Isotope Chronology and Geochemistry of the Lower Carboniferous Granite in Xilinhot, Inner Mongolia, China

Xiaocheng Zhao, Wenxiao Zhou, Dong Fu, Bo Huang, Mengchun Ge

Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (2) : 280-294.

Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (2) : 280-294. DOI: 10.1007/s12583-017-0942-2
Petrology and Mineral Deposits

Isotope Chronology and Geochemistry of the Lower Carboniferous Granite in Xilinhot, Inner Mongolia, China

Author information +
History +

Abstract

Geochronological and geochemical analyses were performed on K-feldspar granites and monzonitic granites from the Xilinhot area, Inner Mongolia, China. Zircon U/Pb ages indicate that the two types granites were emplaced during the Lower Carboniferous. The K-feldspar granites (332 Ma) have the typical A-type granite characteristics of a post-collision setting. The monzonitic granites have an emplacement age of 323 Ma. Zircon εHf values of the former range from +12.8 to +14.2, with an average T DM2 of 453 Ma. The latter have lower zircon ε Hf values, ranging from +5.4 to +10.7, with an average T DM2 of 798 Ma. The strong, positive ε Hf values of the zircon indicate that both sets of samples are from a juvenile crust formed in an oceanic crust subduction stage, although the monzonitic granite may have undergone a hybridization of crustal materials. These results indicate a younger post orogenic event. The Paleo-Asian Ocean had closed before the Early Carboniferous and the Xilinhot area started its post-orogenic evolution with an extensional tectonic environment during the Early Carboniferous.

Keywords

Lower Carboniferous granite / Paleo-Asian Ocean / Lu-Hf isotope / Xilinhot / Inner Mongolia

Cite this article

Download citation ▾
Xiaocheng Zhao, Wenxiao Zhou, Dong Fu, Bo Huang, Mengchun Ge. Isotope Chronology and Geochemistry of the Lower Carboniferous Granite in Xilinhot, Inner Mongolia, China. Journal of Earth Science, 2018, 29(2): 280‒294 https://doi.org/10.1007/s12583-017-0942-2

