Isotope Chronology and Geochemistry of the Lower Carboniferous Granite in Xilinhot, Inner Mongolia, China

Xiaocheng Zhao , Wenxiao Zhou , Dong Fu , Bo Huang , Mengchun Ge

Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (2) : 280 -294.

PDF
Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (2) : 280 -294. DOI: 10.1007/s12583-017-0942-2
Petrology and Mineral Deposits

Isotope Chronology and Geochemistry of the Lower Carboniferous Granite in Xilinhot, Inner Mongolia, China

Author information +
History +
PDF

Abstract

Geochronological and geochemical analyses were performed on K-feldspar granites and monzonitic granites from the Xilinhot area, Inner Mongolia, China. Zircon U/Pb ages indicate that the two types granites were emplaced during the Lower Carboniferous. The K-feldspar granites (332 Ma) have the typical A-type granite characteristics of a post-collision setting. The monzonitic granites have an emplacement age of 323 Ma. Zircon εHf values of the former range from +12.8 to +14.2, with an average T DM2 of 453 Ma. The latter have lower zircon ε Hf values, ranging from +5.4 to +10.7, with an average T DM2 of 798 Ma. The strong, positive ε Hf values of the zircon indicate that both sets of samples are from a juvenile crust formed in an oceanic crust subduction stage, although the monzonitic granite may have undergone a hybridization of crustal materials. These results indicate a younger post orogenic event. The Paleo-Asian Ocean had closed before the Early Carboniferous and the Xilinhot area started its post-orogenic evolution with an extensional tectonic environment during the Early Carboniferous.

Keywords

Lower Carboniferous granite / Paleo-Asian Ocean / Lu-Hf isotope / Xilinhot / Inner Mongolia

Cite this article

Download citation ▾
Xiaocheng Zhao, Wenxiao Zhou, Dong Fu, Bo Huang, Mengchun Ge. Isotope Chronology and Geochemistry of the Lower Carboniferous Granite in Xilinhot, Inner Mongolia, China. Journal of Earth Science, 2018, 29(2): 280-294 DOI:10.1007/s12583-017-0942-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Andersen T. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chemical Geology, 2002, 192(1/2): 59-79.

[2]

Badarch G., Cunningham W. D., Windley B. F. A New Terrane Subdivision for Mongolia: Implications for the Phanerozoic Crustal Growth of Central Asia. Journal of Asian Earth Sciences, 2002, 21(1): 87-110.

[3]

Batchelor R. A., Bowden P. Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters. Chemical Geology, 1985, 48(1/2/3/4): 43-55.

[4]

Blichert-Toft J., Albarède F. The Lu-Hf Isotope Geochemistry of Chondrites and the Evolution of the Mantle-Crust System. Earth and Planetary Science Letters, 1997, 148(1/2): 243-258.

[5]

Buslov M. M., Fujiwara Y., Iwata K., . Late Paleozoic–Early Mesozoic Geodynamics of Central Asia. Gondwana Research, 2004, 7(3): 791-808.

[6]

Chen B., Xu B. The Main Characteristics and Tectonic Implications of Two Kinds of Paleozoic Granitoids in Sunidzuqi, Central Inner Mongolia. Acta Petrologica Sinica, 1996, 10(4): 49-64.

[7]

Demoux A., Kröner A., Badarch G., . Zircon Ages from the Baydrag Block and the Bayankhongor Ophiolite Zone: Time Constraints on Late Neoproterozoic to Cambrian Subduction-and Accretion-Related Magmatism in Central Mongolia. The Journal of Geology, 2009, 117(4): 377-397.

[8]

Eby G. N. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 1992, 20(7): 641-644.

[9]

Frost B. R., Barnes C. G., Collins W. J., . A Geochemical Classification for Granitic Rocks. Journal of Petrology, 2001, 42(11): 2033-2048.

[10]

Glorie S. D. G. J. B. M. M., . Formation and Palaeozoic Evolution of the Gorny-Altai–Altai-Mongolia Suture Zone (South Siberia): Zircon U/Pb Constraints on the Igneous Record. Gondwana Research, 2011, 20(2/3): 465-484.

[11]

Griffin W. L., Pearson N. J., Belousova E., . The Hf Isotope Composition of Cratonic Mantle: LAM-MC-ICPMS Analysis of Zircon Megacrysts in Kimberlites. Geochimica et Cosmochimica Acta, 2000, 64(1): 133-147.

