Effect of Beam Current and Diameter on Electron Probe Microanalysis of Carbonate Minerals

Xing Zhang , Shuiyuan Yang , He Zhao , Shaoyong Jiang , Ruoxi Zhang , Jing Xie

Journal of Earth Science ›› 2019, Vol. 30 ›› Issue (4) : 834 -842.

PDF
Journal of Earth Science ›› 2019, Vol. 30 ›› Issue (4) : 834 -842. DOI: 10.1007/s12583-017-0939-x
Article

Effect of Beam Current and Diameter on Electron Probe Microanalysis of Carbonate Minerals

Author information +
History +
PDF

Abstract

The effect of operating conditions on the time-dependent X-ray intensity variation is of great importance for the optimal EPMA conditions for accurate determinations of various elements in carbonate minerals. Beam diameters of 0, 1, 2, 5, 10, 15, and 20 μm, and beam currents of 3, 5, 10, 20, and 50 nA were tested. Ca, Mg, Zn, and Sr were found to be more sensitive to electron beam irradiation as compared to other elements, and small currents and large beam diameters minimized the time-dependent X-ray intensity variations. We determined the optimal EPMA operating conditions for elements in carbonate: 10 μm and 5 nA for calcite; 10 μm and 10 nA for dolomite; 5 μm and 10 nA or 10 μm and 20 nA for strontianite; and 20 nA and 5 μm for other carbonate. Elements sensitive to electron beam irradiation should be determined first. In addition, silicate minerals are preferred as standards rather than carbonate minerals.

Keywords

carbonate minerals / electron probe microanalysis / characteristic X-ray / time-dependent intensity / beam current / beam diameter

Cite this article

Download citation ▾
Xing Zhang, Shuiyuan Yang, He Zhao, Shaoyong Jiang, Ruoxi Zhang, Jing Xie. Effect of Beam Current and Diameter on Electron Probe Microanalysis of Carbonate Minerals. Journal of Earth Science, 2019, 30(4): 834-842 DOI:10.1007/s12583-017-0939-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Carpenter P. EPMA Standards: The Good, the Bad, and the Ugly. Microscopy and Microanalysis, 2008, 14(S2): 530-531.

[2]

Essene E. J. Solid Solutions and Solvi among Metamorphic Carbonates with Applications to Geologic Thermobarometry. Reviews in Mineralogy, 1983, 11(1): 77-96.

[3]

Goldoff B., Webster J. D., Harlov D. E. Characterization of Fluor-Chlorapatites by Electron Probe Microanalysis with a Focus on Time-Dependent Intensity Variation of Halogens. American Mineralogist, 2012, 97(7): 1103-1115.

[4]

Henderson C. Beam Sensitivity in EPMA: The Analysis of Apatite, Ca5(PO4)3 (F, Cl, OH). Microscopy and Microanalysis, 2011, 17(S2): 588-589.

[5]

Humphreys M. C. S., Kearns S. L., Blundy J. D. SIMS Investigation of Electron-Beam Damage to Hydrous, Rhyolitic Glasses: Implications for Melt Inclusion Analysis. American Mineralogist, 2006, 91(4): 667-679.

[6]

Jurek K., Gedeon O. Analysis of Alkali-Silicate Glasses by Electron Probe Analysis. Spectrochimica Acta Part B: Atomic Spectroscopy, 2003, 58(4): 741-744.

[7]

Kearns S. L., Ben B. S. Low Voltage FEG-EPMA in Earth Sciences––Problems and Solutions for Analysis of Unstable Materials. Microscopy and Microanalysis, 2016, 22(S3): 416-417.

[8]

Kearns S., Ben B. S., Wade J. Mitigating Thermal Beam Damage with Metallic Coats in Low Voltage FEG-EPMA of Geological Materials. Microscopy and Microanalysis, 2014, 20(S3): 740-741.

[9]

Kerrick D. M., Eminhizer L. B., Villaume J. F. The Role of Carbon Film Thickness in Electron Microprobe Analysis. American Mineralogist, 1973, 58(9/10): 920-925.

[10]

Lane S. J., Dalton J. A. Electron Microprobe Analysis of Geological Carbonates. American Mineralogist, 1994, 79(7/8): 745-749.

[11]

Marks M. A. W., Wenzel T., Whitehouse M. J., . The Volatile Inventory (F, Cl, Br, S, C) of Magmatic Apatite: An Integrated Analytical Approach. Chemical Geology, 2012, 291: 241-255.