References

Andersen T. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chemical Geology, 2002, 192(1/2): 59-79.
CrossRef Google scholar
Badarch G., Cunningham W. D., Windley B. F. A New Terrane Subdivision for Mongolia: Implications for the Phanerozoic Crustal Growth of Central Asia. Journal of Asian Earth Sciences, 2002, 21(1): 87-110.
CrossRef Google scholar
Batchelor R. A., Bowden P. Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters. Chemical Geology, 1985, 48(1/2/3/4): 43-55.
CrossRef Google scholar
Blichert-Toft J., Albarède F. The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System. Earth and Planetary Science Letters, 1997, 148(1/2): 243-258.
CrossRef Google scholar
Buslov M. M., Fujiwara Y., Iwata K., . Late Paleozoic–Early Mesozoic Geodynamics of Central Asia. Gondwana Research, 2004, 7(3): 791-808.
CrossRef Google scholar
Chen B., Xu B. The Main Characteristics and Tectonic Implications of Two Kinds of Paleozoic Granitoids in Sunidzuqi, Central Inner Mongolia. Acta Petrologica Sinica, 1996, 10(4): 49-64.
Demoux A., Kröner A., Badarch G., . Zircon Ages from the Baydrag Block and the Bayankhongor Ophiolite Zone: Time Constraints on Late Neoproterozoic to Cambrian Subduction-and Accretion-Related Magmatism in Central Mongolia. The Journal of Geology, 2009, 117(4): 377-397.
CrossRef Google scholar
Eby G. N. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 1992, 20(7): 641-644.
CrossRef Google scholar
Frost B. R., Barnes C. G., Collins W. J., . A Geochemical Classification for Granitic Rocks. Journal of Petrology, 2001, 42(11): 2033-2048.
CrossRef Google scholar
Glorie S. D. G. J. B. M. M., . Formation and Palaeozoic Evolution of the Gorny-Altai–Altai-Mongolia Suture Zone (South Siberia): Zircon U/Pb Constraints on the Igneous Record. Gondwana Research, 2011, 20(2/3): 465-484.
CrossRef Google scholar
Griffin W. L., Pearson N. J., Belousova E., . The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 2000, 64(1): 133-147.
CrossRef Google scholar
Han B. F., He G. Q., Wang X. C., . Late Carboniferous Collision between the Tarim and Kazakhstan-Yili Terranes in the Western Segment of the South Tian Shan Orogen, Central Asia, and Implications for the Northern Xinjiang, Western China. Earth-Science Reviews, 2011, 109(3/4): 74-93.
CrossRef Google scholar
Han B. F., Wang S. G., Jahn B. M., . Depleted-Mantle Source for the Ulungur River A-Type Granites from North Xinjiang, China: Geochemistry and Nd-Sr Isotopic Evidence, and Implications for Phanerozoic Crustal Growth. Chemical Geology, 1997, 138(3/4): 135-159.
CrossRef Google scholar
Hong D. W., Huang H. Z., Xiao Y. J. The Permian Alkaline Granites in Central Inner Mongolia and Their Geodynamic Significance. Acta Geologica Sinica, 1994, 10(3): 219-230.
Hong D. W., Wang S. G., Han B. F., . Tectonic Environment Classification and Identifying Symbol of Alkali Granite. Science in China (Series B), 1995, 25(4): 418-426.
Hong D. W., Zhang J. S., Wang T., . Continental Crustal Growth and the Supercontinental Cycle: Evidence from the Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 2004, 23(5): 799-813.
CrossRef Google scholar
Hsu K. J., Wang Q. C., Li L., . Geologic Evolution of the Neimonides: A Working Hypothesis. Eclogae Geologicae Helvetiae, 1991, 84(1): 1-31.
Hu Z. C., Liu Y. S., Gao S., . A Local Aerosol Extraction Strategy for the Determination of the Aerosol Composition in Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 2008, 23(9): 1192-1203.
CrossRef Google scholar
Hu Z. C., Gao S., Liu Y. S., . Signal Enhancement in Laser Ablation ICP-MS by Addition of Nitrogen in the Central Channel Gas. Journal of Analytical Atomic Spectrometry, 2008, 23(8): 1093-1101.
CrossRef Google scholar
Hu Z. C., Liu Y. S., Gao S., . Improved in situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 2012, 27(9): 1391-1399.
CrossRef Google scholar
Jahn B. M., Litvinovsky B. A., Zanvilevich A. N., . Peralkaline Granitoid Magmatism in the Mongolian-Transbaikalian Belt: Evolution, Petrogenesis and Tectonic Significance. Lithos, 2009, 113(3/4): 521-539.
CrossRef Google scholar
Jahn B. M., Wu F. Y., Chen B. Granitoids of the Central Asian Orogenic Belt and Continental Growth in the Phanerozoic. Transactions of the Royal Society of Edinburgh: Earth Sciences, 2000, 91(1/2): 181-193.
CrossRef Google scholar
Jahn B. M., Wu F. Y., Chen B. Massive Granitoid Generation in Central Asia: Nd Isotope Evidence and Implication for Continental Growth in the Phanerozoic. Episodes, 2000, 23(2): 82-92.
