Physicochemical Control of the Early Permian Xiangshan Fe-Ti Oxide Deposit in Eastern Tianshan (Xinjiang), NW China

Yu Shi , Yuwang Wang , Jingbin Wang , Lutong Zhao , Hongjing Xie , Lingli Long , Tao Zou , Dedong Li , Guochao Zhou

Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (3) : 520 -536.

PDF
Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (3) : 520 -536. DOI: 10.1007/s12583-017-0969-4
Mineral Deposits

Physicochemical Control of the Early Permian Xiangshan Fe-Ti Oxide Deposit in Eastern Tianshan (Xinjiang), NW China

Author information +
History +
PDF

Abstract

The Xiangshan mafic-ultramafic complex is one of the major Early Permian mafic-ultramafic intrusions in eastern Tianshan (Xinjiang, NW China), and consists of two major intrusive phases. The first intrusive phase is mainly gabbroic rocks hosting ilmenite mineralization, while the second intrusive phase is mainly lherzoilite associated with Ni-Cu sulfide mineralization. The Xiangshan ilmenite orebodies hosted in the Fe-Ti oxide-bearing gabbro occur along the contact between hornblende gabbros and leucogabbros. The hornblende gabbros and Fe-Ti oxide rich gabbros at Xiangshan are newly dated to be Early Permian (280.1 and 279.2 Ma, respectively). Major and trace element compositions of zircons and whole rocks from Xiangshan hornblende gabbro and Fe-Ti oxide gabbro have been measured by in situ excimer laser ablation ICP-MS. Zircon Ce4+/Ce3+ ratios based on lattice-strain model and Ti-in-zircon temperatures of hornblende gabbro and Fe-Ti oxide gabbro of the Xiangshan complex are calculated to evaluate the physicochemical variations during the ilmenite mineralization. Whole-rock geochemistry and zircon trace element geochemistry suggest that Fe-Ti oxide gabbros were formed from a basaltic parent magma which had undergone a transfromation from being H2O-rich to H2O-poor. During the magmatic evolution, primitive, H2O-poor basaltic melts may have been replenished into the system, increasing its solidus temperature and decreasing its oxygen fugacity and H2O contents. This may have supperessed the Ti-rich poikilitic hornblende fractionation and promoted the plagioclase fractionation, which consequently concentrated the ore-forming components in the residual melts and generated the ilmenite mineralization.

Keywords

eastern Tianshan / magmatic Fe-Ti oxide deposits / gabbros / layered intrusion / zircon U-Pb age / geochemistry

Cite this article

Download citation ▾
Yu Shi, Yuwang Wang, Jingbin Wang, Lutong Zhao, Hongjing Xie, Lingli Long, Tao Zou, Dedong Li, Guochao Zhou. Physicochemical Control of the Early Permian Xiangshan Fe-Ti Oxide Deposit in Eastern Tianshan (Xinjiang), NW China. Journal of Earth Science, 2018, 29(3): 520-536 DOI:10.1007/s12583-017-0969-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Andersen T. Correction of Common Lead in U-Pb Analyses That do not Report 204Pb. Chemical Geology, 2002, 192(1/2): 59-79.

[2]

Aranovich L. Y., Zinger T. F., Bortnikov N. S., . Zircon in Gabbroids from the Axial Zone of the Mid-Atlantic Ridge, Markov Deep, 6°N: Correlation of Geochemical Features with Petrogenetic Processes. Petrology, 2013, 21(1): 1-15.

[3]

Ballard J. R., Palin M. J., Campbell I. H. Relative Oxidation States of Magmas Inferred from Ce(IV)/Ce(III) in Zircon: Application to Porphyry Copper Deposits of Northern Chile. Contributions to Mineralogy and Petrology, 2002, 144(3): 347-364.

[4]

Blundy J., Wood B. Prediction of Crystal-Melt Partition Coefficients from Elastic Moduli. Nature, 1994, 372(6505): 452-454.

[5]

Botcharnikov R. E., Almeev R. R., Koepke J., . Phase Relations and Liquid Lines of Descent in Hydrous Ferrobasalt: Implications for the Skaergaard Intrusion and Columbia River Flood Basalts. Journal of Petrology, 2008, 49(9): 1687-1727.

