New Siliceous Microfossils from the Terreneuvian Yanjiahe Formation, South China: The Possible Earliest Radiolarian Fossil Record

Shan Chang , Qinglai Feng , Lei Zhang

Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (4) : 912 -919.

PDF
Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (4) : 912 -919. DOI: 10.1007/s12583-017-0960-0
Article

New Siliceous Microfossils from the Terreneuvian Yanjiahe Formation, South China: The Possible Earliest Radiolarian Fossil Record

Author information +
History +
PDF

Abstract

Radiolarians form an important part of the planktonic realm in the ocean of Early Paleozoic, but their origin and evolutionary processes has long been enigmatic. The ancestral representatives of radiolarians have been considered to belong to the order Archaeospicularia, whose unquestionable fossil records were dated back to the Middle Cambrian. Here we report ?Blastulospongia and unnamed spherical radiolarians in the Terreneuvian from the Yanjiahe Formation in Hubei Province, South China. Blastulospongia is an enigmatic siliceous microfossil genus, with affinities proposed amongst the radiolarian, sphinctozoan-grade sponges and uncertain protists. As for the newly discovered unnamed radiolarians, morphologically they possess latticed shell, spherical shape and are all small in size. Our discoveries support the idea that spherical radiolarians is an ancient representative, whose origin and diversification was probably much earlier than generally accepted. The hypothesis that the oldest radiolarians belong to the order Archaeospicularia needs to be re-examined.

Keywords

Cambrian / radiolarian / ?Blastulospongia / silica-biomineralization

Cite this article

Download citation ▾
Shan Chang, Qinglai Feng, Lei Zhang. New Siliceous Microfossils from the Terreneuvian Yanjiahe Formation, South China: The Possible Earliest Radiolarian Fossil Record. Journal of Earth Science, 2018, 29(4): 912-919 DOI:10.1007/s12583-017-0960-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Anderson O. R. Radiolaria., 1983, New York: Springer, 271

[2]

Bengtson S. Siliceous Microfossils from the Upper Cambrian of Queensland. Alcheringa: An Australasian Journal of Palaeontology, 1986, 10(3): 195-216.

[3]

Braun A., Chen J. Y., Waloszek D., . First Early Cambrian Radiolaria., 2007, 286(1): 143-149.

[4]

Braun A., Chen J. Y., Waloszek D., . Siliceous Microfossils and Biosiliceous Sedimentation in the Lowermost Cambrian of China., 2007, 286(1): 423-424.

[5]

Canfield D. E., Poulton S. W., Narbonne G. M. Late–Neoproterozoic Deep–Ocean Oxygenation and the Rise of Animal Life. Science, 2007, 315(5808): 92-95.

[6]

Cao W. C., Feng Q. L., Feng F. B., . Radiolarian Kalimnasphaera from the Cambrian Shuijingtuo Formation in South China. Marine Micropaleontology, 2014, 110(2): 3-7.

[7]

Chang S., Feng Q. L., Clausen S., . Sponge Spicules from the Lower Cambrian in the Yanjiahe Formation, South China: The Earliest Biomineralizing Sponge Record. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 474: 36-44.

[8]

Chen P. Discovery of Lower Cambrian Small Shelly Fossils from Jijiapo, Yichang, West Hubei and Its Significance. Professional Papers of Stratigraphy and Palaeontology, 1984, 2: 49-65.

[9]

Cloud, P. E., 1968. Pre–Metazoan Evolution and the Origins of the Metazoa. In: Drake, E. T., ed., Evolution and Environment. Yale University Press, New Haven. 72

[10]

Conway Morris S., Chen M. G. Blastulospongia Polytreta N. Sp., an Enigmatic Organism from the Lower Cambrian of Hubei, China. Journal of Paleontology, 1990, 64(1): 26-30.

[11]

Danelian T., Moreira D. Palaeontological and Molecular Arguments for the Origin of Silica–Secreting Marine Organisms. Comptes Rendus Palevol, 2004, 3(3): 229-236.

[12]

De Wever P., Dumitrica P., Caulet J. P., . Radiolarians in the Sedimentary Record., 2001, London: Gordon and Breach Science Publishers, 525.

[13]

Decelle J., Suzuki N., Mahé F., . Molecular Phylogeny and Morphological Evolution of the Acantharia (Radiolaria). Protist, 2012, 163(3): 435-450.

[14]

Ding R. X., Zou H. P., Min K., . Detrital Zircon U–Pb Geochronology of Sinian–Cambrian Strata in the Eastern Guangxi Area, China. Journal of Earth Science, 2017, 28(2): 295-304.