[12]

Han B. F., He G. Q., Wang X. C., . Late Carboniferous Collision between the Tarim and Kazakhstan-Yili Terranes in the Western Segment of the South Tian Shan Orogen, Central Asia, and Implications for the Northern Xinjiang, Western China. Earth-Science Reviews, 2011, 109(3/4): 74-93.

[13]

Han B. F., Wang S. G., Jahn B. M., . Depleted-Mantle Source for the Ulungur River A-Type Granites from North Xinjiang, China: Geochemistry and Nd-Sr Isotopic Evidence, and Implications for Phanerozoic Crustal Growth. Chemical Geology, 1997, 138(3/4): 135-159.

[14]

Hong D. W., Huang H. Z., Xiao Y. J. The Permian Alkaline Granites in Central Inner Mongolia and Their Geodynamic Significance. Acta Geologica Sinica, 1994, 10(3): 219-230.

[15]

Hong D. W., Wang S. G., Han B. F., . Tectonic Environment Classification and Identifying Symbol of Alkali Granite. Science in China (Series B), 1995, 25(4): 418-426.

[16]

Hong D. W., Zhang J. S., Wang T., . Continental Crustal Growth and the Supercontinental Cycle: Evidence from the Central Asian Orogenic Belt. Journal of Asian Earth Sciences, 2004, 23(5): 799-813.

[17]

Hsu K. J., Wang Q. C., Li L., . Geologic Evolution of the Neimonides: A Working Hypothesis. Eclogae Geologicae Helvetiae, 1991, 84(1): 1-31.

[18]

Hu Z. C., Liu Y. S., Gao S., . A Local Aerosol Extraction Strategy for the Determination of the Aerosol Composition in Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 2008, 23(9): 1192-1203.

[19]

Hu Z. C., Gao S., Liu Y. S., . Signal Enhancement in Laser Ablation ICP-MS by Addition of Nitrogen in the Central Channel Gas. Journal of Analytical Atomic Spectrometry, 2008, 23(8): 1093-1101.

[20]

Hu Z. C., Liu Y. S., Gao S., . Improved in situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 2012, 27(9): 1391-1399.

[21]

Jahn B. M., Litvinovsky B. A., Zanvilevich A. N., . Peralkaline Granitoid Magmatism in the Mongolian-Transbaikalian Belt: Evolution, Petrogenesis and Tectonic Significance. Lithos, 2009, 113(3/4): 521-539.

[22]

Jahn B. M., Wu F. Y., Chen B. Granitoids of the Central Asian Orogenic Belt and Continental Growth in the Phanerozoic. Transactions of the Royal Society of Edinburgh: Earth Sciences, 2000, 91(1/2): 181-193.

[23]

Jahn B. M., Wu F. Y., Chen B. Massive Granitoid Generation in Central Asia: Nd Isotope Evidence and Implication for Continental Growth in the Phanerozoic. Episodes, 2000, 23(2): 82-92.

[24]

Jian P., Kröner A., Windley B. F., . Carboniferous and Cretaceous Mafic-Ultramafic Massifs in Inner Mongolia (China): A SHRIMP Zircon and Geochemical Study of the Previously Presumed Integral “Hegenshan Ophiolite”. Lithos, 2012, 142/143: 48-66.

[25]

Jian P., Liu D. Y., Kröner A., . Time Scale of an Early to Mid-Paleozoic Orogenic Cycle of the Long-Lived Central Asian Orogenic Belt, Inner Mongolia of China: Implications for Continental Growth. Lithos, 2008, 101(3/4): 233-259.

[26]

Khain E. V., Bibikova E. V., Kröner A., . The Most Ancient Ophiolite of the Central Asian Fold Belt: U-Pb and Pb-Pb Zircon Ages for the Dunzhugur Complex, Eastern Sayan, Siberia, and Geodynamic Implications. Earth and Planetary Science Letters, 2002, 199(3/4): 311-325.

[27]

Khain E., Bibikova E. V., Salnikova E. B., . The Palaeo-Asian Ocean in the Neoproterozoic and Early Palaeozoic: New Geochronologic Data and Palaeotectonic Reconstructions. Precambrian Research, 2003, 122(1/2/3/4): 329-358.

[28]

Kinny P. D., Maas R. Lu-Hf and Sm-Nd Isotope Systems in Zircon. Reviews in Mineralogy and Geochemistry, 2003, 53(1): 327-341.

