Prestack Multi-Gather Simultaneous Inversion of Elastic Parameters Using Multiple Regularization Constraints

Shu Li, Zhenming Peng, Hao Wu

Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (6) : 1359-1371.

Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (6) : 1359-1371. DOI: 10.1007/s12583-017-0905-7
Geophysical Imaging from Subduction Zones to Petroleum Reservoirs

Prestack Multi-Gather Simultaneous Inversion of Elastic Parameters Using Multiple Regularization Constraints

Author information +
History +

Abstract

Inversion of Young’s modulus, Poisson’s ratio and density from pre-stack seismic data has been proved to be feasible and effective. However, the existing methods do not take full advantage of the prior information, without considering the lateral continuity of the inversion results, and need to invert the reflectivity first. In this paper, we propose multi-gather simultaneous inversion for pre-stack seismic data. Meanwhile, the total variation (TV) regularization, L1 norm regularization and initial model constraint are used. In order to solve the objective function contains L1 norm, TV norm and L2 norm, we develop an algorithm based on split Bregman iteration. The main advantages of our method are as follows: (1) The elastic parameters are calculated directly from objective function rather than from their reflectivity, therefore the stability and accuracy of the inversion process can be ensured. (2) The inversion results are more accordance with the geological prior information. (3) The lateral continuity of the inversion results are improved. The proposed method is illustrated by theoretical model data and experimented with a 2-D field data.

Keywords

elastic parameter / pre-stack inversion / multi-gather / regularization

Cite this article

Download citation ▾
Shu Li, Zhenming Peng, Hao Wu. Prestack Multi-Gather Simultaneous Inversion of Elastic Parameters Using Multiple Regularization Constraints. Journal of Earth Science, 2018, 29(6): 1359‒1371 https://doi.org/10.1007/s12583-017-0905-7

References

Baraniuk R. Compressive Sensing. IEEE Signal Processing Magazine, 2007, 24(4): 118-121.
CrossRef Google scholar
Chen S. S., Donoho D. L., Saunders M. A. Atomic Decomposition by Basis Pursuit. SIAM Review, 2001, 43(1): 129-159.
CrossRef Google scholar
Donoho D. L. Compressed Sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
CrossRef Google scholar
Gholami A. Nonlinear Multichannel Impedance Inversion by Total-Variation Regularization, 2015, Geophysics, 80(5): R217–R224
CrossRef Google scholar
Goldstein T., Osher S. The Split Bregman Method for L1-Regularized Problems. SIAM Journal on Imaging Sciences, 2009, 2(2): 323-343.
CrossRef Google scholar
Hamid H., Pidlisecky A. Multitrace Impedance Inversion with Lateral Constraints. Geophysics, 2015, 80(6): M101-M111.
CrossRef Google scholar
Harris N. B., Miskimins J. L., Mnich C. A. Mechanical Anisotropy in the Woodford Shale, Permian Basin: Origin, Magnitude, and Scale. The Leading Edge, 2011, 30(3): 284-291.
CrossRef Google scholar
Huang W., Zhou H. W. Least-Squares Seismic Inversion with Stochastic Conjugate Gradient Method. Journal of Earth Science, 2015, 26(4): 463-470.
CrossRef Google scholar
Mavko G., Mukerji T., Dvorkin J. The Rock Physics Handbook: Tools for Seismic Analysis of Porous Media, 2009
CrossRef Google scholar
Pérez D. O., Velis D. R., Sacchi M. D. Blocky Inversion of Prestack Seismic Data Using Mixed-Norms, 2014, 3106-3111.
Rickman R., Mullen M. J., Petre J. E., . A Practical Use of Shale Petrophysics for Stimulation Design Optimization: All Shale Plays are not Clones of the Barnett Shale, 2008, 21-24.
Rudin L. I., Osher S., Fatemi E. Nonlinear Total Variation Based Noise Removal Algorithms. Physica D: Nonlinear Phenomena, 1992, 60(1/2/3/4): 259-268.
CrossRef Google scholar
Russell B. H., Dommico S. Introduction to Seismic Inversion Methods, 1988
CrossRef Google scholar
Russell B. H. Prestack Seismic Amplitude Analysis: An Integrated Overview. Interpretation, 2014, 2(2): SC19-SC36.
CrossRef Google scholar
Sena A., Castillo G., Chesser K., . Seismic Reservoir Characterization in Resource Shale Plays: Stress Analysis and Sweet Spot Discrimination. The Leading Edge, 2011, 30(7): 758-764.
CrossRef Google scholar
Walker C., Ulrych T. J. Autoregressive Recovery of the Acoustic Impedance. Geophysics, 1983, 48(10): 1338-1350.
CrossRef Google scholar
Yilmaz. Seismic Data Analysis, 2001
CrossRef Google scholar
Yin X. Y., Liu X. J., Zong Z. Y. Pre-Stack Basis Pursuit Seismic Inversion for Brittleness of Shale. Petroleum Science, 2015, 12(4): 618-627.
CrossRef Google scholar
Yuan S. Y., Wang S. X., Luo C. M., . Simultaneous Multitrace Impedance Inversion with Transform-Domain Sparsity Promotion. Geophysics, 2015, 80(2): R71-R80.
CrossRef Google scholar
Zhang F. C., Dai R. H., Liu H. Q. Seismic Inversion Based on L1-Norm Misfit Function and Total Variation Regularization. Journal of Applied Geophysics, 2014, 109: 111-118.
CrossRef Google scholar
Zhang J., Liu H. S., Tong S. Y., . Estimation of Elastic Parameters Using Two-Term Fatti Elastic Impedance Inversion. Journal of Earth Science, 2015, 26(4): 556-566.
CrossRef Google scholar
Zhang R., Sen M. K., Srinivasan S. A Prestack Basis Pursuit Seismic Inversion. Geophysics, 2013, 78(1): R1-R11.
CrossRef Google scholar
Zong Z.-Y., Yin X.-Y., Zhang F., . Reflection Coefficient Equation and Pre-Stack Seismic Inversion with Young’s Modulus and Poisson Ratio. Chinese Journal of Geophysics, 2012, 55(11): 3786-3794.
Zong Z.-Y., Yin X.-Y., Wu G. C. Elastic Impedance Parameterization and Inversion with Young’s Modulus and Poisson’s Ratio. Geophysics, 2013, 78(6): N35-N42.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/