[12]

McGee J. J., Keil K. Application of Electron Probe Microanalysis to the Study of Geological and Planetary Materials. Microscopy and Microanalysis, 2001, 7(2): 200-210.

[13]

Meier D. C., Davis J. M., Vicenzi E. P. An Examination of Kernite (Na2B4O6(OH)2·3H2O) Using X-Ray and Electron Spectroscopies: Quantitative Microanalysis of a Hydrated Low-Z Mineral. Microscopy and Microanalysis, 2011, 17(5): 718-727.

[14]

Morgan G. B., London D. Optimizing the Electron Microprobe Analysis of Hydrous Alkali Aluminosilicate Glasses. American Mineralogist, 1996, 81(9/10): 1176-1185.

[15]

Morgan G. B. I., London D. The Effect of Current Density on the Electron Microprobe Analysis of Alkali Aluminosilicate Glasses. American Mineralogist, 2005, 90(7): 1131-1138.

[16]

Smith M. P. Silver Coating Inhibits Electron Microprobe Beam Damage of Carbonates. Journal of Sedimentary Research, 1986, 56(4): 560-561.

[17]

Spray J. G., Rae D. A. Quantitative Electron-Microprobe Analysis of Alkali Silicate Glasses: A Review and User Guide. The Canadian Mineralogist, 1995, 33(2): 323-332.

[18]

Stock M. J., Humphreys M. C. S., Smith V. C., . New Constraints on Electron-Beam Induced Halogen Migration in Apatite. American Mineralogist, 2015, 100(1): 281-293.

[19]

Stormer J. C., Pierson M. L., Tacker R. C. Variation of F and Cl XRay Intensity due to Anisotropic Diffusion in Apatite during Electron Microprobe Analysis. American Mineralogist, 1993, 78(5–6): 641-648.

[20]

Sweatman T. R., Long J. V. P. Quantitative Electron-Probe Microanalysis of Rock-Forming Minerals. Journal of Petrology, 1969, 10(2): 332-379.

[21]

Yang S. Y., Jiang S. Y. Chemical and Boron Isotopic Composition of Tourmaline in the Xiangshan Volcanic-Intrusive Complex, Southeast China: Evidence for Boron Mobilization and Infiltration during Magmatic-Hydrothermal Processes. Chemical Geology, 2012, 312/313: 177-189.

[22]

Yang S. Y., Jiang S. Y. Occurrence and Significance of a Quartz-Amphibole Schist Xenolith within a Mafic Microgranular Enclave in the Xiangshan Volcanic-Intrusive Complex, SE China. International Geology Review, 2013, 55(7): 894-903.

[23]

Yang S. Y., Jiang S. Y., Palmer M. R. Chemical and Boron Isotopic Compositions of Tourmaline from the Nyalam Leucogranites, South Tibetan Himalaya: Implication for Their Formation from B-Rich Melt to Hydrothermal Fluids. Chemical Geology, 2015, 419: 102-113.

[24]

Yang S. Y., Jiang S. Y., Zhao K. D., . Tourmaline as a Recorder of Magmatic-Hydrothermal Evolution: An in-situ Major and Trace Element Analysis of Tourmaline from the Qitianling Batholith, South China. Contributions to Mineralogy and Petrology, 2015, 170(5/6): 1-21.

[25]

Ye M., Zhao H., Zhao M., . Mineral Chemistry of Biotite and Its Petrogenesis Implication in Lingshan Granite Pluton, Gan-Hang Belt, SE China. Acta Petrologica Sinica, 2017, 33(3): 896-906.

[26]

Zhang R. X., Yang S. Y. A Mathematical Model for Determining Carbon Coating Thickness and Its Application in Electron Probe Microanalysis. Microscopy and Microanalysis, 2016, 22(6): 1374-1380.

[27]

Zhang H. C., Zhu Y. F., Feng W. Y., . Paleozoic Intrusive Rocks in the Nalati Mountain Range (NMR), Southwest Tianshan: Geodynamic Evolution Based on Petrology and Geochemical Studies. Journal of Earth Science, 2017, 28(2): 196-217.

[28]

Zhao D. G., Zhang Y. X., Essene E. J. Electron Probe Microanalysis and Microscopy: Principles and Applications in Characterization of Mineral Inclusions in Chromite from Diamond Deposit. Ore Geology Reviews, 2015, 65: 733-748.

[29]

Zhao L. M., Takasu A., Liu Y. J., . Blueschist from the Toudaoqiao Area, Inner Mongolia, NE China: Evidence for the Suture between the Ergun and the Xing’an Blocks. Journal of Earth Science, 2017, 28(2): 241-248.

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/