Western Tethyan Epeiric Ramp Setting in the Early Triassic: An Example from the Central Dinarides (Croatia)

Dunja Aljinović , Micha Horacek , Leopold Krystyn , Sylvain Richoz , Tea Kolar-Jurkovšek , Duje Smirčić , Bogdan Jurkovšek

Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (4) : 806 -823.

PDF
Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (4) : 806 -823. DOI: 10.1007/s12583-018-0787-3
Article

Western Tethyan Epeiric Ramp Setting in the Early Triassic: An Example from the Central Dinarides (Croatia)

Author information +
History +
PDF

Abstract

In the central part of the External Dinarides in Plavno, Croatia, near Knin, a remarkably thick (927.5 m) Early Triassic depositional sequence was investigated. The Plavno sequence starts in the EarlyGriesbachian and ends with a continuous transition into the Anisian strata. A complete 13C isotope curve has been achieved and combined with conodonts, bivalves and ammonoids to establish and correlate stage and substage boundaries. The δ13C curve is consistent with former studies. It displays a general increase from the Griesbachian to a prominent maximum beyond the +8‰ amplitude around the Dienerian-Smithian boundary (DSB), followed by a steep and continuous decline to low, negative values in the Smithian. Around the Smithian-Spathian boundary (SSB) a steep rise to a second maximum occurred. It is followed by a saw-tooth shaped decline in the Spathian and a similar increase to a peak at the Spathian-Anisian boundary (SAB).

Sedimentologically, the Plavno sequence is interpreted as having been deposited on an extensive epeiric ramp under long-term transgressive conditions, sharing depositional characteristics of both the epeiric platform and the carbonate ramp. The entire Plavno sequence was deposited above the storm-wave base and was storm influenced. Three informal members are differentiated: 1) the dolostone member (Early Griesbachian); 2) the siliciclastic member (red-coloured shale, siltstone, sandstone with oolitic/bioclastic grainstone intercalations), which can be further divided into lower, middle and upper intervals (Late Griesbachian, Dienerian and Smithian); and 3) the mudstone member (grey lime mudstones, marls and calcisiltites with common ammonoids and gastropods-Spathian). The Plavno sequence is compared with other western Tethyan sections. Observed differences stem from local controls on deposition in the overall shallow marine environment.

Keywords

Early Triassic / Dinarides / epeiricramp / δ13C isotope curve / litho- and biostratigraphy

Cite this article

Download citation ▾
Dunja Aljinović, Micha Horacek, Leopold Krystyn, Sylvain Richoz, Tea Kolar-Jurkovšek, Duje Smirčić, Bogdan Jurkovšek. Western Tethyan Epeiric Ramp Setting in the Early Triassic: An Example from the Central Dinarides (Croatia). Journal of Earth Science, 2018, 29(4): 806-823 DOI:10.1007/s12583-018-0787-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aigner T. Storm Depositional Systems: Dynamic Stratigraphy in Modern and Ancient Shallow–Marine Sequences. Lecture Notes in Earth Sci., 1985, New York: Springer–Verlag, 173.

[2]

Algeo T. J., Twitchett R. J. Anomalous Early Triassic Sediment Fluxes due to Elevated Weathering Rates and Their Biological Consequences. Geology, 2010, 38(11): 1023-1026.

[3]

Aljinović D. Petrographic and Sedimentologic Characteristics of the Early Triassic Deposits in the Plavno and Strmica: [Dissertation], 1991, Zagreb: University of Zagreb, 92.

[4]

Aljinović D. Storm Influenced Shelf Sedimentation––An Example from the Lower Triassic (Scythian) Siliciclastic and Carbonate Succession near Knin (Southern Croatia and Western Bosnia and Herzegovina). Geologia Croatica, 1995, 48: 17-32.

[5]

Aljinović D. Facijesi Klasicnih Sedimenata Mladeg Paleozoika i Starijeg Trijasa Gorskog Kotara (Late Palaeozoic and Early Scythian Clastic Facies in Gorski Kotar, Croatia): [Dissertation]., 1997, Zagreb: University of Zagreb, 163.