[6]

Chai F. M., Zhang Z. C., Mao J. W., . Geology, Petrology and Geochemistry of the Baishiquan Ni-Cu-Bearing Mafic-Ultramafic Intrusions in Xinjiang, NW China: Implications for Tectonics and Genesis of Ores. Journal of Asian Earth Sciences, 2008, 32(2–4): 218-235.

[7]

Chen J. P., Liao Q. A., Zhang H. X., . Contrast of Huangshandong and Xiangshan Mafic-Ultramafic Complex, East Tianshan. Earth Science—Journal of China University of Geosciences, 2013, 38(6): 1183-1196.

[8]

Dai M. N., Bao Z. A., Chen K. Y., . Simultaneous Measurement of Major, Trace Elements and Pb Isotopes in Silicate Glasses by Laser Ablation Quadrupole and Multi-Collector Inductively Coupled Plasma Mass Spectrometry. Journal of Earth Science, 2017, 28(1): 92-102.

[9]

Deng Y. F., Song X. Y., Chen L. M., . Geochemistry of the Huangshandong Ni-Cu Deposit in Northwestern China: Implications for the Formation of Magmatic Sulfide Mineralization in Orogenic Belts. Ore Geology Reviews, 2014, 56(1): 181-198.

[10]

Feig S. T., Koepke J., Snow J. E. Effect of Water on Tholeiitic Basalt Phase Equilibria: An Experimental Study under Oxidizing Conditions. Contributions to Mineralogy and Petrology, 2006, 152(5): 611-638.

[11]

Feig S. T., Koepke J., Snow J. E. Effect of Oxygen Fugacity and Water on Phase Equilibria of a Hydrous Tholeiitic Basalt. Contributions to Mineralogy and Petrology, 2010, 160(4): 551-568.

[12]

Foden J. D., Green D. H. Possible Role of Amphibole in the Origin of Andesite: Some Experimental and Natural Evidence. Contributions to Mineralogy and Petrology, 1992, 109(4): 479-493.

[13]

Fu B., Page F. Z., Cavosie A. J., . Ti-in-Zircon Thermometry: Applications and Limitations. Contributions to Mineralogy and Petrology, 2008, 156(2): 197-215.

[14]

Gaetani G. A., Grove T. L., Bryan W. B. The Influence of Water on the Petrogenesis of Subduction-Related Igneous Rocks. Nature, 1993, 365(6444): 332-334.

[15]

Gao X. Y., Zheng Y. F. On the Zr-in-Rutile and Ti-in-Zircon Geothermometers. Acta Petrologica Sinica, 2011, 27(2): 417-432.

[16]

Gu L. X., Zhu J. L., Guo J. C., . The East Xinjiang-Type Mafic-Ultramafic Complexes in Orogenic Environments. Acta Petrologica Sinica, 1994, 10(4): 339-356.

[17]

Han B. F., Ji J. Q., Song B., . SHRIMP Zircon U-Pb Ages of Kalatongke No. 1 and Huangshandong Cu-Ni-Bearing Mafic-Ultramafic Complexes, North Xinjiang, and Geological Implications. Chinese Science Bulletin, 2004, 49(22): 2424-2429.

[18]

Han C. M., Xiao W. J., Zhao G. C., . In-situ U-Pb, Hf and Re-Os Isotopic Analyses of the Xiangshan Ni-Cu-Co Deposit in Eastern Tianshan (Xinjiang), Central Asia Orogenic Belt: Constraints on the Timing and Genesis of the Mineralization. Lithos, 2010, 120(3/4): 547-562.

[19]

Hilyard M., Nielsen R. L., Beard J. S., . Experimental Determination of the Partitioning Behavior of Rare Earth and High Field Strength Elements between Pargasitic Amphibole and Natural Silicate Melts. Geochimica et Cosmochimica Acta, 2000, 64(6): 1103-1120.

[20]

Hoskin P. W. O. Trace-Element Composition of Hydrothermal Zircon and the Alteration of Hadean Zircon from the Jack Hills, Australia. Geochimica et Cosmochimica Acta, 2005, 69(3): 637-648.

[21]

Jahn B. M., Windley B., Natalʼin B., . Phanerozoic Continental Growth in Central Asia. Journal of Asian Earth Sciences, 2004, 23(5): 599-603.

[22]

Jahn B. M., Wu F. Y., Chen B. Massive Granitoid Generation in Central Asia: Nd Isotope Evidence and Implication for Continental Growth in the Phanerozoic. Episodes, 2000, 23(2): 82-92.