Jian P., Kröner A., Windley B. F., . Carboniferous and Cretaceous Mafic-Ultramafic Massifs in Inner Mongolia (China): A SHRIMP Zircon and Geochemical Study of the Previously Presumed Integral “Hegenshan Ophiolite”. Lithos, 2012, 142/143: 48-66.
CrossRef Google scholar
Jian P., Liu D. Y., Kröner A., . Time Scale of an Early to Mid-Paleozoic Orogenic Cycle of the Long-Lived Central Asian Orogenic Belt, Inner Mongolia of China: Implications for Continental Growth. Lithos, 2008, 101(3/4): 233-259.
CrossRef Google scholar
Khain E. V., Bibikova E. V., Kröner A., . The Most Ancient Ophiolite of the Central Asian Fold Belt: U-Pb and Pb-Pb Zircon Ages for the Dunzhugur Complex, Eastern Sayan, Siberia, and Geodynamic Implications. Earth and Planetary Science Letters, 2002, 199(3/4): 311-325.
CrossRef Google scholar
Khain E., Bibikova E. V., Salnikova E. B., . The Palaeo-Asian Ocean in the Neoproterozoic and Early Palaeozoic: New Geochronologic Data and Palaeotectonic Reconstructions. Precambrian Research, 2003, 122(1/2/3/4): 329-358.
CrossRef Google scholar
Kinny P. D., Maas R. Lu-Hf and Sm-Nd Isotope Systems in Zircon. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 327-341.
CrossRef Google scholar
Kröner A., Demoux A., Zack T., . Zircon Ages for a Felsic Volcanic Rock and Arc-Related Early Palaeozoic Sediments on the Margin of the Baydrag Microcontinent, Central Asian Orogenic Belt, Mongolia. Journal of Asian Earth Sciences, 2011, 42(5): 1008-1017.
CrossRef Google scholar
Kröner A., Lehmann J., Schulmann K., . Lithostratigraphic and Geochronological Constraints on the Evolution of the Central Asian Orogenic Belt in SW Mongolia: Early Paleozoic Rifting Followed by Late Paleozoic Accretion. American Journal of Science, 2010, 310(7): 523-574.
CrossRef Google scholar
Kröner A., Windley B. F., Badarch G., . Accretionary Growth and Crust Formation in the Central Asian Orogenic Belt and Comparison with the Arabian-Nubian Shield. Geological Society of America Memoirs, 2007, 200(5): 181-209.
CrossRef Google scholar
Li J. Y. Permian Geodynamic Setting of Northeast China and Adjacent Regions: Closure of the Paleo-Asian Ocean and Subduction of the Paleo-Pacific Plate. Journal of Asian Earth Sciences, 2006, 26(3/4): 207-224.
CrossRef Google scholar
Li J. Y., Gao L. M., Sun G. H., . Shuangjingzi Middle Triassic Syn-Collisional Crust-Derived Grainite in the East Inner Monglia and Its Constraint on the Timing of Collision between Siberian and Sino-Korean Paleo-Plates. Acta Petrologica Sinica, 2007, 23(3): 565-582.
Liu Y. S., Gao S., Hu Z. C., . Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 2009, 51(1/2): 537-571.
Liu Y. S., Hu Z. C., Gao S., . In situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 2008, 257(1/2): 34-43.
CrossRef Google scholar
Ludwig K. R. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel, 2003.
Ma S. W., Liu C. F., Xu Z. Q., . Geochronology, Geochemistry and Tectonic Significance of the Early Carboniferous Gabbro and Diorite Plutons in West Ujimqin, Inner Mongolia. Journal of Earth Science, 2017, 28(2): 249-264.
CrossRef Google scholar
Maniar P. D., Piccoli P. M. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 1989, 101(5): 635-643.
CrossRef Google scholar
Middlemost E. A. K. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 1994, 37(3/4): 215-224.
CrossRef Google scholar
Möller A., O’Brien P. J., Kennedy A., . Linking Growth Episodes of Zircon and Metamorphic Textures to Zircon Chemistry: An Example from the Ultrahigh-Temperature Granulites of Rogaland (SW Norway). Geological Society, London, Special Publications, 2003, 220(1): 65-81.
CrossRef Google scholar
Mossakovsky A. A., Ruzhentsev S. V., Samygin S. G., . Central Asian Fold Belt: Geodynamic Evolution and Formation History. Geotectonics, 1994, 27(6): 445-474.
Pearce N. J. G., Perkins W. T., Westgate J. A., . A Compilation of New and Published Major and Trace Element Data for NIST SRM 610 and NIST SRM 612 Glass Reference Materials. Geostandards and Geoanalytical Research, 1997, 21(1): 115-144.
CrossRef Google scholar
Rubatto, D., Gebauer, D., 2000. Use of Cathodoluminescence for U-Pb Zircon Dating by Ion Microprobe: Some Examples from the Western Alps. In: Pagel, M., Barbin, V., Blanc, P., et al., eds., Cathodoluminescence in Geosciences. Springer-Verlag Berlin Heidelberg, [S.l.]. 373–400
Şengör, A. M. C., Natalʼin, B. A., 1996. Paleotectonics of Asia: Fragments of a Synthesis. In: Yin, A., Harrison, M., eds., The Tectonic Evolution of Asia. Cambridge University Press, Cambridge. 486–640