[6]

Aljinović D., Kolar–Jurkovšek T., Jurkovšek B. Litofaciesna in Konodontna Conacija Spodnjetriasnih Plasti Severozahodnega Dela Zunanjih Dinaridov (Gorkski Kotar, Hrvaška). RMZ–Materials and geoenvironment RMZ–materiali in geookolje, 2005, 52: 581-596.

[7]

Aljinović D., Kolar–Jurkovšek T., Jurkovšek B. The Lower Triassic Shallow Marine Succession in Gorski Kotar Region (External Dinarides, Croatia): Lithofacies and Conodont Dating. Rivista Italiana di Paleontologia e Stratigrafia, 2006, 112: 35-53.

[8]

Aljinović D., Kolar–Jurkovšek T., Jurkovšek B., . Conodont Dating of the Lower Triassic Sedimentary Rocks in the External Dinarides (Croatia and Bosnia and Herzegovina). Rivista Italiana di Paleontologia e Stratigrafia, 2011, 117: 135-148.

[9]

Assereto R., Bosellini A., Fantini Sestini N., . The Permian–Triassic Boundary in the Southern Alps (Italy). The Permian and Triassic Systems and Their Mutual Boundary. Canadian Soc. Petroleum Geol. Mem., 1973, 2: 176-199.

[10]

Babic L. J. O Trijasu Gorskog Kotara i Susjednih Podrucja (Sur le Trias Dans le Gorski Kotar et les Regions Voisines). Geol. Vjesnik, 1968, 22: 11-23.

[11]

Bauer F. K., Cerny I., Exner C., . Erlauterungen zur Geologischen Karte der Karawanken 1: 25000. Geologische Bundesanstalt Wien, Ostteil., 1983, 86.

[12]

Bosellini A. Stratigrafia, Petrografia e Sedimentologia Delle Facies Carbonatiche al Limite Permiano–Trias Nelle Dolomiti Occidentali. Mem. Mus. St. Nat. Ven. Trid., 1964, 15: 59-110.

[13]

Bosellini A. Paleogeologia Pre–Anisica Delle Dolomiti Centrosettentrionali. Atti Accademia Nazionale dei Lincei. Memorie della Classe di Scienza Fisiche Matematiche e Maturali, 1968, 9(8): 1-33.

[14]

Brandner R., Horacek M., Keim L., . The Pufels/Bulla Road Section: Deciphering Environmental Changes across the Permian–Triassic Boundary to the Olenekian by Integrated Litho–, Magnetoand Isotope Stratigraphy: A Field Trip Guide. Geo. Alp., 2009, 6: 116-132.

[15]

Brandner R., Horacek M., Keim L. Permian–Triassic–Boundary and Lower Triassic in the Dolomites, Southern Alps (Italy). Field Trip Guide 29th IAS Meeting of Sedimentology Schladming/Austria. Journal of Alpine Geology, 2012, 54: 379-404.

[16]

Broglio Loriga C., Masetti D., Neri C. La formazione di Werfen (Scitico) Delle Dolomiti Occidental: Sedimentologia e Biostratigrafia. Riv. Ital. Paleont. Strat., 1983, 88: 501-598.

[17]

Broglio Loriga C., Neri C., Posenato R. The Lower Triassic of the Dolomites and Cadore. n: Italian IGCP 203 Group, Permian and Permian–Triassic Boundary in the South–Alpine Segment of the Western Tethys: Field–Guide Book. Soc. Geol. It. and IGCP 203 Meeting, 1986, 29-34.

[18]

Broglio Loriga C., Góczán F., Haas J., . The Lower Triassic Sequence of the Dolomites (Italy) and Transdanubian Mid–Mountains (Hungary) and Their Correlation. Memorie di Scienze Geologiche, 1990, 42: 41-103.