[15]

Elicki O. First Report of Halkieria and Enigmatic Globular Fossils from the Central European Marianian (Lower Cambrian, Görlitz Syncline, Germany). Rev. Espa. Gonzalo Vidal., 1998, 1: 51-64.

[16]

Guo J. F., Li Y., Li G. X. Small Shelly Fossils from the Early Cambrian Yanjiahe Formation, Yichang, Hubei, China. Gondwana Research, 2014, 25(3): 999-1007.

[17]

He T., Ling H., Chen Y., . Geochemical Character and Formation of Cherts from the Ediacaran Piyuancun Formation of Lantian Section in Xiuning, Southern Anhui. Geological Journal of China Universities, 2013, 19(4): 620-633.

[18]

Hu R., Li S., Wang W., . Source Characteristics of Tillite the Nantuo Formation in Three Gorges, Northern Yangtze Block: Evidence from Zricon Ages and Geochemical Composition. Earth Science, 2016, 41(10): 1630-1654.

[19]

Ishitani Y., Ishikawa S. A., Inagaki Y., . Multigene Phylogenetic Analyses Including Diverse Radiolarian Species Support the “Retaria” Hypothesis—The Sister Relationship of Radiolaria and Foraminifera. Marine Micropaleontology, 2011, 81(1/2): 32-42.

[20]

Jin C. S., Li C., Algeo T. J., . Evidence for Marine Redox Control on Spatial Colonization of Early Animals during Cambrian Age 3 (c. 521–514 Ma) in South China. Geological Magazine, 2016, 154(6): 1360-1370.

[21]

Khomentovsky V. V., Karlova G. A. Biostratigraphy of the Vendian–Cambrian Beds and the Lower Cambrian Boundary in Siberia. Geological Magazine, 1993, 130(1): 29-45.

[22]

Klok C. J., Hubb A. J., Harrison J. F. Single and Multigenerational Responses of Body Mass to Atmospheric Oxygen Concentrations In–Drosophila Melanogaster: Evidence for Roles of Plasticity and Evolution. Journal of Evolutionary Biology, 2009, 22(12): 2496-2504.

[23]

Kouchinsky A., Bengtson S., Clausen S., . An Early Cambrian Fauna of Skeletal Fossils from the Emyaksin Formation, Northern Siberia. Acta Palaeontologica Polonica, 2013, 60(2): 421-512.

[24]

Kouchinsky A., Bengtson S., Landing E., . Terreneuvian Stratigraphy and Faunas from the Anabar Uplift, Siberia. Acta Palaeontologica Polonica, 2017, 62(2): 311-440.

[25]

Li C., Jin C. S., Planavsky N. J., . Coupled Oceanic Oxygenation and Metazoan Diversification during the Early–Middle Cambrian?. Geology, 2017, 45(8): 743-746.

[26]

Li R. W., Lu J. L., Zhang S. K., . Organic Carbon Isotopes of the Sinian and Early Cambrian Black Shales on Yangtze Platform, China. Science in China Series D: Earth Sciences, 1999, 42(6): 595-603.

[27]

Lipps, J. H., 1992. Proterozoic and Cambrian Skeletonized Protists. In: Schopf, J. W., Klein, C., eds., The Proterozoic Biosphere: A Multidisciplinary Study. Cambridge University Press, Cambridge. 237–240

[28]

Liu K., Feng Q. L., Shen J., . Increased Productivity as a Primary Driver of Marine Anoxia in the Lower Cambrian. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 491: 1-9.

[29]

Maletz J. Radiolarian Skeletal Structures and Biostratigraphy in the Early Palaeozoic (Cambrian–Ordovician). Palaeoworld, 2011, 20(2/3): 116-133.

[30]

Mason R., Li Y. J., Cao K. N., . Ediacaran Macrofossils in Shunyang Valley, Sixi, Three Gorges District, Hubei Province, China. Journal of Earth Science, 2017, 28(4): 614-621.

[31]

Nazarov B. B. Radiolarians from the Lowermost Horizons of the Batenev Mountain Ridge., 1973, Nauka: Novosibirsk, 5-13.

[32]

Nazarov, B. B., 1975. Lower and Middle Paleozoic Radiolarians of Kazakhstan (Methods of Investigation, Systematics and Stratigraphic Significance). In: Raaben, M. E., ed., Trudy Akademiya Nauk SSSR, Geologicheskii Institut. Izdatelstvo Nauka, Moscow. 1–203 (in Russian)

[33]

Obut O. T., Iwata K. Lower Cambrian Radiolaria from the Gorny Altai (Southern West Siberia). News of Paleontology and Stratigraphy, 2000, 2/3: 33-38.

