PDF
Abstract
This paper presents a synthesis and analysis of geochronological, geochemical, and zircon Hf isotopic data of Phanerozoic granitoids within the Khanka massif, with the aim of revealing the accretion and reworking processes of continental crust within the massif. Zircon U-Pb dating indicates that Phanerozoic granitic magmatism within the Khanka massif can be subdivided into eight stages: Late Cambrian, Middle–Late Ordovician, Middle Silurian, Late Carboniferous, Early Permian, Middle–Late Permian to Early Triassic, Late Triassic–Early Jurassic, and Early Cretaceous. The zircon Hf isotopic compositions reveal that crustal accretionary events took place mainly in the Mesoproterozoic and Neoproterozoic. Through time, the zircon ε Hf(t) values gradually increase, indicating that the Phanerozoic granitic magmas were derived from the melting of progressively less ancient and more juvenile crust. The zircon ε Hf(t) values exhibit a gradual decrease with the increases in latitude, which implies that the amounts of ancient crustal components within the lower continental crust of the Khanka massif increased from south to north. At the same latitude range, the zircon Hf isotopic compositions also display some variations. We conclude, therefore, that significant horizontal and vertical heterogeneities existed in the lower continental crust of the Khanka massif during the Phanerozoic.
Keywords
Khanka massif
/
Phanerozoic
/
granitoid
/
zircon Hf isotope
/
crustal accretion and reworking
Cite this article
Download citation ▾
Xiaoming Zhang, Wenliang Xu, Chenyang Sun, Ting Xu, Feng Wang.
Crustal Accretion and Reworking within the Khanka Massif: Evidence from Hf Isotopes of Zircons in Phanerozoic Granitoids.
Journal of Earth Science, 2018, 29(2): 255-264 DOI:10.1007/s12583-017-0950-2
| [1] |
Allègre C. J., Rousseau D. The Growth of the Continent through Geological Time Studied by Nd Isotope Analysis of Shales. Earth and Planetary Science Letters, 1984, 67(1): 19-34.
|
| [2] |
Armstrong R. A. Radiogenic Isotopes: The Case for Crustal Recycling on a Near-Steady-State No-Continental-Growth Earth. Philosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences, 1981, 301(1461): 443-472.
|
| [3] |
Barnes G. L. Origins of the Japanese Islands: The New “Big Picture”. Japan Review, 2003, 15: 3-50.
|
| [4] |
Belousova E. A., Kostitsyn Y. A., Griffin W. L., . The Growth of the Continental Crust: Constraints from Zircon Hf-Isotope Data. Lithos, 2010, 119(3/4): 457-466.
|
| [5] |
BGMRJ Bureau of GeologyMineral Resources of Jilin Province Stratigraphy of Jilin Province, 1997, 10-13.
|
| [6] |
Cao H. H., Xu W. L., Pei F. P., . Permian Tectonic Evolution in Southwestern Khanka Massif: Evidence from Zircon U-Pb Chronology, Hf Isotope and Geochemistry of Gabbro and Diorite. Acta Geologica Sinica—English Edition, 2011, 85(6): 1390-1402.
|
| [7] |
Cao H. H., Xu W. L., Pei F. P., . Zircon U-Pb Geochronology and Petrogenesis of the Late Paleozoic–Early Mesozoic Intrusive Rocks in the Eastern Segment of the Northern Margin of the North China Block. Lithos, 2013, 170/171: 191-207.
|
| [8] |
Cawood P. A., Wang Y. J., Xu Y. J., . Locating South China in Rodinia and Gondwana: A Fragment of Greater India Lithosphere?. Geology, 2013, 41(8): 903-906.
|
| [9] |
Condie K. C., Aster R. C. Episodic Zircon Age Spectra of Orogenic Granitoids: The Supercontinent Connection and Continental Growth. Precambrian Research, 2010, 180(3/4): 227-236.
|
| [10] |
Condie K. C., Bickford M. E., Aster R. C., . Episodic Zircon Ages, Hf Isotopic Composition, and the Preservation Rate of Continental Crust. Geological Society of America Bulletin, 2011, 123(5/6): 951-957.