[19]

Burchette T. P., Wright V. P. Carbonate Ramp Depositional Systems. Sedimentary Geology, 1992, 79(1/2/3/4): 3-57.

[20]

Chen Y. L., Kolar–Jurkovšek T., Jurkovšek B., . Early Triassic Conodonts and Carbonate Carbon Isotope Record of the Idrija–Žiri Area, Slovenia. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 444: 84-100.

[21]

Chorowitz J. Etude Geologique des Dinarides le Long de la Structure Transverale Split–Karlovac (Yugoslavie). Societé Gêologique du Nord, 1977, 1: 3-331.

[22]

Clarkson M. O., Richoz S., Wood R. A., . A New High–Resolution d13C Record for the Early Triassic: Insights from the Arabian Platform. Gondwana Research, 2013, 24(1): 233-242.

[23]

De Zanche V., Farabegoli E., Mietto P., . Le Unità Litostratigrafiche al Limite Scitico–Anisico nel Recoarese (Prealpi Vicente). Mem. Sci. Geol., 1980, 34: 195-204.

[24]

De Zanche V., Gianolla P., Mietto P., . Triassic Sequence Stratigraphy in the Dolomites (Italy). Mem. Sci. Geol., 1993, 45: 1-27.

[25]

Duke W. L. Geostrophic Circulation or Shallow Marine Turbidity Currents? the Dilemma of Paleoflow Patterns in Strom–Influenced Prograding Shoreline Systems. Journal of Sedimentary Research, 1990, 60(6): 870-883.

[26]

Ðurdanovic. The Lower Triassic of the Gorski Kotar Region. Geol. Vjesnik, 1967, 20: 107-110.

[27]

Farabegoli E., Perri M. C. Permian/Triassic Boundary and Early Triassic of the Bulla Section (Southern Alps, Italy): Lithostratigraphy, Facies and Conodont Biostratigraphy. Southern Alps Field Trip Guidebook. ECOS VII. Giornale di Geologia (Spec. Issue), 1998, 60: 292-310.

[28]

Flügel E. Evolution of Triassic Reefs: Current Concepts and Problems. Facies, 1982, 6(1): 297-327.

[29]

Goldring R., Bridges P. Sublitoral Sand Sheets. Jour. Sed. Petrology, 1973, 43: 736-747.

[30]

Golubic V. Biostratigraphic Distribution of Upper Scythian Ammonites in the Reference Area of Muc Gornji Village, Croatia. Natura Croatica, 2000, 9: 237-274.

[31]

Grasby S. E., Beauchamp B., Embry A., . Recurrent Early Triassic Ocean Anoxia. Geology, 2012, 41(2): 175-178.

[32]

Grimani I., Šikic K., Šimunic A. Osnovna Geološka Karta SFRJ, 1: 100 000, List Knin. (Basic Geologic Map SFRJ). Institut za Geološka Istraživanja Zagreb, 1972.

[33]

Grimani I., Šikic K., Šimunic A. Osnovna Geološka Karta SFRJ, 1: 100 000, Tumac za List Knin (Basic Geologic Map SFRJ Explanatory Notes to Geological Map––Knin; Abs: Geology of the Knin Sheet). Institut za Geološka Istraživanja Zagreb, 1975, 61.

[34]

Gwinner M. P. Geologie der Alpen––Stratigraphie, Pläogeographie, Tektonik., 1971, Stuttgart: Schweizerbartsche Verlagsbuchhandlung, 477.

[35]

Haas J., Kovács S., Krystyn L., . Significance of Late Permian–Triassic Facies Zones in Terrane Reconstructions in the Alpine–North Pannonian Domain. Tectonophysics, 1995, 242(1/2): 19-40.

[36]

Haas J., Hips K., Pelikán P., . Facies Analysis of Marine Permian/Triassic Boundary Sections in Hungary. Acta Geologica Hungarica, 2004, 47(4): 297-340.