[23]

Li D. D., Wang Y. W., Long L. L., . Chronology and Geochemistry of the Transitional Mineralized Mafic-Ultramafic Rock Bodies in the Eastern Tianshan Mountains. Geological Review, 2012, 58(6): 1145-1160.

[24]

Li Y. C., Zhao G. C., Qu W. J., . Re-Os Isotopic Dating of the Xiangshan Deposit, East Tianshan, NW China. Acta Petrologica Sinica, 2006, 22(1): 245-251.

[25]

Liu Y. S., Gao S., Hu Z. C., . Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons of Mantle Xenoliths. Journal of Petrology, 2010, 51(51): 537-571.

[26]

Mao J. W., Pirajno F., Zhang Z. H., . A Review of the Cu-Ni Sulphide Deposits in the Chinese Tianshan and Altay Orogens (Xinjiang Autonomous Region, NW China): Principal Characteristics and Ore-Forming Processes. Journal of Asian Earth Sciences, 2008, 32(2–4): 184-203.

[27]

Mao J. W., Yang J. M., Qu W. J., . Re-Os Age of Cu-Ni Ores from the Huangshandong Cu-Ni Sulfide Deposit in the East Tianshan Mountains and Its Implication for Geodynamic Processes. Acta Geologica Sinica (English Edition), 2003, 77(2): 220-226.

[28]

Mao Q. G., Xiao W. J., Han C. M., . Zircon U-Pb Age and the Geochemistry of the Baishiquan Mafic-Ultramafic Complex in the Eastern Tianshan, Xinjiang Province: Constraints on the Closure of the Paleo-Asian Ocean. Acta Petrologica Sinica, 2006, 22(1): 153-162.

[29]

Müntener O., Kelemen P. B., Grove T. L. The Role of H2O during Crystallization of Primitive Arc Magmas under Uppermost Mantle Conditions and Genesis of Igneous Pyroxenites: An Experimental Study. Contributions to Mineralogy and Petrology, 2001, 141(6): 643-658.

[30]

Pirajno F., Mao J. W., Zhang Z. C., . The Association of Mafic-Ultramafic Intrusions and A-Type Magmatism in the Tian Shan and Altay Orogens, NW China: Implications for Geodynamic Evolution and Potential for the Discovery of New Ore Deposits. Journal of Asian Earth Sciences, 2008, 32(2–4): 165-183.

[31]

Qin K. Z., Fang T. H., Wang S. L., . Plate Tectonics Division, Evolution and Metallogenic Settings in Eastern Tianshan Mountains, NW China. Xinjiang Geology, 2002, 20(4): 302-308.

[32]

Qin K. Z., Su B. X., Sakyi P. A., . SIMS Zircon U-Pb Geochronology and Sr-Nd Isotopes of Ni-Cu-Bearing Mafic-Ultramafic Intrusions in Eastern Tianshan and Beishan in Correlation with Flood Basalts in Tarim Basin (NW China): Constraints on a ca. 280Ma Mantle Plume. American Journal of Science, 2011, 311(3): 237-260.

[33]

Qin Q. X. Geological Character of the Ilmenite Deposit in Western Part of Xiangshan and Its Genesis. Mineral Resources and Geology, 2003, 17(4): 533-535.

[34]

Safonova I. Y., Buslov M. M., Iwata K., . Fragments of Vendian–Early Carboniferous Oceanic Crust of the Paleo-Asian Ocean in Foldbelts of the Altai-Sayan Region of Central Asia: Geochemistry, Biostratigraphy and Structural setting. Gondwana Research, 2004, 7(3): 771-790.

[35]

Safonova I. Y., Seltmann R., Kröner A., . A New Concept of Continental Construction in the Central Asian Orogenic Belt: Compared to Actualistic Examples from the Western Pacific. Episodes, 2011, 34(2): 1-11.

[36]

San J. Z., Qin K. Z., Tang Z. L., . Precise Zircon U-Pb Age Dating of Two Mafic-Ultramafic Complexes at Tulaergen Large Cu-Ni District and Its Geological Implications. Acta Petrologica Sinica, 2010, 26(10): 3027-3035.

[37]

Sengör A. M. C., Natalʼin B. A., Burtman V. S. Evolution of the Altaid Tectonic Collage and Paleozoic Crustal Growth in Asia. Nature, 1993, 364: 299-307.