|
| [11] |
Davies G., Gledhill A., Hawkesworth C. Upper Crustal Recycling in Southern Britain: Evidence from Nd and Sr Isotopes. Earth and Planetary Science Letters, 1985, 75(1): 1-12.
|
| [12] |
DePaolo D. J., Linn A. M., Schubert G. The Continental Crustal Age Distribution: Methods of Determining Mantle Separation Ages from Sm-Nd Isotopic Data and Application to the Southwestern United States. Journal of Geophysical Research, 1991, 96(B2): 2071-2088.
|
| [13] |
Dhuime B., Hawkesworth C. J., Cawood P. A., . A Change in the Geodynamics of Continental Growth 3Billion Years Ago. Science, 2012, 335(6074): 1334-1336.
|
| [14] |
Dhuime B., Hawkesworth C. J., Cawood P. A. When Continents Formed. Science, 2011, 331(6014): 154-155.
|
| [15] |
Dong Y., Ge W. C., Yang H., . Geochronology and Geochemistry of Early Cretaceous Volcanic Rocks from the Baiyingaolao Formation in the Central Great Xing’an Range, NE China, and Its Tectonic Implications. Lithos, 2014, 205: 168-184.
|
| [16] |
Faure M., Natal’in B. A., Monié P., . Tectonic Evolution of the Anuy Metamorphic Rocks (Sikhote Alin, Russia) and their Place in the Mesozoic Geodynamic Framework of East Asia. Tectonophysics, 1995, 241(3/4): 279-301.
|
| [17] |
Goodwin A. M. Principles of Precambrian Geology, 1996, 281-318.
|
| [18] |
Griffin W. L., Pearson N. J., Belousova E., . The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 2000, 64(1): 133-147.
|
| [19] |
Griffin W. L., Wang X., Jackson S. E., . Zircon Chemistry and Magma Mixing, SE China: In-situ Analysis of Hf Isotopes, Tonglu and Pingtan Igneous Complexes. Lithos, 2002, 61(3/4): 237-269.
|
| [20] |
Guo P., Liu C. Y., Wang J. Q., . Considerations on the Application of Detrital-Zircon Geochronology to Sedimentary Provenance Analysis. Acta Sedimentologica Sinica, 2017, 35(1): 46-55.
|
| [21] |
Hawkesworth C. J., Kemp A. I. S. The Differentiation and Rates of Generation of the Continental Crust. Chemical Geology, 2006, 226(3/4): 134-143.
|
| [22] |
HBGMR Heilongjiang Bureau of Geology Mineral Resources Regional Geology of Heilongjiang Province, 1993, 1-734.
|
| [23] |
Hurley P. M., Rand J. R. Pre-Drift Continental Nuclei. Science, 1969, 164(3885): 1229-1242.
|
| [24] |
Jacobsen S. B. Isotopic and Chemical Constraints on Mantle-Crust Evolution. Geochimica et Cosmochimica Acta, 1988, 52(6): 1341-1350.
|
| [25] |
Jahn B. M., Capdevila R., Liu D. Y., . Sources of Phanerozoic Granitoids in the Transect Bayanhongor-Ulaan Baatar, Mongolia: Geochemical and Nd Isotopic Evidence, and Implications for Phanerozoic Crustal Growth. Journal of Asian Earth Sciences, 2004, 23(5): 629-653.
|
| [26] |
Jahn B. M., Wu F. Y., Chen B. Massive Granitoid Generation in Central Asia: Nd Isotopic Evidence and Implication for Continental Growth in the Phanerozoic. Episodes, 2000, 23(2): 82-92.
|
| [27] |
Jahn B. M., Wu F. Y., Hong D. W. Important Crustal Growth in the Phanerozoic: Isotopic Evidence of Granitoids from East-Central Asia. Journal of Earth System Science, 2000, 109(1): 5-20.
|
| [28] |
Jahn B. M., Wu F. Y., Chen B. Granitoids of the Central Asian Orogenic Belt and Continental Growth in the Phanerozoic. Transactions of the Royal Society of Edinburgh: Earth Sciences, 2000, 91(1/2): 181-193.