[37]

Haas J., Demény A., Hips K., . Biotic and Environmental Changes in the Permian–Triassic Boundary Interval Recorded on a Western Tethyan Ramp in the Bükk Mountains, Hungary. Global and Planetary Change, 2007, 55(1/2/3): 136-154.

[38]

Haq B. U., Hardenbol J., Vail P. R. Chronology of Fluctuating Sea Levels since the Triassic. Science, 1987, 235(4793): 1156-1167.

[39]

Heckel P. H. Carbonate Buildups in the Geological Record: A Review. Reef in Time and Space. Soc. Econ. Paleontol. Mineral. (Spec. Publ.), 1974, 18: 90-154.

[40]

Herak M. Some Teclonical Problems of the Evaporitic Area in the Dinarides of Croatia. Geol. Vjesnik, 1973, 26: 29-40.

[41]

Herak M. A New Concept of Geotectonics of the Dinarides. Acta Geologica, 1986, 16(1): 1-42.

[42]

Herak M., Šcavnicar B., Šušnjara A., . Neue Beiträge zur Biostratigraphie der Tethys–Trias. Lower Triassic of Muc. Proposal for standard section of the European Upper Scythian. Schr. Erdwiss., 1983, 5: 93-106.

[43]

Hine C. A. Lily Bank, Bahamas: History of an Active Oolite Sand Shoal. SEPM Journal of Sedimentary Research, 1977, 47: 1554-1583.

[44]

Hips K., Pálikán P. Lower Triassic Shallow Marine Succession in the Bükk Mountains, NE Hungary. Geol. Carpathica, 2002, 53(6): 351-367.

[45]

Hochuli P. A. Interpretation of “Fungal Spikes” in Permian–Triassic Boundary Sections. Global and Planetary Change, 2016, 144: 48-50.

[46]

Horacek M., Brandner R., Abart R. Carbon Isotope Record of the P/T Boundary and the Lower Triassic in the Southern Alps: Evidence for Rapid Changes in Storage of Organic Carbon. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 252(1/2): 347-354.

[47]

Horacek M., Richoz S., Brandner R., . Evidence for Recurrent Changes in Lower Triassic Oceanic Circulation of the Tethys: The d13C Record from Marine Sections in Iran. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 252(1/2): 355-369.

[48]

Horacek M., Koike T., Richoz S. Lower Triassic d13C Isotope Curve from Shallow–Marine Carbonates in Japan, Panthalassa Realm: Confirmation of the Tethys d13C Curve. Journal of Asian Earth Sciences, 2009, 36(6): 481-490.

[49]

Horacek M., Povoden E., Richoz S., . High–Resolution Carbon Isotope Changes, Litho–and Magnetostratigraphy across Permian–Triassic Boundary Sections in the Dolomites, N–Italy. New Constraints for Global Correlation. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 290(1/2/3/4): 58-64.

[50]

Horacek M., Krystyn L., Brandner R. Significance of Platyvilosus Costatus and Foliella Gardenae as Indicators for the Dienerian–Smithian and Smithian–Spathian Boundaries, Respectively: A Study in the Dolomites (N–Italy). EGU General Assembly 2015, April 12–17, 2015, in Vienna, Austria. Geophysical Research Abstracts, 2015, 17: EGU2015-14921.

[51]

Irwin M. L. General Theory of Epeiric Clear Water Sedimentation. AAPG Bulletin, 1965, 49: 445-459.

[52]

Ivanovic A., Šcavnicar B., Sakac K., . Stratigrafski Položaj i Petrografske Karakteristike Evaporita i klastita Okolice Drniša i Vrlike u Dalmaciji (Stratigraphic Possition and Petrographical Characteristics of the Evaporite and Clastic Deposits in the Environs of Drniš and Vrlika (Dalmatia)). Geol. Vjesnik, 1971, 24: 11-33.

[53]

Ivanovic A., Sikirica V., Sakac K. Osnovna Geološka Karta 1: 100 000, Tumac za List Drniš K33–9 (Explanatory Notes to Geological Map–Drniš). Institut za Geološka Istraživanja Zagreb, 1978.

