Sphalerite Rb-Sr Dating and in situ Sulfur Isotope Analysis of the Daliangzi Lead-Zinc Deposit in Sichuan Province, SW China

Wenhao Liu , Xiaojun Zhang , Jun Zhang , Manrong Jiang

Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (3) : 573 -586.

PDF
Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (3) : 573 -586. DOI: 10.1007/s12583-018-0785-5
Mineral Deposits

Sphalerite Rb-Sr Dating and in situ Sulfur Isotope Analysis of the Daliangzi Lead-Zinc Deposit in Sichuan Province, SW China

Author information +
History +
PDF

Abstract

This study reports the sphalerite Rb-Sr age and LA-MC-ICP-MS in situ sulfur isotope analysis results of the Daliangzi Lead-Zinc Deposit in the Sichuan-Yunnan-Guizhou (SYG) triangle. Sphalerite Rb-Sr dating yields a Mississippian age of 345.2±3.6 Ma (MSWD=1.4), which is older than the published Late Triassic mineralization ages (230‒200 Ma) of some other deposits. This indicates that at least two stages of lead-zinc mineralization have occurred in the SYG lead-zinc triangle. The first stage occurred in the Mississippian under an extensional environment, while the second stage occurred in the Late Triassic under a compressional environment. In situ sulfur isotope analysis of sphalerite growth zoning presents relatively large δ34S values of 11.3‰‒15.2‰ with small variations. The large δ34S values indicate a reduced sulfur source of thermochemical reduction of seawater sulfates. Abundant organic matter in the black fracture zone possibly supplied reductants for thermochemical sulfate reduction (TSR) at the mineralization site. The small variation of δ34S values suggests a slow and stable TSR process that could prevent the sudden supersaturation of sphalerite in the fluid and the resulting of fast participation. This is consistent with the well-crystallized characteristic of the sphalerite of the Daliangzi Deposit.

Keywords

sphalerite Rb-Sr / in situ sulfur isotope / thermochemical reduction / Daliangzi / Mississippi Valley-type

Cite this article

Download citation ▾
Wenhao Liu, Xiaojun Zhang, Jun Zhang, Manrong Jiang. Sphalerite Rb-Sr Dating and in situ Sulfur Isotope Analysis of the Daliangzi Lead-Zinc Deposit in Sichuan Province, SW China. Journal of Earth Science, 2018, 29(3): 573-586 DOI:10.1007/s12583-018-0785-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anderson G. M. Precipitation of Mississippi Valley-Type Ores. Economic Geology, 1975, 70(5): 937-942.

[2]

Anderson G. M., Macqueen R. W. Ore Deposit Models-6. Mississippi Valley-Type Lead-Zinc Deposits. Geoscience Canada, 1982, 9: 108-117.

[3]

Bendall C., Lahaye Y., Fiebig J., . In Situ Sulfur Isotope Analysis by Laser Ablation MC-ICPMS. Applied Geochemistry, 2006, 21(5): 782-787.

[4]

Brannon J. C., Podosek F. A., McLimans R. K. Alleghenian Age of the Upper Mississippi Valley Zinc-Lead Deposit Determined by Rb-Sr Dating of Sphalerite. Nature, 1992, 356(6369): 509-511.

[5]

Cheng P. L., Xiong W., Zhou G., . A Preliminary Study on the Origins of Ore-Forming Fluids and Their Migration Directions for Pb-Zn Deposits in NW Guizhou Province, China. Acta Mineralogica Sinica, 2015, 35(4): 509-514.

[6]

Cheng Y. Q. Concise Regional Geology of China. Geological Publishing House, Beijing, 1994, 313-384.

[7]

Christensen J. N., Halliday A. N., Leigh K. E., . Direct Dating of Sulfides by Rb-Sr: A Critical Test Using the Polaris Mississippi Valley-Type Zn-Pb Deposit. Geochimica et Cosmochimica Acta, 1995, 59(24): 5191-5197.

[8]

Cong B. L. Formation and Evolution of Panxi Paleo-Rift, 1988.

[9]

Dai H. G. On the Strata, Structure and Prospecting Target Area of Kunyang Group and Huili Group in Kangdian Region. Yunnan Geology, 1997, 16(1): 1-39.

[10]

Faure G. Principles of Isotope Geology, 1977, 28-110.