[38]

Shi Y., Wang Y. W., Wang J. B. Relationship between Amphibole-Porphyric Gabbroic Rocks and Fe-Ti Oxide Ore Deposits of the East Tianshan. Earth Science Frontiers, 2017, 24(6): 80-97.

[39]

Shi Y., Wang Y. W., Wang J. B., . Olivine Composition of Erhongwa Complex, East Tianshan, and Its Implication on CuNi-VTiFe Composite Mineralization. Earth Science—Journal of China University of Geosciences, 2017, 42(3): 325-338.

[40]

Sisson T. W. Hornblende-Melt Trace-Element Partitioning Measured by Ion Microprobe. Chemical Geology, 1994, 117(1–4): 331-344.

[41]

Sisson T. W., Grove T. L. Experimental Investigations of the Role of H2O in Calc-Alkaline Differentiation and Subduction Zone Magmatism. Contributions to Mineralogy and Petrology, 1993, 113(2): 143-166.

[42]

Song X. Y., Xie W., Deng Y. F., . Slab Break-off and the Formation of Permian Mafic-Ultramafic Intrusions in Southern Margin of Central Asian Orogenic Belt, Xinjiang, NW China. Lithos, 2011, 127(1/2): 128-143.

[43]

Stone W. E., Deloule E., Larson M. S., . Evidence for Hydrous High-MgO Melts in the Precambrian. Geology, 1997, 25(2): 143-146.

[44]

Su B. X., Qin K. Z., Sakyi P. A., . U-Pb Ages and Hf-O Isotopes of Zircons from Late Paleozoic Mafic-Ultramafic Units in the Southern Central Asian Orogenic Belt: Tectonic Implications and Evidence for an Early-Permian Mantle Plume. Gondwana Research, 2011, 20(2/3): 516-531.

[45]

Su B. X., Qin K. Z., Su H., . Subduction-Induced Mantle Heterogeneity beneath Eastern Tianshan and Beishan: Insights from Nd-Sr-Hf-O Isotopic Mapping of Late Paleozoic Mafic-Ultramafic Complexes. Lithos, 2012, 134/135(2): 41-51.

[46]

Su B. X., Qin K. Z., Tang D. M., . Late Paleozoic Mafic-Ultramafic Intrusions in Southern Central Asian Orogenic Belt (NW China): Insight into Magmatic Ni-Cu Sulfide Mineralization in Orogenic Setting. Ore Geology Reviews, 2013, 51(6): 57-73.

[47]

Sun S. S., McDonough W. F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 1989, 42(1): 313-345.

[48]

Sun T., Qian Z. Z., Li C. S., . Petrogenesis and Economic Potential of the Erhongwa Mafic-Ultramafic Intrusion in the Central Asian Orogenic Belt, NW China: Constraints from Olivine Chemistry, U-Pb Age and Hf Isotopes of Zircons, and Whole-Rock Sr-Nd-Pb Isotopes. Lithos, 2013, 182/183(7): 185-199.

[49]

Tang D. M., Qin K. Z., Li C. S., . Zircon Dating, Hf-Sr-Nd-Os Isotopes and PGE Geochemistry of the Tianyu Sulfide-Bearing Mafic-Ultramafic Intrusion in the Central Asian Orogenic Belt, NW China. Lithos, 2011, 126(1–2): 84-98.

[50]

Tang D. M., Qin K. Z., Su B. X., . Magma Source and Tectonics of the Xiangshanzhong Mafic-Ultramafic Intrusion in the Central Asian Orogenic Belt, NW China, Traced from Geochemical and Isotopic Signatures. Lithos, 2013, 170/171(6): 144-163.

[51]

Trail D., Watson E. B., Tailby N. D. Ce and Eu Anomalies in Zircon as Proxies for Oxidation State of Magmas. Geochimica et Cosmochimica Acta, 2012, 97: 70-87.

[52]

Wang J. B., Wang Y. W., Zhou T. F. Metallogenic Spectrum Related to Post-Collisional Mantle-Derived Magma in North Xingjiang. Acta Petrologica Sinica, 2008, 24(4): 743-752.

[53]

Wang J. B., Xu X. Post-Collisional Tectonic Evolution and Metallogenesis in Northern Xinjiang, China. Acta Geologica Sinica, 2006, 80(1): 23-31.