[54]

James N. P. Reefs. Facies Models. Geosci. Canad. Repr. Ser., 1984, 1: 229-244.

[55]

Jelaska V., Kolar–Jurkovšek T., Jurkovšek B., . Triassic Beds in the Basement of the Adriatic–Dinaric Carbonate Platform of the Svilaja Mt. (Croatia). Geologija, 2003, 46(2): 225-230.

[56]

Johnson H. D., Baldwin C. T. Reading H. G. Shallow Clastic Seas. Sedimentary Environments: Processes, Facies and Stratigraphy, 3rd Edition., 1996, Oxford: Blackwell Science Ltd., 232-281.

[57]

Kiessling W. Reef Expansion during the Triassic: Spread of Photosymbiosis Balancing Climatic Cooling. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 290(1/2/3/4): 11-19.

[58]

Kolar–Jurkovšek T., Jurkovšek B. First Record of Hindeodus–Isarcicella Population in Lower Triassic of Slovenia. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 252(1/2): 72-81.

[59]

Kolar–Jurkovšek T., Jurkovšek B., Aljinović D., . Stratigraphy of Upper Permian and Lower Triassic Strata of the Žiri Area (Slovenia). Geologija, 2011, 53(2): 193-204.

[60]

Kolar–Jurkovšek T., Jurkovšek B. Conodont Zonation of Lower Triassic Strata in Slovenia. Geologija, 2015, 58(2): 155-174.

[61]

Kolar–Jurkovšek T., Jurkovšek B. Conodont Zonation for the Lower Triassic of Western Tethys––A Case Study from Slovenia. The 5th International Geological Congress, 2016.

[62]

South Africa Kovács S., Sudar M., Karamata S., . Vozar J., Ebner F., Vozárova A., . Triassic Environments in the Circum–Pannonian Region Related to the Initial Neotethyan Rifting Stage. Variscan and Alpine Terranes of the Circum–Pannonian Region., 2010, 87-156.

[63]

Kreisa R. D. Storm–Generated Sedimentary Structures in Subtidal Marine Facies with Examples from the Middle and Upper Ordovician of Southwestern Virginia. SEPM Journal of Sedimentary Research, 1981, 51: 832-849.

[64]

Krainer K. The Alpine Buntsandstein Formation of the Drau Range (Eastern Alps, Austria): Transition from Fluvial to Shallow Marine Facies. The Nonmarine Triassic. New Mexico Museum of Natural History and Science Bull., 1993, 3: 267-275.

[65]

Krystyn L. Die Tirolites–Fauna (Ammonoidea) der Untertriassischen Werfen Schichten Europas und Iher Stratigraphische Bedeutung. Sitzberg. Oster. Akad. Wiss. Matem.–Naturw. Kl. Abt., 1974, 193(1/2/3): 29-50.

[66]

Krystyn L., Balini M., Nicora A. Lower and Middle Triassic Stage Boundaries in Spiti. Albertiana, 2004, 30: 39-53.

[67]

Krystyn L., Ðakovic M., Horacek M., . Pelagically Influenced Late Permian and Early Triassic Deposits in Montenegro: Remnant of Internal Dinarid Neotethys or Paleotethys Relict. Bericht des Institutes für Erdwissenschaften der Universität Graz, 2014, 20 1 114.

[68]

Krystyn L., Horacek M., Brandner R., . Carbon Isotopy as Major Chronostratigraphic Correlation Tool: The Early Triassic Case. Bericht des Institutes für Erdwissenschaften der Universität Graz, 2015, 21 212.

[69]

Lukasik J. J., James N. P., McGowran B., . An Epeiric Ramp: Low–Energy, Cool–Water Carbonate Facies in a Tertiary Inland Sea, Murray Basin, South Australia. Sedimentology, 2000, 47(4): 851-881.