Şengör A. M. C., Natalʼin B. A., Burtman V. S. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 1993, 364(6435): 299-307.
CrossRef Google scholar
Shao J. A., He G. Q., Tang K. D. The Evolution of Permian Continental Crust in Northern Part of North China. Acta Petrologica Sinica, 2015, 31(1): 47-55.
Shao J. A., Tang K. D., He G. Q. Early Permian Tectono-Palaeogeographic Reconstruction of Inner Mongolia, China. Acta Petrologica Sinica, 2014, 30(7): 1858-1866.
Söderlund U., Patchett P. J., Vervoort J. D., . The 176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions. Earth and Planetary Science Letters, 2004, 219(3/4): 311-324.
CrossRef Google scholar
Song B., Zhang Y. H., Wang Y. S., . Mount Making and Procedure of the SHRIMP Dating. Geological Review, 2002, 26-30.
Sun S. S., McDonough W. F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 1989, 42(1): 313-345.
CrossRef Google scholar
Tang K. D. Tectonic Development of Paleozoic Foldbelts at the North Margin of the Sino-Korean Craton. Tectonics, 1990, 9(2): 249-260.
CrossRef Google scholar
Tang K. D. Tectonic Evolution and Metallogenic Regularity of the Fold Belt in the North of the North China Plate, 1992.
Wang Y. M., Han B. F., Griffin W. L., . Post-Entrainment Mineral-Magma Interaction in Mantle Xenoliths from Inner Mongolia, Western North China Craton. Journal of Earth Science, 2012, 23(1): 54-76.
CrossRef Google scholar
Whalen J. B., Currie K. L., Chappell B. W. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 1987, 95(4): 407-419.
CrossRef Google scholar
Wiedenbeck M., Allé P., Corfu F., . Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses. Geostandards and Geoanalytical Research, 1995, 19(1): 1-23.
CrossRef Google scholar
Wu F. Y., Li X. H., Yang J. H., . Discussions on the Petrogenesis of Granites. Acta Petrologica Sinica, 2007, 23(6): 1217-1238.
Wu Y. B., Zheng Y. F. Genetic of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 2004, 49(16): 1589-1604.
CrossRef Google scholar
Xiao W. J., Windley B. F., Hao J., . Accretion Leading to Collision and the Permian Solonker Suture, Inner Mongolia, China: Termination of the Central Asian Orogenic Belt. Tectonics, 2003, 22 6 1069
CrossRef Google scholar
Xiao W. J., Windley B. F., Huang B. C., . End-Permian to Mid-Triassic Termination of the Accretionary Processes of the Southern Altaids: Implications for the Geodynamic Evolution, Phanerozoic Continental Growth, and Metallogeny of Central Asia. International Journal of Earth Sciences, 2009, 98(6): 1189-1217.
CrossRef Google scholar
Xu B., Charvet J., Chen Y., . Middle Paleozoic Convergent Orogenic Belts in Western Inner Mongolia (China): Framework, Kinematics, Geochronology and Implications for Tectonic Evolution of the Central Asian Orogenic Belt. Gondwana Research, 2013, 23(4): 1342-1364.
CrossRef Google scholar
Xu B., Chen B. Framework and Evolution of the Middle Paleozoic Orogenic Belt between Siberian and North China Plates in Northern Inner Mongolia. Science in China Series D: Earth Sciences, 1997, 40(5): 463-469.
CrossRef Google scholar
Xu B., Zhao P., Bao Q. Z., . Preliminary Study on the Pre-Mesozoic Tectonic Unit Division of the Xing-Meng Orogenic Belt (XMOB). Acta Petrologica Sinica, 2014, 30(7): 1841-1857.
Zhang X. H., Zhai M. G. Magmatism and Its Metallogenetic Effects during the Paleozoic Continental Crustal Construction in Northern North China: An Overview. Acta Petrologica Sinica, 2010, 26(5): 1329-1341.
Zhang X. H., Zhang H. F., Tang Y. J., . Early Triassic A-Type Felsic Volcanism in the Xilinhaote-Xiwuqi, Central Inner Mongolia: Age, Geochemistry and Tectonic Implications. Acta Petrologica Sinica, 2006, 22(11): 2769-2780.
Zhao P., Chen Y., Xu B., . Did the Paleo-Asian Ocean between North China Block and Mongolia Block Exist during the Late Paleozoic? First Paleomagnetic Evidence from Central-Eastern Inner Mongolia, China. Journal of Geophysical Research: Solid Earth, 2013, 118(5): 1873-1894.
Zhao P., Xu B., Tong Q. L., . Sedimentological and Geochronological Constraints on the Carboniferous Evolution of Central Inner Mongolia, Southeastern Central Asian Orogenic Belt: Inland Sea Deposition in a Post-Orogenic Setting. Gondwana Research, 2016, 31: 253-270.
CrossRef Google scholar
Zhou W. X., Li S. C., Ge M. C., . Geochemistry and Zircon Geochronology of a Gabbro-Granodiorite Complex in Tongxunlian, Inner Mongolia: Partial Melting of Enriched Lithosphere Mantle. Geological Journal, 2016, 51(1): 21-41.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/