Trace Elements Characteristics of Black Shales from the Ediacaran Doushantuo Formation, Hubei Province, South China: Implications for Redox and Open vs. Restricted Basin Conditions

Bi Zhu , Shaoyong Jiang , Daohui Pi , Lu Ge , Jinghong Yang

Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (2) : 342 -352.

PDF
Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (2) : 342 -352. DOI: 10.1007/s12583-017-0907-5
Petroleum Geology

Trace Elements Characteristics of Black Shales from the Ediacaran Doushantuo Formation, Hubei Province, South China: Implications for Redox and Open vs. Restricted Basin Conditions

Author information +
History +
PDF

Abstract

In the present study, we carried out trace element analyses of black shales of the Ediacaran Doushantou Formation from two sections (Jiulongwan, Baiguoyuan) in Hubei Province, South China. Mo-U characteristics of black shales from the two sections and compiled Mo-U data of Doushantuo black shales from sections of a variety of sedimentary facies described the temporal/spatial variability in the redox conditions of paleo-seawater during deposition of the Doushantuo Formation. Changes in Mo-U patterns of the Doushantuo Member II (DST2) shales of open marine environments are consistent with a shift from a predominately oxic to a predominately anoxic ocean during their deposition. Mo-U patterns of the DST2 black shales from intra-shelf sections reflect basin restriction may have happened in the intra-shelf basin and are compatible with the redox-stratified model of the intra-shelf basin. Mo-U patterns of black shales of the Doushantuo Member IV (DST4) reveal that the shales from intra-shelf sections have more pronounced Mo enrichment and more significant enrichment of Mo over U than the slope shales, indicating the operation of a Mn particulate shuttle in the intra-shelf basin. High Mo/TOC ratios of the DST4 at the intra-shelf sections, in combination with similar Mo-TOC patterns of the DST4 from both intra-shelf and slope sections, indicate the intrashelf basin was well connected to the open ocean during deposition of the DST4.

Keywords

Doushantuo Formation / Mo-U covariation / Mo/TOC / South China

Cite this article

Download citation ▾
Bi Zhu, Shaoyong Jiang, Daohui Pi, Lu Ge, Jinghong Yang. Trace Elements Characteristics of Black Shales from the Ediacaran Doushantuo Formation, Hubei Province, South China: Implications for Redox and Open vs. Restricted Basin Conditions. Journal of Earth Science, 2018, 29(2): 342-352 DOI:10.1007/s12583-017-0907-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Algeo T. J., Lyons T. W. Mo-Total Organic Carbon Covariation in Modern Anoxic Marine Environments: Implications for Analysis of Paleoredox and Paleohydrographic Conditions. Paleoceanography, 2006, 21(1): 279-298.

[2]

Algeo T. J., Maynard J. B. Trace-Element Behavior and Redox Facies in Core Shales of Upper Pennsylvanian Kansas-Type Cyclothems. Chemical Geology, 2004, 206(3/4): 289-318.

[3]

Algeo T. J., Rowe H. Paleoceanographic Applications of Trace-Metal Concentration Data. Chemical Geology, 2012, 324/325: 6-18.

[4]

Algeo T. J., Tribovillard N. Environmental Analysis of Paleoceanographic Systems Based on Molybdenum-Uranium Covariation. Chemical Geology, 2009, 268(3/4): 211-225.

[5]

Algeo T. J. Can Marine Anoxic Events Draw down the Trace Element Inventory of Seawater?. Geology, 2004, 32 12 1057

[6]

Anbar A. D., Duan Y., Lyons T. W., . A Whiff of Oxygen before the Great Oxidation Event?. Science, 2007, 317(5846): 1903-1906.

[7]

Bjerrum C. J., Canfield D. E. Towards a Quantitative Understanding of the Late Neoproterozoic Carbon Cycle. Proceedings of the National Academy of Sciences, 2011, 108(14): 5542-5547.

[8]

Brasier M., Antciliffe J. Paleobiology: Decoding the Ediacaran Enigma. Science, 2004, 305(5687): 1115-1117.