[70]

Mostler H., Rossner R. Mikrofazies ünd Palökologie Der Höheren Werfener Schichten (Untertrias) der Nördlichen Kalkalpen. Facies, 1984, 10(1): 87-143.

[71]

Nestell G. P., Sudar M. N., Jovanovic D., . Latest Permian Foraminifers from the Vlašic Mountain Area, Northwestern Serbia. Micropaleontology, 2009, 55: 495-513.

[72]

Nestell G. P., Kolar–Jurkovšek T., Jurkovšek B., . Foraminifera from the Permian–Triassic Transition in Western Slovenia. Micropaleontology, 2011, 57: 197-222.

[73]

Payne J. L., Lehrmann D. J., Wei J. Y., . Large Perturbations of the Carbon Cycle during Recovery from the End–Permian Extinction. Science, 2004, 305(5683): 506-509.

[74]

Payne J. L., Lehrmann D. J., Wei J., . The Pattern and Timing of Biotic Recovery from the End–Permian Extinction on the Great Bank of Guizhou, Guizhou Province, China. Palaios, 2006, 21(1): 63-85.

[75]

Perri M. C. Conodont Biostratigraphy of the Werfen Formation (Lower Triassic), Southern Alps, Italy. Boll. Soc. Paleont. Ital., 1991, 30(1): 23-46.

[76]

Perri M. C., Andraghetti M. Permian–Triassic Boundary and Early Triassic Conodonts from the Southern Alps, Italy. Riv. It. Paleont. Strat., 1987, 93: 291-328.

[77]

Perri M. C., Farabegoli E. Conodonts across the Permian–Triassic Boundary in the Southern Alps. Courier Forschungsinstitut Senckenberg, 2003, 245: 281-313.

[78]

Posenato R. Patterns of Bivalve Biodiversity from Early to Middle Triassic in the Southern Alps (Italy): Regional vs. Global Events. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 261(1/2): 145-159.

[79]

Pratt B. R., James N. P. The St George Group (Lower Ordovician) of Western Newfoundland: Tidal Flat Island Model for Carbonate Sedimentation in Shallow Epeiric Seas. Sedimentology, 1986, 33(3): 313-343.

[80]

Read J. F. Phanerozoic Carbonate Ramps from Greenhouse, Transitional and Ice–House Worlds: Clues from Field and Modelling Studies. Geological Society, London, Special Publications, 1998, 149(1): 107-135.

[81]

Read J. F., Husinec A., Cangialosi M., . Climate Controlled, Fabric Destructive, Reflux Dolomitization and Stabilization Via Marine–and Synorogenic Mixed Fluids: An Example from a Large Mesozoic, Calcite–Sea Platform, Croatia. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 449: 108-126.

[82]

Reineck H. E., Singh I. B. Genesis of Laminated Sand and Graded Rhythmites in Storm–Sand Layers of Shelf Mud. Sedimentology, 1972, 18(1/2): 123-128.

[83]

Retallack G. J. Permian–Triassic Life Crisis on Land. Science, 1995, 267(5194): 77-80.

[84]

Retallack G. J. Earliest Triassic Claystone Breccias and Soil–Erosion Crisis. Journal of Sedimentary Research, 2005, 75(4): 679-695.

[85]

Richoz S. Stratigraphie et Variations Isotopiques du Carbone Dans le Permien Supérieur et le Trias Inferieur de Quelques Localités de la Néotéthys (Turquie, Oman et Iran). Mémoire de Géologie de Lausanne, 2006, 46 275.

[86]

Von Richthofen F. Geognostische Beschreibung der Umgegend von Pedrazzo, St. Cassian und der Seiser Alpe in Südtirol, Gotha., 1860, 372.

[87]

Romano C., Goudemand N., Vennemann T. W., . Climatic and Biotic Upheavals Following the End–Permian Mass Extinction. Nature Geoscience, 2013, 6(1): 57-60.

