: An Overview on the Qinling–Tongbai–Hong’an–Dabie–Sulu Orogenic Belt in Central China. Gondwana Research, 2013, 23(4): 1402-1428.

[95]

Xiao E., Hu J., Zhang Z. Z., . Petrogeochemistry, Zircon U–Pb Dating and Lu–Hf Isotopic Compositions of the Haoping and Jinshanmiao Granites from the Huashan Complex Batholith in Eastern Qinling Orogen. Acta Petrologica Sinica, 2012, 25: 4031-4046.

[96]

Xu H. J., Zhang J. F. Zircon Geochronological Evidence for Participation of the North China Craton in the Protolith of Migmatite of the North Dabie Terrane. Journal of Earth Science, 2018, 29(1): 30-42.

[97]

Xu W. L., Wang F., Pei F. P., . Mesozoic Tectonic Regimes and Regional Ore–Forming Background in NE China: Constraints from Spatial and Temporal Variations of Mesozoic Volcanic Rock Associations. Acta Petrologica Sinica, 2013, 29(2): 339-353.

[98]

Xu X. S., Griffin W. L., Ma X., . The Taihua Group on the Southern Margin of the North China Craton: Further Insights from U–Pb Ages and Hf Isotope Compositions of Zircons. Mineralogy and Petrology, 2009, 97(1/2): 43-59.

[99]

Yang J. H., Wu F. Y., Chung S. L., . Rapid Exhumation and Cooling of the Liaonan Metamorphic Core Complex: Inferences from 40Ar/39Ar Thermochronology and Implications for Late Mesozoic Extension in the Eastern North China Craton. Geological Society of America Bulletin, 2007, 119(11/12): 1405-1414.

[100]

Ye H. S., Mao J. W., Li Y. F., . SHRIMP Zircon U–Pb and Molybdenite Re–Os Datings of the Superlarge Donggou Porphyry Molybdenum Deposit in the East Qinling, China, and Its Geological Implications. Acta Geologica Sinica: English Edition, 2008, 82(1): 134-145.

[101]

Ye H. S., Mao J. W., Xu L. G., . SHRIMP Zircon U–Pb Dating and Geochemistry of the Taishanmiao Aluminous A–type Granite in Western Henan Province. Geological Review, 2008, 54: 699-711.

[102]

Ye H. S., Mao J. W., Li Y. F., . Characteristics and Metallogenic Mechanism of Mo–W and Pb–Zn–Ag Deposits in Nannihu Orefield, Western Henan Province. Geoscience, 2006, 20: 165-174.

[103]

Yogodzinski G. M., Kelemen P. B. Slab Melting in the Aleutians: Implications of an Ion Probe Study of Clinopyroxene in Primitive Adakite and Basalt. Earth and Planetary Science Letters, 1998, 158(1/2): 53-65.

[104]

Yuan C., Zhou M. F., Sun M., . Triassic Granitoids in the Eastern Songpan Ganzi Fold Belt, SW China: Magmatic Response to Geodynamics of the Deep Lithosphere. Earth and Planetary Science Letters, 2010, 290(3/4): 481-492.

[105]

Zeng L. J., Zhou D., Xing Y. C., . Geochemistry and Petrogenesis of the Babaoshan Granite Porphyry in Lushi County, Henan Province. Geochimica, 2013, 42: 242-261.

[106]

Zeng L. J., Xing Y. C., Zhou D., . LA–ICP–MS Zircon U–Pb Age and Hf Isotope Composition of the Babaoshan Granite Porphyries in Lushi County, Henan Province. Geotectonica et Metallogenia, 2013, 37(1): 65-77.

[107]

Zhai M. G., Zhu R. X., Liu J. M., . Key Timing of Mesozoic Tectonic Regime Transform in Eastern North China. Science in China (Ser. D), 2003, 33(10): 913-920.

[108]

Zhai M. G., Meng Q. R., Liu J. M., . Geological features of Mesozoic Tectonic Regime Inversion in Eastern North China and Implication for Geodynamics. Earth Science Frontiers, 2004, 11(3): 285-298.

[109]

Zhai M. G. Adakite and Related Granitoids from Partial Melting of Continental Lower Crust. Acta Petrologica Sinica, 2004, 20(2): 193-194.

[110]

Zhang G. W., Dong Y. P., Yao A. P. The Crustal Compositions, Structures and Tectonic Evolution of the Qinling Orogenic Belt. Geology of Shanxi, 1997, 15: 1-14.

[111]

Zhang G. W., Meng Q. R., Yu Z. P., . Orogenesis and Dynamics of the Qinling Orogen. Chinese Science Bulletin, 1996, 39: 225-234.

[112]

Zhang G. W., Zhang B. R., Yuan X. C., . Qinling Orogenic Belt and Continental Dynamics., 2001, Beijing: Science Press

[113]

Zhang Z. Q., Li S. M. Sm–Nd, Rb–Sr Age and Its Geological Significance of Archean Taihua Group in Xiongershan, West Henan Province, Contributions of Early Precambrian Geology in North China Craton., 1998, Beiijng: Geological Publishing House, 123-132.

[114]

Zhang Z. Q., Zhang G. W., Liu D. Y., . Chronology and Geochemistry of Ophiolite, Granite, and Clastic Sedimentary Rocks in Qinling Orogen., 2006, Beijing: Geological Press

[115]

Zhang J. J., Zheng Y. D., Liu S. W. Mesozoic Tectonic Evolution and Ore–Deposits Formation in the Gold Mine Field of Xiaoqinling. Chinese Journal of Geology, 2003, 38(1): 74-84.

[116]

Zhang Z. W., Yang X. Y., Dong Y., . Molybdenum Deposits in the Eastern Qinling, Central China: Constraints on the Geodynamics. International Geology Review, 2011, 53(2): 261-290.

[117]

Zhang Z. W., Zhang Z. S., Dong Y., . Molybdenum Deposits in Eastern Qinling, Central China: Deep Structural Constraints on Their Reformation. Acta Mineralogical Sinica, 2007, 27: 372-378.

[118]

Zhang Z. W., Zhu B. Q., Chang X. Y., . Petrogenetic–Metallogenetic Background and Time–Space Relationship of the East Qinling Molybdenum Ore Belt, China. Geological Journal of China Universities, 2001, 7: 307-315.

[119]

Zhao H. X., Jiang S. Y., Frimmel H. E., . Geochemistry, Geochronology and Sr–Nd–Hf Isotopes of Two Mesozoic Granitoids in the Xiaoqinling Gold District: Implication for Large–Scale Lithospheric Thinning in the North China Craton. Chemical Geology, 2012, 294/295: 173-189.

[120]

Zhao Z. F., Zheng Y. F., Dai L. Q. Origin of Residual Zircon and the Nature of Magma Source for Post Collisional Granite in Continental Collision Zone. Chinese Science Bulletin, 2013, 58: 2285-2289.

AI Summary AI Mindmap
PDF

153

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/