[11]

Garven G., Freeze R. A. Theoretical Analysis of the Role of Groundwater Flow in the Genesis of Stratabound Ore Deposits; 1, Mathematical and Numerical Model. American Journal of Science, 1984, 284(10): 1085-1124.

[12]

Garven G., Freeze R. A. Theoretical Analysis of the Role of Groundwater Flow in the Genesis of Stratabound Ore Deposits; 2, Quantitative Results. American Journal of Science, 1984, 284(10): 1125-1174.

[13]

Han R. S., Hu Y. Z., Wang X. K., . Mineralization Model of Rich Ge-Ag-Bearing Zn-Pb Polymetallic Deposit Concentrated District in Northeastern Yunnan, China. Acta Geologica Sinica, 2012, 86(2): 280-294.

[14]

Han R.S., Zhou H. J., Hu B., . Features of Fluid Inclusions and Sources of Ore-Forming Fluid in the Maoping Carbonate-Hosted Zn-Pb-(Ag-Ge) Deposit, Yunnan, China. Acta Petrologica Sinica, 2007, 23(9): 2109-2118.

[15]

Han R. S., Liu C. Q., Huang Z. L., . Geological Features and Origin of the Huize Carbonate-Hosted Zn-Pb-(Ag) District, Yunnan, South China. Ore Geology Reviews, 2007, 31(1/2/3/4): 360-383.

[16]

Han R. S., Liu C. Q., Huang Z. L., . Genesis Modeling of Huize Lead-Zinc Ore Deposit in Yunnan. Acta Mineralogica Sinica, 2001, 21(4): 674-680.

[17]

Hu R. Z., Fu S. L., Xiao J. F. Major Scientific Problems on Low-Temperature Metallogenesis in South China. Acta Petrologica Sinica, 2016, 32(11): 3239-3251.

[18]

Huang Z. L., Chen J., Han R. S., . Geochemistry and Ore-Formation of the Huize Giant Lead-Zinc Deposit, Yunnan, Province, China. Discussion on the Relationship between Emeishan Flood Basalts and Lead-Zinc Mineralization, 2004, 1-204.

[19]

Huang Z. L., Chen J., Liu C. Q., . A Preliminary Discussion on the Genetic Relationship between Emeishan Basalts and Pb-Zn Deposits as Exemplified by the Huize Pb-Zn Deposit, Yunnan Province. Acta Mineralogica Sinica, 2001, 21(4): 681-688.

[20]

Jin Z. G. Research on the Ore-Controlling Factors, Metallogenic Regularity and Prediction of Lead-Zinc Ore District in Northwest Guizhou: [Dissertation], 2006, 10-100.

[21]

Jørgensen B. B., Isaksen M. F., Jannasch H. W. Bacterial Sulfate Reduction above 100 C in Deep-Sea Hydrothermal Vent Sediments. Science, 1992, 258(5089): 1756-1757.

[22]

Leach D. L., Bradley D., Lewchuk M. T., . Mississippi Valley-Type Lead-Zinc Deposits through Geological Time: Implications from Recent Age-Dating Research. Mineralium Deposita, 2001, 36(8): 711-740.

[23]

Leach D. L., Sangster D. F., Kelley K. D., . Sediment-Hosted Lead-Zinc Deposits: A Global Perspective. Economic Geology, 2005, 100: 561-608.

[24]

Lei Y. L., Li B. L., Chen Z. X., . Tectonic Evolution on the Western Border Area of Upper Yangtze Plate, 2010, 40-71.

[25]

Li F. H., Qin J. M. Presinian System in Kangdian Area, 1988, 15-45.

[26]

Li W. B., Huang Z. L., Xu D. R., . Rb-Sr Isotopic Method on Zinc-Lead Ore Deposits: A Review. Geotectonica et Metallogenia, 2002, 26: 436-441.

[27]

Li W. B., Huang Z. L., Yin M. D. Dating of the Giant Huize Zn-Pb Ore Field of Yunnan Province, Southwest China: Constraints from the Sm-Nd System in Hydrothermal Calcite. Resource Geology, 2007, 57(1): 90-97.

[28]

Li Y. Y. Study on Occurrence State and Enrichment Mechanism of Dispersed Elements in MVT Deposits‒‒A Case Study for the Tianbaoshan and Daliangzi Pb-Zn Deposits in Sichuan Province: [Dissertation], 2003, 35-38.