[88]

Rüffer T., Zühlke R. Haq B. U. Sequence Stratigraphy and Sea–Level Changes in the Early to Middle Triassic of the Alps: A Global Comparison. Sequence Stratigraphy and Depositional Response to Eustatic, 1995, 161-207

[89]

Scotese C. R. Atlas of Earth History. Palaeogeography, 2001.

[90]

Song H. J., Tong J. N., Xiong Y. L., . The Large Increase of d13C Carb–Depth Gradient and the End–Permian Mass Extinction. Science China Earth Sciences, 2012, 55(7): 1101-1109.

[91]

Stampfli G. M., Borel G. A Plate Tectonic Model for the Paleozoic and Mesozoic Constrained by Dynamic Plate Boundaries and Restored Synthetic Oceanic Isochrons. Earth and Planetary Science Letters, 2002, 196(1/2): 17-33.

[92]

Stampfli G. M., Hochard C., Vérard C., . The Formation of Pangea. Tectonophysics, 2013, 593: 1-19.

[93]

Sudar M., Jovanovic D., Kolar–Jurkovšek T. Late Permian Conodonts from Jadar Block (Vardar Zone, Northwestern Serbia). Geologica Carpathica, 2007, 58: 145-152.

[94]

Sudar M. N., Chen Y. L., Kolar–Jurkovšek T., . Lower Triassic (Olenekian) Microfauna from Jadar Block (Gucevo Mt., Nw Serbia). Annales Geologiques de la Peninsule Balkanique, 2014, 75: 1-15.

[95]

Sun Y. D., Joachimski M. M., Wignall P. B., . Lethally Hot Temperatures during the Early Triassic Greenhouse. Science, 2012, 338: 366-370.

[96]

Sun Y. D., Wignall P. B., Joachimski M. M., . High Amplitude Redox Changes in the Late Early Triassic of South China and the Smithian–Spathian Extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 427: 62-78.

[97]

Šcavnicar B. Casts of Salt Crystals in Clastic Rocks in the Environs of Vrlika and Knin (Dalmatia). Geol. Vjesnik, 1973, 26: 155-157.

[98]

Šcavnicar B., Šušnjara A. The Geologic Column of the Lower Triassic at Muc (Southern Croatia). Acta Geologica, 1983, 13: 1-25.

[99]

Tišljar J. Origin and Depositional Environments of the Cvaporite and Carbonate Complex (Upper Permian) from the Central Part of the Dinarides (Southern Croatia and Western Bosnia). Geol. Croatica, 1992, 45: 115-127.

[100]

Tollmann A. Analyse des Klassischen Nordalpinen Mesozoikums. Monographie der Nördlichen Kalkalpen. Teil 2. Deuticke, 1976.

[101]

Tucker M. E., Wright V. P. Carbonate Sedimentology., 1990, Oxford: Blackwell Science Lit., 482

[102]

Twitchett R. J. The Palaeoclimatology, Palaeoecology and Palaeoenvironmental Analysis of Mass Extinction Events. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 232(2/3/4): 190-213.

[103]

Vlahovic I., Tišljar J., Velic I., . Evolution of the Adriatic Carbonate Platform: Palaeogeography, Main Events and Depositional Dynamics. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 220(3/4): 333-360.

[104]

Whiteker J. H. Mc.D. “Gutter Cast”, a New Name for Scour–and–Fill Structures: With Examples from the Llandoverian of Ringerike and Malmoya, Southern Norway. Norsk Geologisk Tidsskrifl, 1973, 53: 403-417.

[105]

Wissman H. L., Munster G. V. Beitrage zur Geognosie und Petrefacten–Kundes des Sudestlich Tirol’s Vorzuglich der Schichten von St Cassian. Beiträge zur Petrefactenkunde, 1841, 4: 1-152.

[106]

Wright V. P., Faulkner T. J. Sediment Dynamics of Early Carboniferous Ramps: A Proposal. Geological Journal, 2010, 25(2): 139-144.

AI Summary AI Mindmap
PDF

136

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/