[34]

Payne J. L., Boyer A. G., Brown J. H., . Two–Phase Increase in the Maximum Size of Life over 3.5 Billion Years Reflects Biological Innovation and Environmental Opportunity. Proceedings of the National Academy of Sciences, 2009, 106(1): 24-27.

[35]

Peng L. The Age and Tectonic Significance of Ophiolites of the Undorsum Group, Nei Mongol Autonomous Region. Science Bulletin, 1984, 29(7): 936-939.

[36]

Peng, S. C., Babcock, L. E., Cooper, R. A., 2012. The Cambrian Period. In: Gradstein, F. M., Ogg, J. G., Schmitz, M. D., et al., eds., The Geologic Time Scale 2012, Vol. 2. Elsevier BV, Amsterdam. 437–488. https://doi.org/10.1016/B978-0-444-59425-9.00019-6

[37]

Pickett J. W., Jell P. A. Middle Cambrian Sphinctozoa (Porifera) from New South Wales. Memoirs of the Association of Australasian Paleontologists, 1983, 1: 85-92.

[38]

Pouille L., Obut O., Danelian T., . Lower Cambrian (Botomian) Polycystine Radiolaria from the Altai Mountains (Southern Siberia, Russia). Comptes Rendus Palevol, 2011, 10(8): 627-633.

[39]

Shu D., Chen L. Discovery of Early Cambrian Radiolarian and Its Significance. Science in China, 1989, 32(8): 986-994.

[40]

Steiner M., Li G., Qian Y., . Neoproterozoic to Early Cambrian Small Shelly Fossil Assemblages and a Revised Biostratigraphic Correlation of the Yangtze Platform (China). Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(2): 67-99.

[41]

White R. D. Cambrian Radiolaria from Utah. Journal of Paleontology, 1986, 60(3): 778-780.

[42]

Won M. Z., Below R. Cambrian Radiolaria from the Georgina Basin, Queensland, Australia. Micropaleontology, 1999, 45(4): 325-363.

[43]

Wrona R. Cambrian Microfossils from Glacial Erratics of King George Island, Antarctica. Acta Palaeontologica Polonica, 2004, 49(1): 13-56.

[44]

Yang B., Steiner M., Li G., . Terreneuvian Small Shelly Faunas of East Yunnan (South China) and Their Biostratigraphic Implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 398: 28-58.

[45]

Yin H., Zeng Y., Xia W. Chert on the Southeast Continental Margin of the Yangtze Platform. Acta Geologica Sinica, 1994, 68(2): 132-141.

[46]

Yin L. M., Wang C. J., Zhao Y. L., . Early–Middle Cambrian Palynomorph Microfossils and Related Geochemical Events in South China. Journal of Earth Science, 2016, 27(2): 180-186.

[47]

Zhang L., Danelian T., Feng Q. L., . On the Lower Cambrian Biotic and Geochemical Record of the Hetang Formation (Yangtze Platform, South China): Evidence for Biogenic Silica and Possible Presence of Radiolaria. Journal of Micropalaeontology, 2013, 32(2): 207-217.

[48]

Zhang M. Z., Peng S. B., Zhang L., . New Recognition of Carbonate Nodules Genesis in Sinian Doushantuo Formation in Zigui Area and Its Geological Implication. Earth Science, 2016, 41(12): 1977-1994.

[49]

Zhang X. G., Aldridge R. J. Development and Diversification of Trunk Plates of the Lower Cambrian Lobopodians. Palaeontology, 2007, 50(2): 401-415.

[50]

Zhang X. L., Cui L. H. Oxygen Requirements for the Cambrian Explosion. Journal of Earth Science, 2016, 27(2): 187-195.

[51]

Zhang X. L., Shu D. G., Han J., . Triggers for the Cambrian Explosion: Hypotheses and Problems. Gondwana Research, 2014, 25(3): 896-909.

[52]

Zhao G. The Influence of Biogenic Procession on the Accumulation and Precipiation of Silica—An Example from South of Anhui and West of Zhejiang. Acta Sedimentologica Sinica, 1999, 17(1): 30-37.

[53]

Zheng N., Song T., Li Y., . The Discovery of the Lower Cambrian and Middle Ordovician Radiolaria in the South China Orogenic Belt. Geology in China, 2012, 39(1): 260-265.

[54]

Zhou C. M., Jiang S. Y. Palaeoceanographic Redox Environments for the Lower Cambrian Hetang Formation in South China: Evidence from Pyrite Framboids, Redox Sensitive Trace Elements, and Sponge Biota Occurrence. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 271(3/4): 279-286.

AI Summary AI Mindmap
PDF

156

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/