[29]

Kröner A., Demoux A., Zack T., . Zircon Ages for a Felsic Volcanic Rock and Arc-Related Early Palaeozoic Sediments on the Margin of the Baydrag Microcontinent, Central Asian Orogenic Belt, Mongolia. Journal of Asian Earth Sciences, 2011, 42(5): 1008-1017.

[30]

Kröner A., Lehmann J., Schulmann K., . Lithostratigraphic and Geochronological Constraints on the Evolution of the Central Asian Orogenic Belt in SW Mongolia: Early Paleozoic Rifting Followed by Late Paleozoic Accretion. American Journal of Science, 2010, 310(7): 523-574.

[31]

Kröner A., Windley B. F., Badarch G., . Accretionary Growth and Crust Formation in the Central Asian Orogenic Belt and Comparison with the Arabian-Nubian Shield. Geological Society of America Memoirs, 2007, 200(5): 181-209.

[32]

Li J. Y. Permian Geodynamic Setting of Northeast China and Adjacent Regions: Closure of the Paleo-Asian Ocean and Subduction of the Paleo-Pacific Plate. Journal of Asian Earth Sciences, 2006, 26(3/4): 207-224.

[33]

Li J. Y., Gao L. M., Sun G. H., . Shuangjingzi Middle Triassic Syn-Collisional Crust-Derived Grainite in the East Inner Monglia and Its Constraint on the Timing of Collision between Siberian and Sino-Korean Paleo-Plates. Acta Petrologica Sinica, 2007, 23(3): 565-582.

[34]

Liu Y. S., Gao S., Hu Z. C., . Continental and Oceanic Crust Recycling-Induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths. Journal of Petrology, 2009, 51(1/2): 537-571.

[35]

Liu Y. S., Hu Z. C., Gao S., . In situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS without Applying an Internal Standard. Chemical Geology, 2008, 257(1/2): 34-43.

[36]

Ludwig K. R. ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel, 2003.

[37]

Ma S. W., Liu C. F., Xu Z. Q., . Geochronology, Geochemistry and Tectonic Significance of the Early Carboniferous Gabbro and Diorite Plutons in West Ujimqin, Inner Mongolia. Journal of Earth Science, 2017, 28(2): 249-264.

[38]

Maniar P. D., Piccoli P. M. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 1989, 101(5): 635-643.

[39]

Middlemost E. A. K. Naming Materials in the Magma/Igneous Rock System. Earth-Science Reviews, 1994, 37(3/4): 215-224.

[40]

Möller A., O’Brien P. J., Kennedy A., . Linking Growth Episodes of Zircon and Metamorphic Textures to Zircon Chemistry: An Example from the Ultrahigh-Temperature Granulites of Rogaland (SW Norway). Geological Society, London, Special Publications, 2003, 220(1): 65-81.

[41]

Mossakovsky A. A., Ruzhentsev S. V., Samygin S. G., . Central Asian Fold Belt: Geodynamic Evolution and Formation History. Geotectonics, 1994, 27(6): 445-474.

[42]

Pearce N. J. G., Perkins W. T., Westgate J. A., . A Compilation of New and Published Major and Trace Element Data for NIST SRM 610 and NIST SRM 612 Glass Reference Materials. Geostandards and Geoanalytical Research, 1997, 21(1): 115-144.

[43]

Rubatto, D., Gebauer, D., 2000. Use of Cathodoluminescence for U-Pb Zircon Dating by Ion Microprobe: Some Examples from the Western Alps. In: Pagel, M., Barbin, V., Blanc, P., et al., eds., Cathodoluminescence in Geosciences. Springer-Verlag Berlin Heidelberg, [S.l.]. 373–400

[44]

Şengör, A. M. C., Natalʼin, B. A., 1996. Paleotectonics of Asia: Fragments of a Synthesis. In: Yin, A., Harrison, M., eds., The Tectonic Evolution of Asia. Cambridge University Press, Cambridge. 486–640

[45]

Şengör A. M. C., Natalʼin B. A., Burtman V. S. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 1993, 364(6435): 299-307.

[46]

Shao J. A., He G. Q., Tang K. D. The Evolution of Permian Continental Crust in Northern Part of North China. Acta Petrologica Sinica, 2015, 31(1): 47-55.

[47]

Shao J. A., Tang K. D., He G. Q. Early Permian Tectono-Palaeogeographic Reconstruction of Inner Mongolia, China. Acta Petrologica Sinica, 2014, 30(7): 1858-1866.

[48]

Söderlund U., Patchett P. J., Vervoort J. D., . The 176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions. Earth and Planetary Science Letters, 2004, 219(3/4): 311-324.