|
| [29] |
Jahn B. M., Valui G., Kruk N., . Emplacement Ages, Geochemical and Sr-Nd-Hf Isotopic Characterization of Mesozoic to Early Cenozoic Granitoids of the Sikhote-Alin Orogenic Belt, Russian Far East: Crustal Growth and Regional Tectonic Evolution. Journal of Asian Earth Sciences, 2015, 111: 872-918.
|
| [30] |
Ji W. Q., Xu W. L., Yang D. B., . Chronology and Geochemistry of Volcanic Rocks in the Cretaceous Suifenhe Formation in Eastern Heilongjiang, China. Acta Geologica Sinica—English Edition, 2007, 81(2): 266-277.
|
| [31] |
Jia D. C., Hu R. Z., Lu Y., . Collision Belt between the Khanka Block and the North China Block in the Yanbian Region, Northeast China. Journal of Asian Earth Sciences, 2004, 23(2): 211-219.
|
| [32] |
Jing H. X., Sun D. Y., Gou J., . Chronology, Geochemistry and Hf Isotope of Granite from Southern Xingkai Block. Earth Science— Journal of China University of Geosciences, 2015, 40(6): 982-994.
|
| [33] |
Khanchuk A. I., Sakhno V. G., Alenicheva A. A. First SHRIMP U-Pb Zircon Dating of Magmatic Complexes in the Southwestern Primor’e Region. Doklady Earth Sciences, 2010, 431(2): 424-428.
|
| [34] |
Khanchuk A. I. Pre-Neogene Tectonics of the Sea of Japan Region: A View from the Russian Side. Earth Science (Chikyu Kagaku), 2001, 55(5): 275-291.
|
| [35] |
Kovalenko S. V. State Geological Map of Russian Federation, Scale 1: 1 000 000 (3rd Generation). Far East Ser. Sheet L-52 (Boundary), L-53 (Khanka), K-53 (Nakhodka), 2006.
|
| [36] |
Kröner A., Kovach V., Belousova E., . Reassessment of Continental Growth during the Accretionary History of the Central Asian Orogenic Belt. Gondwana Research, 2014, 25(1): 103-125.
|
| [37] |
Le Maitre R. W. A Classification of Igneous Rocks and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks, 1989.
|
| [38] |
Li J. Y., Niu B. G., Song B., . Crustal Formation and Evolution of Nothern Changbai Mountains, 1999, 1-137.
|
| [39] |
Li J. Y. Permian Geodynamic Setting of Northeast China and Adjacent Regions: Closure of the Paleo-Asian Ocean and Subduction of the Paleo-Pacific Plate. Journal of Asian Earth Sciences, 2006, 26(3/4): 207-224.
|
| [40] |
Li Y., Xu W. L., Wang F., . Geochronology and Geochemistry of Late Paleozoic Volcanic Rocks on the Western Margin of the Songnen-Zhangguangcai Range Massif, NE China: Implications for the Amalgamation History of the Xing’an and Songnen-Zhangguangcai Range Massifs. Lithos, 2014, 205: 394-410.
|
| [41] |
Liu K., Zhang J. J., Wilde S. A., . Initial Subduction of the Paleo-Pacific Oceanic Plate in NE China: Constraints from Whole-Rock Geochemistry and Zircon U-Pb and Lu-Hf Isotopes of the Khanka Lake Granitoids. Lithos, 2017, 274/275: 254-270.
|
| [42] |
Lu L. Z., Xu W. L. Petrography, 2011.
|
| [43] |
Luan J. P., Xu W. L., Wang F., . Age and Geochemistry of Neoproterozoic Granitoids in the Songnen-Zhangguangcai Range Massif, NE China: Petrogenesis and Tectonic Implications. Journal of Asian Earth Sciences, 2017, 148: 265-276.
|
| [44] |
McLennan S. M. Relationships between the Trace Element Composition of Sedimentary Rocks and Upper Continental Crust. Geochemistry, Geophysics, Geosystems, 2001, 2(4): 203-236.
|
| [45] |
Meng E., Xu W. L., Pei F. P., . Detrital-Zircon Geochronology of Late Paleozoic Sedimentary Rocks in Eastern Heilongjiang Province, NE China: Implications for the Tectonic Evolution of the Eastern Segment of the Central Asian Orogenic Belt. Tectonophysics, 2010, 485(1/2/3/4): 42-51.