[9]

Bristow T. F., Kennedy M. J., Derkowski A., . Mineralogical Constraints on the Paleoenvironments of the Ediacaran Doushantuo Formation. Proceedings of the National Academy of Sciences, 2009, 106(32): 13190-13195.

[10]

Canfield D. E., Poulton S. W., Narbonne G. M. Late-Neoproterozoic Deep-Ocean Oxygenation and the Rise of Animal Life. Science, 2007, 315(5808): 92-95.

[11]

Chen X., Ling H. F., Vance D., . Rise to Modern Levels of Ocean Oxygenation Coincided with the Cambrian Radiation of Animals. Nature Communications, 2015, 6 7142

[12]

Condon D., Zhu M., Bowring S., . U-Pb Ages from the Neoproterozoic Doushantuo Formation, China. Science, 2005, 308(5718): 95-98.

[13]

Crusius J., Calvert S., Pedersen T., . Rhenium and Molybdenum Enrichments in Sediments as Indicators of Oxic, Suboxic and Sulfidic Conditions of Deposition. Earth and Planetary Science Letters, 1996, 145(1–4): 65-78.

[14]

Fan H. F., Zhu X. K., Wen H. J., . Oxygenation of Ediacaran Ocean Recorded by Iron Isotopes. Geochimica et Cosmochimica Acta, 2014, 140: 80-94.

[15]

Fike D. A., Grotzinger J. P., Pratt L. M., . Oxidation of the Ediacaran Ocean. Nature, 2006, 444(7120): 744-747.

[16]

Guo Q. J., Shields G. A., Liu C. Q., . Trace Element Chemostratigraphy of Two Ediacaran–Cambrian Successions in South China: Implications for Organosedimentary Metal Enrichment and Silicification in the Early Cambrian. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1/2): 194-216.

[17]

Halverson G. P., Dudás F. Ö, Ma.loof, A. C., M. A. C., . Evolution of the 87Sr/86Sr Composition of Neoproterozoic Seawater. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 256(3/4): 103-129.

[18]

Halverson G. P., Wade B. P., Hurtgen M. T., . Neoproterozoic Chemostratigraphy. Precambrian Research, 2010, 182(4): 337-350.

[19]

Hatch J. R., Leventhal J. S. Relationship between Inferred Redox Potential of the Depositional Environment and Geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A.. Chemical Geology, 1992, 99(1/2/3): 65-82.

[20]

Jiang G. Q., Shi X. Y., Zhang S. H., . Stratigraphy and Paleogeography of the Ediacaran Doushantuo Formation (ca. 635–551 Ma) in South China. Gondwana Research, 2011, 19(4): 831-849.

[21]

Jones B., Manning D. A. C. Comparison of Geochemical Indices Used for the Interpretation of Palaeoredox Conditions in Ancient Mudstones. Chemical Geology, 1994, 111(1/2/3/4): 111-129.

[22]

Kendall B., Komiya T., Lyons T. W., . Uranium and Molybdenum Isotope Evidence for an Episode of Widespread Ocean Oxygenation during the Late Ediacaran Period. Geochimica et Cosmochimica Acta, 2015, 156: 173-193.

[23]

Kendall B. S. Rhenium-Osmium Geochronology of Precambrian Organic-Rich Sedimentary Rocks, Systematics and Applications: [Dissertation], 2008.

[24]

Kendall B., Creaser R. A., Selby D. 187Re-187Os Geochronology of Precambrian Organic-Rich Sedimentary Rocks. Geological Society, London, Special Publications, 2009, 326(1): 85-107.

[25]

Knoll A. H., Walter M. R., Narbonne G. M., . Geology: A New Period for the Geologic Time Scale. Science, 2004, 305(5684): 621-622.

[26]

Knoll A., Walter M., Narbonne G., . The Ediacaran Period: A New Addition to the Geologic Time Scale. Lethaia, 2006, 39(1): 13-30.

[27]

Li C., Love G. D., Lyons T. W., . A Stratified Redox Model for the Ediacaran Ocean. Science, 2010, 328(5974): 80-83.