[49]

Song B., Zhang Y. H., Wang Y. S., . Mount Making and Procedure of the SHRIMP Dating. Geological Review, 2002, 26-30.

[50]

Sun S. S., McDonough W. F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 1989, 42(1): 313-345.

[51]

Tang K. D. Tectonic Development of Paleozoic Foldbelts at the North Margin of the Sino-Korean Craton. Tectonics, 1990, 9(2): 249-260.

[52]

Tang K. D. Tectonic Evolution and Metallogenic Regularity of the Fold Belt in the North of the North China Plate, 1992.

[53]

Wang Y. M., Han B. F., Griffin W. L., . Post-Entrainment Mineral-Magma Interaction in Mantle Xenoliths from Inner Mongolia, Western North China Craton. Journal of Earth Science, 2012, 23(1): 54-76.

[54]

Whalen J. B., Currie K. L., Chappell B. W. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 1987, 95(4): 407-419.

[55]

Wiedenbeck M., Allé P., Corfu F., . Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses. Geostandards and Geoanalytical Research, 1995, 19(1): 1-23.

[56]

Wu F. Y., Li X. H., Yang J. H., . Discussions on the Petrogenesis of Granites. Acta Petrologica Sinica, 2007, 23(6): 1217-1238.

[57]

Wu Y. B., Zheng Y. F. Genetic of Zircon and Its Constraints on Interpretation of U-Pb Age. Chinese Science Bulletin, 2004, 49(16): 1589-1604.

[58]

Xiao W. J., Windley B. F., Hao J., . Accretion Leading to Collision and the Permian Solonker Suture, Inner Mongolia, China: Termination of the Central Asian Orogenic Belt. Tectonics, 2003, 22 6 1069

[59]

Xiao W. J., Windley B. F., Huang B. C., . End-Permian to Mid-Triassic Termination of the Accretionary Processes of the Southern Altaids: Implications for the Geodynamic Evolution, Phanerozoic Continental Growth, and Metallogeny of Central Asia. International Journal of Earth Sciences, 2009, 98(6): 1189-1217.

[60]

Xu B., Charvet J., Chen Y., . Middle Paleozoic Convergent Orogenic Belts in Western Inner Mongolia (China): Framework, Kinematics, Geochronology and Implications for Tectonic Evolution of the Central Asian Orogenic Belt. Gondwana Research, 2013, 23(4): 1342-1364.

[61]

Xu B., Chen B. Framework and Evolution of the Middle Paleozoic Orogenic Belt between Siberian and North China Plates in Northern Inner Mongolia. Science in China Series D: Earth Sciences, 1997, 40(5): 463-469.

[62]

Xu B., Zhao P., Bao Q. Z., . Preliminary Study on the Pre-Mesozoic Tectonic Unit Division of the Xing-Meng Orogenic Belt (XMOB). Acta Petrologica Sinica, 2014, 30(7): 1841-1857.

[63]

Zhang X. H., Zhai M. G. Magmatism and Its Metallogenetic Effects during the Paleozoic Continental Crustal Construction in Northern North China: An Overview. Acta Petrologica Sinica, 2010, 26(5): 1329-1341.

[64]

Zhang X. H., Zhang H. F., Tang Y. J., . Early Triassic A-Type Felsic Volcanism in the Xilinhaote-Xiwuqi, Central Inner Mongolia: Age, Geochemistry and Tectonic Implications. Acta Petrologica Sinica, 2006, 22(11): 2769-2780.

[65]

Zhao P., Chen Y., Xu B., . Did the Paleo-Asian Ocean between North China Block and Mongolia Block Exist during the Late Paleozoic? First Paleomagnetic Evidence from Central-Eastern Inner Mongolia, China. Journal of Geophysical Research: Solid Earth, 2013, 118(5): 1873-1894.

[66]

Zhao P., Xu B., Tong Q. L., . Sedimentological and Geochronological Constraints on the Carboniferous Evolution of Central Inner Mongolia, Southeastern Central Asian Orogenic Belt: Inland Sea Deposition in a Post-Orogenic Setting. Gondwana Research, 2016, 31: 253-270.

[67]

Zhou W. X., Li S. C., Ge M. C., . Geochemistry and Zircon Geochronology of a Gabbro-Granodiorite Complex in Tongxunlian, Inner Mongolia: Partial Melting of Enriched Lithosphere Mantle. Geological Journal, 2016, 51(1): 21-41.

AI Summary AI Mindmap
PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/