[29]

Lin F. C. Some Opinions on the Genesis of the Daliangzi Lead-Zinc Deposit, Huidong County, Sichuan Province. Mineral Deposits, 1994, 13(2): 126-136.

[30]

Lin Z. Y., Wang D. H., Zhang C. Q. Rb-Sr Isotopic Age of Sphalerite from the Paoma Lead-Zinc Deposit in Sichuan Province and Its Implications. Geology in China, 2010, 37(2): 488-494.

[31]

Liu H. C. Structural Control of Mineralization in Yunnan-Sichuan-Guizhou Lead-Zinc Metallogenic Province. Yunnan Geology, 1995, 14(3): 173-189.

[32]

Liu H. C., Lin W. D. Study on the Law of Pb-Zn-Ag Ore Deposits in Northeast Yunnan, China, 1999, 1-468.

[33]

Liu W. H., Zhang J., Wang J. Sulfur Isotope Analysis of Carbonate-Hosted Zn-Pb Deposits in Northwestern Guizhou Province, Southwest China: Implications for the Source of Reduced Sulfur. Journal of Geochemical Exploration, 2017, 181: 31-44.

[34]

Liu Y. Y., Qi L., Gao J. F., . Re-Os Dating of Galena and Sphalerite from Lead-Zinc Sulfide Deposits in Yunnan Province, SW China. Journal of Earth Science, 2015, 26(3): 343-351.

[35]

Ludwig K. R. User’s Manual for Isoplot 3.70. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication, 2008, 4: 1-74.

[36]

Luo Z. L., Jin Y. Z., Zhu K. Y., . Discussion on Emei Taphrogenesis of the Upper Yangtze Platform. Geological Review, 1988, 34(1): 11-24.

[37]

Machel H. G., Krouse H. R., Sassen R. Products and Distinguishing Criteria of Bacterial and Thermochemical Sulfate Reduction. Applied Geochemistry, 1995, 10(4): 373-389.

[38]

Nakai S., Halliday A. N., Kesler S. E., . Rb-Sr Dating of Sphalerites from Tennessee and the Genesis of Mississippi Valley Type Ore Deposits. Nature, 1990, 346(6282): 354-357.

[39]

Ohmoto, H., Goldhaber, M. B., 1997. Sulfur and Carbon Isotopes. In: Barnes H. L., ed., Geochemistry of Hydrothermal Ore Deposits, 3rd Ed. J. Wiley and Sons, New York. 517‒611

[40]

Ohmoto, H., Rye, R. O., 1979. Isotopes of Sulfur and Carbon. In: Barnes, H. L., ed., Geochemistry of Hydrothermal Ore Deposits, 2nd Ed. J. Wiley and Sons, New York. 509–567

[41]

Oliver J. Fluids Expelled Tectonically from Orogenic Belts: Their Role in Hydrocarbon Migration and Other Geologic Phenomena. Geology, 1986, 14 2 99

[42]

Ostendorf J., Henjes-Kunst F., Mondillo N., . Formation of Mississippi Valley-Type Deposits Linked to Hydrocarbon Generation in Extensional Tectonic Settings: Evidence from the Jabali Zn-Pb-(Ag) Deposit (Yemen). Geology, 2015, 43(12): 1055-1058.

[43]

Peevler J., Fayek M., Misra K. C., . Sulfur Isotope Microanalysis of Sphalerite by SIMS: Constraints on the Genesis of Mississippi Valley-Type Mineralization, from the Mascot-Jefferson City District, East Tennessee. Journal of Geochemical Exploration, 2003, 80(2/3): 277-296.

[44]

Pfaff K., Koenig A., Wenzel T., . Trace and Minor Element Variations and Sulfur Isotopes in Crystalline and Colloform ZnS: Incorporation Mechanisms and Implications for their Genesis. Chemical Geology, 2011, 286(3/4): 118-134.

[45]

Seal R. R. Sulfur Isotope Geochemistry of Sulfide Minerals. Reviews in Mineralogy and Geochemistry, 2006, 61(1): 633-677.

[46]

Sui Z. L., Huang C. X., Li D. W. Study on the Fault-Karst Breccia of Gongcheng-Limu Fault Zone: A New Kind of Fault Rocks. Geological Science and Technology Information, 2003, 22(1): 24-28.