|
| [46] |
Meng E., Xu W. L., Yang D. B., . Zircon U-Pb Chronology, Geochemistry of Mesozoic Volcanic Rocks from the Lingquan Basin in Manzhouli Area, and Its Tectonic Implications. Acta Petrologica Sinica, 2011, 27(4): 1209-1226.
|
| [47] |
Natal’in B. History and Modes of Mesozoic Accretion in Southeastern Russia. The Island Arc, 1993, 2(1): 15-34.
|
| [48] |
Nowell G. M., Kempton P. D., Noble S. R., . High Precision Hf Isotope Measurements of MORB and OIB by Thermal Ionisation Mass Spectrometry: Insights into the Depleted Mantle. Chemical Geology, 1998, 149(3/4): 211-233.
|
| [49] |
O’Nions R. K., Hamilton P. J., Hooker P. J. A Nd Isotope Investigation of Sediments Related to Crustal Development in the British Isles. Earth and Planetary Science Letters, 1983, 63(2): 229-240.
|
| [50] |
Rudnick R. L. Making Continental Crust. Nature, 1995, 378(6557): 571-578.
|
| [51] |
Şengör A. M. C., Natal’in B. A. Paleotectonics of Asia: Fragments of a Synthesis, 1996, 486-640.
|
| [52] |
Şengör A. M. C., Natal’in B. A., Burtman V. S. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 1993, 364(6435): 299-307.
|
| [53] |
Shao J. A., Tang K. D. Terranes in Northeast China and Evolution of Northeast Asia Continental Margin, 1995.
|
| [54] |
Shcheka S. A., Ishiwatari A., Vrzhosek A. A. Geology and Petrology of Cambrian Khanka Ophiolite in Primorye (Far East Russia) with Notes on Its Manganese-Rich Chromian Spinel. Earth Science (Chikyu Kagaku), 2001, 55(5): 265-274.
|
| [55] |
Sorokin A. A., Kotov A. B., Sal’nikova E. B., . Granitoids of the Tyrma-Bureya Complex in the Northern Bureya-Jiamusi Superterrane of the Central Asian Fold Belt: Age and Geodynamic Setting. Russian Geology and Geophysics, 2010, 51(5): 563-571.
|
| [56] |
Sun C. Y., Tang J., Xu W. L., . Crustal Accretion and Reworking Processes of Micro-Continental Massifs within Orogenic Belt: A Case Study of the Erguna Massif, NE China. Science China Earth Sciences, 2017, 60(7): 1256-1267.
|
| [57] |
Sun D. Y., Gou J., Wang T. H., . Geochronological and Geochemical Constraints on the Erguna Massif Basement, NE China-Subduction History of the Mongol-Okhotsk Oceanic Crust. International Geology Review, 2013, 55(14): 1801-1816.
|
| [58] |
Sun J. G., Chen L., Zhao J. K., . SHRIMP U-Pb Dating of Zircon from Late Yanshanian Granitic Complex in Xiaoxinancha Gold-Rich Copper Orefield of Yanbian and Its Geological Implications. Mineral Deposits, 2008, 27(3): 319-328.
|
| [59] |
Tang J., Xu W. L., Wang F., . Geochronology, Geochemistry, and Deformation History of Late Jurassic–Early Cretaceous Intrusive Rocks in the Erguna Massif, NE China: Constraints on the Late Mesozoic Tectonic Evolution of the Mongol-Okhotsk Orogenic Belt. Tectonophysics, 2015, 658: 91-110.
|
| [60] |
Tang J., Xu W. L., Wang F., . Early Mesozoic Southward Subduction History of the Mongol-Okhotsk Oceanic Plate: Evidence from Geochronology and Geochemistry of Early Mesozoic Intrusive Rocks in the Erguna Massif, NE China. Gondwana Research, 2016, 31: 218-240.
|
| [61] |
Taylor S. R., McLennan S. M. The Continental Crust: Its Composition and Evolution, An Examination of the Geochemical Record Preserved in Sedimentary Rocks, 1985.