[28]

Li C., Zhu M. Y., Chu X. L. Preface: Atmospheric and Oceanic Oxygenation and Evolution of Early Life on Earth: New Contributions from China. Journal of Earth Science, 2016, 27(2): 167-169.

[29]

Liu P. J., Yin C. Y., Gao L. Z., . New Material of Microfossils from the Ediacaran Doushantuo Formation in the Zhangcunping Area, Yichang, Hubei Province and its Zircon SHRIMP U-Pb Age. Science Bulletin, 2009, 54(6): 1058-1064.

[30]

Liu P. J., Chen S. M., Zhu M. Y., . High-Resolution Biostratigraphic and Chemostratigraphic Data from the Chenjiayuanzi Section of the Doushantuo Formation in the Yangtze Gorges Area, South China: Implication for Subdivision and Global Correlation of the Ediacaran System. Precambrian Research, 2014, 249: 199-214.

[31]

Liu P. J., Yin C. Y., Chen S. M., . The Biostratigraphic Succession of Acanthomorphic Acritarchs of the Ediacaran Doushantuo Formation in the Yangtze Gorges Area, South China and Its Biostratigraphic Correlation with Australia. Precambrian Research, 2013, 225: 29-43.

[32]

Lyons T. W., Reinhard C. T., Planavsky N. J. The Rise of Oxygen in Earth’s Early Ocean and Atmosphere. Nature, 2014, 506(7488): 307-315.

[33]

McArthur J. M., Algeo T. J., van de Schootbrugge B., . Basinal Restriction, Black Shales, Re-Os Dating, and the Early Toarcian (Jurassic) Oceanic Anoxic Event. Paleoceanography, 2008, 23 4 PA4217

[34]

McCall G. J. H. The Vendian (Ediacaran) in the Geological Record: Enigmas in Geology’s Prelude to the Cambrian Explosion. Earth-Science Reviews, 2006, 77(1/2/3): 1-229.

[35]

McFadden K. A., Huang J., Chu X., . Pulsed Oxidation and Biological Evolution in the Ediacaran Doushantuo Formation. Proceedings of the National Academy of Sciences, 2008, 105(9): 3197-3202.

[36]

Mi T. W., Lin L., Pang Y. C., . The Sequence Stratigraphy and Genesis of Phosphorites of Doushantuo Formation at Baiguoyuan, Yichang, Hubei. Acta Sedimentologica Sinica, 2010, 28(3): 471-480.

[37]

Och L. M., Cremonese L., Shields-Zhou G. A., . Palaeoceanographic Controls on Spatial Redox Distribution over the Yangtze Platform during the Ediacaran–Cambrian Transition. Sedimentology, 2015, 63(2): 378-410.

[38]

Perkins R. B., Piper D. Z., Mason C. E. Trace-Element Budgets in the Ohio/Sunbury Shales of Kentucky: Constraints on Ocean Circulation and Primary Productivity in the Devonian–Mississippian Appalachian Basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 265(1/2): 14-29.

[39]

Reinhard C. T., Planavsky N. J., Robbins L. J., . Proterozoic Ocean Redox and Biogeochemical Stasis. Proceedings of the National Academy of Sciences, 2013, 110(14): 5357-5362.

[40]

Ries J. B., Fike D. A., Pratt L. M., . Superheavy Pyrite (34Spyr>34SCAS) in the Terminal Proterozoic Nama Group, Southern Namibia: A Consequence of Low Seawater Sulfate at the Dawn of Animal Life. Geology, 2009, 37(8): 743-746.

[41]

Rimmer S. M. Geochemical Paleoredox Indicators in Devonian–Mississippian Black Shales, Central Appalachian Basin (USA). Chemical Geology, 2004, 206(3/4): 373-391.

[42]

Sahoo S. K., Planavsky N. J., Jiang G., . Oceanic Oxygenation Events in the Anoxic Ediacaran Ocean. Geobiology, 2016, 14(5): 457-468.