[47]

Thom J., Anderson G. M. The Role of Thermochemical Sulfate Reduction in the Origin of Mississippi Valley-Type Deposits. I. Experimental Results. Geofluids, 2008, 8: 16-26.

[48]

Wang J. Z., Li C. Y., Li Z. Q., . The Geological Setting, Characters and Origin of Mississippi Valley-Type Pb-Zn Deposits in Sichuan and Yunnan Provinces. Geology-Geochemistry, 2001, 29(2): 41-45.

[49]

Wang X. C. Metallogenic Mechanism of the Strata bound Pb-Zn Deposits in the Upper Sinian Dengying Formation in the Eastern Kangdian Axis‒‒A Case Study of the Tianbaoshan and Daliangzi Deposits: [Dissertation], 1988.

[50]

Wang Z. J. Discussion on the Sedimentary Origin in Plaeokarst Cave of the Daliangzi and Tianbaoshan Pb-Zn Deposits. Acta Geologica Sichuan, 1980, 1: 117-125.

[51]

Wu Y. The Age and Ore-Forming Process of MVT Deposits in the Boundary Area of Sichuan-Yunnan-Guizhou Provinces, Southwest China: [Dissertation], 2013, 12-151.

[52]

Wu Y., Zhang C. Q., Mao J. W., . The Genetic Relationship between Hydrocarbon Systems and Mississippi Valley-Type Zn-Pb Deposits along the SW Margin of Sichuan Basin, China. International Geology Review, 2013, 55(8): 941-957.

[53]

Xiong W., Cheng P. L., Zhou G., . The Origin of Ore-Forming Metals in Northwestern Guizhou Pb-Zn Metallogenic District Con strained by Pb Isotopes. Acta Mineralogica Sinica, 2015, 35(4): 425-429.

[54]

Xiong S. F., Yao S. Z., Gong Y. J., . Ore-Forming Fluid and Thermochemical Sulfate Reduction in the Wusihe Lead-Zinc Deposit, Sichuan Province, China. Earth Science, 2016, 41(1): 105-120.

[55]

Xu Y. K., Huang Z. L., Zhu D., . Origin of Hydrothermal Deposits Related to the Emeishan Magmatism. Ore Geology Reviews, 2014, 63: 1-8.

[56]

Yang H. M., Liu C. P., Duan R. C., . Rb-Sr and Sm-Nd Isochron Ages of Bokouchang Pb-Zn Deposit in Tongren, Guizhou Province and Their Geological Implication. Geotectonica et Metallogenia, 2015, 39(5): 855-865.

[57]

Yin M. D., Li W. B., Sun X. W. Rb-Sr Isotopic Dating of Sphalerite from the Giant Huize Zn-Pb Ore Field, Yunnan Province, Southwestern China. Chinese Journal of Geochemistry, 2009, 28(1): 70-75.

[58]

Yuan B., Mao J. W., Yan X. H., . Sources of Metallogenic Materials and Metallogenic Mechanism of Daliangzi Ore Field in Sichuan Province: Constraints from Geochemistry of S, C, H, O, Sr Isotope and Trace Element in Sphalerite. Acta Petrologica Sinica, 2014, 30(1): 209-220.

[59]

Zhang C. Q. The Genetic Model of Mississippi Valley-Type Deposits in the Boundary Area of Sichuan, Yunnan and Guizhou Province, China: [Dissertation], 2008, 1-177.

[60]

Zhang C. Q., Wu Y., Hou L., . Geodynamic Setting of Mineralization of Mississippi Valley-Type Deposits in World-Class Sichuan-Yunnan-Guizhou Zn-Pb Triangle, Southwest China: Implications from Age-Dating Studies in the Past Decade and the Sm-Nd Age of Jinshachang Deposit. Journal of Asian Earth Sciences, 2015, 103: 103-114.

[61]

Zhang C. Q., Li X. H., Yu J. J., . Rb-Sr Dating of Single Sphalerite from the Daliangzi Pb-Zn Deposit, Sichuan, and Its Geological Significances. Geological Review, 2008, 54(4): 532-538.

[62]

Zhang T. G., Chu X. L., Zhang Q. R., . The Sulfur and Carbon isoTopic Records in Carbonates of the Dengying Formation in the Yangtze Platform, China. Acta Petrologica Sinica, 2004, 20(3): 717-724.