[54]

Wang S., Sun F. Y., Qian Z. Z., . Magmatic Evolution and Metal Element Enrichment during Formation of the Niumaoquan Magnetite Ore Deposit, Xinjiang, China. Ore Geology Reviews, 2014, 63(2): 64-75.

[55]

Wang Y. W., Wang J. B., Wang L. J. Comparison of Host Rocks between Two Vanadic Titanomagnetite Deposit Types from the Eastern Tianshan Mountains. Acta Petrologica Sinica, 2006, 22(5): 1425-1436.

[56]

Wang Y. W., Wang J. B., Wang L. J., . Characteristics of Two Mafic-Ultramafic Rocks Series in the Xiangshan Cu-Ni-(V) Ti-Fe Ore District, Xinjiang. Acta Petrologica Sinica, 2009, 25(4): 888-900.

[57]

Wang Y. W., Wang J. B., Wang L. J., . Petrographical and Lithogeochemical Characteristics of the Mafic-Ultramafic Complex Related to CuNi-VTiFe Composite Mineralization: Taking the North Xinjiang as an Example. Acta Petrologica Sinica, 2010, 26(2): 401-412.

[58]

Wang Y. W., Wang J. B., Wang L. J., . Problems of PGE Metallogenesis Related to Mafic-Ultramafic Complexes in North Xinjiang, China. Geoscience Frontiers, 2010, 2(2): 187-198.

[59]

Watson E. B., Harrison T. M. Zircon Thermometer Reveals Minimum Melting Conditions on Earliest Earth. Science, 2005, 308(5723): 841-844.

[60]

Watson E. B., Wark D. A., Thomas J. B. Crystallization Thermometers for Zircon and Rutile. Contributions to Mineralogy and Petrology, 2006, 151(4): 413-433.

[61]

Xiao Q. H., Qin K. Z., Tang D. M., . Xiangshanxi Composite Cu-Ni-Ti-Fe Deposit belongs to Comagmatic Evolution Product: Evidence from Ore Microscopy, Zircon U-Pb Chronology and Petrological Geochemistry, Hami, Xinjiang, NW China. Acta Petrologica Sinica, 2010, 26(2): 503-522.

[62]

Xiao W. J., Han C. M., Yuan C., . Middle Cambrian to Permian Subduction-Related Accretionary Orogenesis of Northern Xinjiang, NW China: Implications for the Tectonic Evolution of Central Asia. Journal of Asian Earth Sciences, 2008, 32(2–4): 102-117.

[63]

Xiao W. J., Mao Q. G., Windley B. F., . Paleozoic Multiple Accretionary and Collisional Processes of the Beishan Orogenic Collage. American Journal of Sciences, 2010, 310(10): 1553-1594.

[64]

Xiao W. J., Zhang L. C., Qin K. Z., . Paleozoic Accretionary and Collisional Tectonics of the Eastern Tianshan (China): Implications for the Continental Growth of Central Asia. American Journal of Science, 2004, 304: 370-395.

[65]

Zhang H. C., Zhu Y. F., Feng W. Y., . Paleozoic Intrusive Rocks in the Nalati Mountain Range (NMR), Southwest Tianshan: Geodynamic Evolution Based on Petrology and Geochemical Studies. Journal of Earth Science, 2017, 28(2): 196-217.

[66]

Zhao Y., Xue C. J., Zhao X. B., . Magmatic Cu-Ni Sulfide Mineralization of the Huangshannan Mafic-Ultramafic Intrusion, Eastern Tianshan, China. Journal of Asian Earth Sciences, 2015, 105: 155-172.

[67]

Zhou M. F., Lesher C. M., Yang Z. X., . Geochemistry and Petrogenesis of 270 Ma Ni-Cu-(PGE) Sulfide-Bearing Mafic Intrusions in the Huangshan District, Eastern Xinjiang, Northwest China: Implications for the Tectonic Evolution of the Central Asian Orogenic Belt. Chemical Geology, 2004, 209(3–4): 233-257.

[68]

Zhu Y. F., An F., Feng W. Y., . Geological Evolution and Huge Ore-Forming Belts in the Core Part of the Central Asian Metallogenic Region. Journal of Earth Science, 2016, 27(3): 491-506.

AI Summary AI Mindmap
PDF

166

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/