[43]

Sahoo S. K., Planavsky N. J., Kendall B., . Ocean Oxygenation in the Wake of the Marinoan Glaciation. Nature, 2012, 489(7417): 546-549.

[44]

Scott C., Lyons T. W., Bekker A., . Tracing the Stepwise Oxygenation of the Proterozoic Ocean. Nature, 2008, 452(7186): 456-459.

[45]

Tribovillard N., Algeo T. J., Baudin F., . Analysis of Marine Environmental Conditions Based Onmolybdenum-Uranium Covariation—Applications to Mesozoic Paleoceanography. Chemical Geology, 2012, 324–325: 46-58.

[46]

Tribovillard N., Algeo T. J., Lyons T., . Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 2006, 232(1/2): 12-32.

[47]

Vernhet E., Reijmer J. J. G. Sedimentary Evolution of the Ediacaran Yangtze Platform Shelf (Hubei and Hunan Provinces, Central China). Sedimentary Geology, 2010, 225(3/4): 99-115.

[48]

Wignall P. B., Twitchett R. J. Oceanic Anoxia and the End Permian Mass Extinction. Science, 1996, 272(5265): 1155-1158.

[49]

Xiao S. H., Muscente A. D., Chen L., . The Weng'an Biota and the Ediacaran Radiation of Multicellular Eukaryotes. National Science Review, 2014, 1(4): 498-520.

[50]

Xiao S. H., Yuan X. L., Steiner M., . Macroscopic Carbonaceous Compressions in a Terminal Proterozoic Shale: A Systematic Reassessment of the Miaohe Biota, South China. Journal of Paleontology, 2002, 76(2): 347-376.

[51]

Xiao S. H., Knoll A. H. Fossil Preservation in the Neoproterozoic Doushantuo Phosphorite Lagerstätte, South China. Lethaia, 2007, 32(3): 219-238.

[52]

Yin L. M., Zhu M. Y., Knoll A. H., . Doushantuo Embryos Preserved Inside Diapause Egg Cysts. Nature, 2007, 446(7136): 661-663.

[53]

Zhai L. N., Wu C. D., Ye Y., . Marine Redox Variations during the Ediacaran–Cambrian Transition on the Yangtze Platform, South China. Geological Journal, 2016.

[54]

Zheng Y., Anderson R. F. v G. A., . Authigenic Molybdenum Formation in Marine Sediments: A Link to Pore Water Sulfide in the Santa Barbara Basin. Geochimica et Cosmochimica Acta, 2000, 64(24): 4165-4178.

[55]

Zhou C. M., Jiang S. Y. Palaeoceanographic Redox Environments for the Lower Cambrian Hetang Formation in South China: Evidence from Pyrite Framboids, Redox Sensitive Trace Elements, and Sponge Biota Occurrence. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 271(3/4): 279-286.

[56]

Zhou C. M., Xie G. W., McFadden K., . The Diversification and Extinction of Doushantuo-Pertatataka Acritarchs in South China: Causes and Biostratigraphic Significance. Geological Journal, 2007, 42(3/4): 229-262.

[57]

Zhu B., Becker H., Jiang S. Y., . Re-Os Geochronology of Black Shales from the Neoproterozoic Doushantuo Formation, Yangtze Platform, South China. Precambrian Research, 2013, 225(2013): 67-76.

[58]

Zhu M. Y., Zhang J. M., Steiner M., . Sinian-Cambrian Stratigraphic Framework for Shallow-to Deep-Water Environments of the Yangtze Platform: An Integrated Approach. Progress in Natural Science, 2003, 13(12): 951-960.

[59]

Zhu M. Y., Lu M., Zhang J. M., . Carbon Isotope Chemostratigraphy and Sedimentary Facies Evolution of the Ediacaran Doushantuo Formation in Western Hubei, South China. Precambrian Research, 2013, 225(1): 7-28.

[60]

Zhu M. Y., Zhang J. M., Yang A. H. Integrated Ediacaran (Sinian) Chronostratigraphy of South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(1/2): 7-61.

AI Summary AI Mindmap
PDF

155

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/