[63]

Zhang Y. X., Wu Y., Tian G., . Mineralization Age and the Source of Ore-Forming Material at Lehong Pb-Zn Deposit, Yunan Province: Constraints from Rb-Sr and S Isotopes System. Acta Mineralogica Sinica, 2014, 34(3): 305-311.

[64]

Zhang Z. B., Li C. Y., Tu G. C., . Geotectonic Evolution Background and Ore-Forming Process of Pb-Zn Deposits in Chuan-Dian-Qian Area of Southwest China. Geotectonica et Metallogenia, 2006, 30(3): 343-354.

[65]

Zhang Z. C. 87Sr/86Sr Data for Some Middle–Late Proterozoic to Early Cambrian Carbonate Rocks in China. Geological Review, 1995, 41(4): 349-354.

[66]

Zhang Z. L., Huang Z. L., Rao B., . Concentration Mechanism of Ore-Forming Fluid in Huize Lead-Zinc Deposits, Yunan Province. Earth Science––Journal of China University of Geosciences, 2005, 30(4): 443-450.

[67]

Zhang Z. L., Huang Z. L., Rao B., . Study of the Ore Forming Fluid Characteristics of Huize Pb-Zn Ore Deposits. Contributions to Geology and Mineral Resources Research, 2005, 20(2): 115-112.

[68]

Zheng M. H., Wang X. C. Ore Genesis of the Daliangzi Pb-Zn Deposit in Sichuan, China. Economic Geology, 1991, 86(4): 831-846.

[69]

Zhou C. X., Wei C. S., Guo J. Y., . The Source of Metals in the Qilinchang Zn-Pb Deposit, Northeastern Yunnan, China: Pb-Sr Isotope Constraints. Economic Geology, 2001, 96(3): 583-598.

[70]

Zhou J. X., Bai J. H., Huang Z. L., . Geology, Isotope Geochemistry and Geochronology of the Jinshachang Carbonate-Hosted Pb-Zn Deposit, Southwest China. Journal of Asian Earth Sciences, 2015, 98: 272-284.

[71]

Zhou J. X., Gao J. G., Chen D., . Ore Genesis of the Tianbaoshan Carbonate-Hosted Pb-Zn Deposit, Southwest China: Geologic and Isotopic (C-H-O-S-Pb) Evidence. International Geology Review, 2013, 55(10): 1300-1310.

[72]

Zhou J. X., Huang Z. L., Yan Z. F. The Origin of the Maozu Carbonate-Hosted Pb-Zn Deposit, Southwest China: Constrained by C-O-S-Pb Isotopic Compositions and Sm-Nd Isotopic Age. Journal of Asian Earth Sciences, 2013, 73: 39-47.

[73]

Zhou J. X., Huang Z. L., Zhou M. F., . Constraints of C-O-S-Pb Isotope Compositions and Rb-Sr Isotopic Age on the Origin of the Tianqiao Carbonate-Hosted Pb-Zn Deposit, SW China. Ore Geology Reviews, 2013, 53: 77-92.

[74]

Zhou J. X., Huang Z. L., Bao G. P. Geological and Sulfur-Lead-Strontium Isotopic Studies of the Shaojiwan Pb-Zn Deposit, Southwest China: Implications for the Origin of Hydrothermal Fluids. Journal of Geochemical Exploration, 2013, 128: 51-61.

[75]

Zhou J. X., Huang Z. L., Gao J. G., . Geological and C-O-S-Pb-Sr Isotopic Constraints on the Origin of the Qingshan Carbonate-Hosted Pb–Zn Deposit, Southwest China. International Geology Review, 2013, 55(7): 904-916.

[76]

Zhou J. X., Huang Z. L., Bao G. P., . Sources and Thermo-Chemical Sulfate Reduction for Reduced Sulfur in the Hydrothermal Fluids, Southeastern SYG Pb-Zn Metallogenic Province, SW China. Journal of Earth Science, 2013, 24(5): 759-771.

[77]

Zhou J. X., Huang Z. L., Lv Z. C., . Geology, Isotope Geochemistry and Ore Genesis of the Shanshulin Carbonate-Hosted Pb-Zn Deposit, Southwest China. Ore Geology Reviews, 2014, 63: 209-225.

AI Summary AI Mindmap
PDF

167

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/