|
| [62] |
Tsutsumi Y., Yokoyama K., Kasatkin S. A., . Zircon U-Pb Age of Granitoids in the Maizuru Belt, Southwest Japan and the Southernmost Khanka Massif, Far East Russia. Journal of Mineralogical and Petrological Sciences, 2014, 109(2): 97-102.
|
| [63] |
Wang C. Y., Campbell I. H., Allen C. M., . Rate of Growth of the Preserved North American Continental Crust: Evidence from Hf and O Isotopes in Mississippi Detrital Zircons. Geochimica et Cosmochimica Acta, 2009, 73(3): 712-728.
|
| [64] |
Wang C. Y., Campbell I. H., Stepanov A. S., . Growth Rate of the Preserved Continental Crust: II. Constraints from Hf and O Isotopes in Detrital Zircons from Greater Russian Rivers. Geochimica et Cosmochimica Acta, 2011, 75(5): 1308-1345.
|
| [65] |
Wang F., Xu W. L., Meng E., . Early Paleozoic Amalgamation of the Songnen-Zhangguangcai Range and Jiamusi Massifs in the Eastern Segment of the Central Asian Orogenic Belt: Geochronological and Geochemical Evidence from Granitoids and Rhyolites. Journal of Asian Earth Sciences, 2012, 49: 234-248.
|
| [66] |
Wang F., Xu W. L., Gao F. H., . Tectonic History of the Zhangguangcailing Group in Eastern Heilongjiang Province, NE China: Constraints from U-Pb Geochronology of Detrital and Magmatic Zircons. Tectonophysics, 2012, 566/567: 105-122.
|
| [67] |
Wang F., Xu W. L., Ge W. C., . The Offset Distance of the Dunhua-Mishan Fault: Constraints from Paleozoic-Mesozoic Magmatism within the Songnen-Zhangguangcai Range, Jiamusi and Khanka Massifs. Acta Petrologica Sinica, 2016, 32(4): 1129-1140.
|
| [68] |
Wang F., Xu W. L., Xu Y. G., . Late Triassic Bimodal Igneous Rocks in Eastern Heilongjiang Province, NE China: Implications for the Initiation of Subduction of the Paleo-Pacific Plate beneath Eurasia. Journal of Asian Earth Sciences, 2015, 97: 406-423.
|
| [69] |
Wang Z. W., Xu W. L., Pei F. P., . Geochronology and Geochemistry of Early Paleozoic Igneous Rocks from the Zhangguangcai Range, Northeastern China: Constraints on Tectonic Evolution of the Eastern Central Asian Orogenic Belt. Lithosphere, 2017, 9(5): 803-827.
|
| [70] |
Windley B. F., Alexeiev D., Xiao W., . Tectonic Models for Accretion of the Central Asian Orogenic Belt. Journal of the Geological Society, 2007, 164(1): 31-47.
|
| [71] |
Windley B. F., Allen M. B., Zhang C., . Paleozoic Accretion and Cenozoic Redeformation of the Chinese Tien Shan Range, Central Asia. Geology, 1990, 18(2): 128-131.
|
| [72] |
Wu F. Y., Jahn B. M., Wilde S. A., . Highly Fractionated I-Type Granites in NE China (II): Isotopic Geochemistry and Implications for Crustal Growth in the Phanerozoic. Lithos, 2003, 67(3/4): 191-204.
|
| [73] |
Wu F. Y., Sun D. Y., Ge W. C., . Geochronology of the Phanerozoic Granitoids in Northeastern China. Journal of Asian Earth Sciences, 2011, 41(1): 1-30.
|
| [74] |
Wu F. Y., Sun D. Y., Li H. M., . A-Type Granites in Northeastern China: Age and Geochemical Constraints on Their Petrogenesis. Chemical Geology, 2002, 187(1/2): 143-173.
|
| [75] |
Wu F. Y., Sun D. Y., Lin Q. Petrogenesis of the Phanerozoic Granites and Crustal Growth in Northeast China. Acta Petrologica Sinica, 1999, 15(2): 181-189.
|
| [76] |
Wu F. Y., Zhao G. C., Sun D. Y., . The Hulan Group: Its Role in the Evolution of the Central Asian Orogenic Belt of NE China. Journal of Asian Earth Sciences, 2007, 30(3/4): 542-556.
|
| [77] |
Xiao W. J., Windley B. F., Hao J., . Accretion Leading to Collision and the Permian Solonker Suture, Inner Mongolia, China: Termination of the Central Asian Orogenic Belt. Tectonics, 2003, 22(6): 8-1–8.
|
| [78] |
Xiao W. J., Zhang L. C., Qin K. Z., . Paleozoic Accretionary and Collisional Tectonics of the Eastern Tianshan (China): Implications for the Continental Growth of Central Asia. American Journal of Science, 2004, 304(4): 370-395.
|
| [79] |
Xu M. J., Xu W. L., Wang F., . Geochronology and Geochemistry of the Early Jurassic Granitoids in the Central Lesser Xing’an Range, NE China and Its Tectonic Implications. Acta Petrologica Sinica, 2013, 29: 354-368.
|
| [80] |
Xu T., Xu W. L., Wang F., . Geochronology and Geochemistry of Early Paleozoic Intrusive Rocks from the Khanka Massif in the Russian far East: Petrogenesis and Tectonic Implications. Lithos, 2018, 300/301: 105-120.
|
| [81] |
Xu W. L., Ji W. Q., Pei F. P., . Triassic Volcanism in Eastern Heilongjiang and Jilin Provinces, NE China: Chronology, Geochemistry, and Tectonic Implications. Journal of Asian Earth Sciences, 2009, 34(3): 392-402.
|
| [82] |
Xu W. L., Pei F. P., Wang F., . Spatial-temporal Relationships of Mesozoic Volcanic Rocks in NE China: Constraints on Tectonic Overprinting and Transformations between Multiple Tectonic Regimes. Journal of Asian Earth Sciences, 2013, 74: 167-193.
|
| [83] |
Yakubchuk A. Architecture and Mineral Deposit Settings of the Altaid Orogenic Collage: A Revised Model. Journal of Asian Earth Sciences, 2004, 23(5): 761-779.
|
| [84] |
Yakubchuk A. The Baikalide-Altaid, Transbaikal-Mongolian and North Pacific Orogenic Collages: Similarity and Diversity of Structural Patterns and Metallogenic Zoning. Geological Society, London, Special Publications, 2002, 204(1): 273-297.
|
| [85] |
Yang H., Ge W. C., Zhao G. C., . Early Permian–Late Triassic Granitic Magmatism in the Jiamusi-Khanka Massif, Eastern Segment of the Central Asian Orogenic Belt and Its Implications. Gondwana Research, 2015, 27(4): 1509-1533.
|
| [86] |
Yang H., Ge W. C., Zhao G. C., . Late Triassic Intrusive Complex in the Jidong Region, Jiamusi-Khanka Block, NE China: Geochemistry, Zircon U-Pb Ages, Lu-Hf Isotopes, and Implications for Magma Mingling and Mixing. Lithos, 2015, 224/225: 143-159.
|
| [87] |
Yang J. H., Wu F. Y., Shao J. A., . Constraints on the Timing of Uplift of the Yanshan Fold and Thrust Belt, North China. Earth and Planetary Science Letters, 2006, 246(3/4): 336-352.
|
| [88] |
Yu J. J., Wang F., Xu W. L., . Early Jurassic Mafic Magmatism in the Lesser Xing’an-Zhangguangcai Range, NE China, and Its Tectonic Implications: Constraints from Zircon U-Pb Chronology and Geochemistry. Lithos, 2012, 142/143: 256-266.
|
| [89] |
Zhao Y. D., Chi X. G., Che J. Y., . Geochemical Characteristics and Tectonic Setting of the Late Triassic Granites in Yanbian-Dongning Area. Journal of Jilin University (Earth Science Edition), 2009, 39(3): 425-434.
|
| [90] |
Zhou J. B., Wilde S. A., Zhao G. C., . Was the Easternmost Segment of the Central Asian Orogenic Belt Derived from Gondwana or Siberia: An Intriguing Dilemma?. Journal of Geodynamics, 2010, 50(3/4): 300-317.
|