Prestack Multi-Gather Simultaneous Inversion of Elastic Parameters Using Multiple Regularization Constraints

Shu Li , Zhenming Peng , Hao Wu

Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (6) : 1359 -1371.

PDF
Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (6) : 1359 -1371. DOI: 10.1007/s12583-017-0905-7
Geophysical Imaging from Subduction Zones to Petroleum Reservoirs

Prestack Multi-Gather Simultaneous Inversion of Elastic Parameters Using Multiple Regularization Constraints

Author information +
History +
PDF

Abstract

Inversion of Young’s modulus, Poisson’s ratio and density from pre-stack seismic data has been proved to be feasible and effective. However, the existing methods do not take full advantage of the prior information, without considering the lateral continuity of the inversion results, and need to invert the reflectivity first. In this paper, we propose multi-gather simultaneous inversion for pre-stack seismic data. Meanwhile, the total variation (TV) regularization, L1 norm regularization and initial model constraint are used. In order to solve the objective function contains L1 norm, TV norm and L2 norm, we develop an algorithm based on split Bregman iteration. The main advantages of our method are as follows: (1) The elastic parameters are calculated directly from objective function rather than from their reflectivity, therefore the stability and accuracy of the inversion process can be ensured. (2) The inversion results are more accordance with the geological prior information. (3) The lateral continuity of the inversion results are improved. The proposed method is illustrated by theoretical model data and experimented with a 2-D field data.

Keywords

elastic parameter / pre-stack inversion / multi-gather / regularization

Cite this article

Download citation ▾
Shu Li, Zhenming Peng, Hao Wu. Prestack Multi-Gather Simultaneous Inversion of Elastic Parameters Using Multiple Regularization Constraints. Journal of Earth Science, 2018, 29(6): 1359-1371 DOI:10.1007/s12583-017-0905-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Baraniuk R. Compressive Sensing. IEEE Signal Processing Magazine, 2007, 24(4): 118-121.

[2]

Chen S. S., Donoho D. L., Saunders M. A. Atomic Decomposition by Basis Pursuit. SIAM Review, 2001, 43(1): 129-159.

[3]

Donoho D. L. Compressed Sensing. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.

[4]

Gholami A. Nonlinear Multichannel Impedance Inversion by Total-Variation Regularization, 2015, Geophysics, 80(5): R217–R224

[5]

Goldstein T., Osher S. The Split Bregman Method for L1-Regularized Problems. SIAM Journal on Imaging Sciences, 2009, 2(2): 323-343.

[6]

Hamid H., Pidlisecky A. Multitrace Impedance Inversion with Lateral Constraints. Geophysics, 2015, 80(6): M101-M111.

[7]

Harris N. B., Miskimins J. L., Mnich C. A. Mechanical Anisotropy in the Woodford Shale, Permian Basin: Origin, Magnitude, and Scale. The Leading Edge, 2011, 30(3): 284-291.

[8]

Huang W., Zhou H. W. Least-Squares Seismic Inversion with Stochastic Conjugate Gradient Method. Journal of Earth Science, 2015, 26(4): 463-470.

[9]

Mavko G., Mukerji T., Dvorkin J. The Rock Physics Handbook: Tools for Seismic Analysis of Porous Media, 2009

[10]

Pérez D. O., Velis D. R., Sacchi M. D. Blocky Inversion of Prestack Seismic Data Using Mixed-Norms, 2014, 3106-3111.

[11]

Rickman R., Mullen M. J., Petre J. E., . A Practical Use of Shale Petrophysics for Stimulation Design Optimization: All Shale Plays are not Clones of the Barnett Shale, 2008, 21-24.

[12]

Rudin L. I., Osher S., Fatemi E. Nonlinear Total Variation Based Noise Removal Algorithms. Physica D: Nonlinear Phenomena, 1992, 60(1/2/3/4): 259-268.

[13]

Russell B. H., Dommico S. Introduction to Seismic Inversion Methods, 1988

[14]

Russell B. H. Prestack Seismic Amplitude Analysis: An Integrated Overview. Interpretation, 2014, 2(2): SC19-SC36.

[15]

Sena A., Castillo G., Chesser K., . Seismic Reservoir Characterization in Resource Shale Plays: Stress Analysis and Sweet Spot Discrimination. The Leading Edge, 2011, 30(7): 758-764.

[16]

Walker C., Ulrych T. J. Autoregressive Recovery of the Acoustic Impedance. Geophysics, 1983, 48(10): 1338-1350.

[17]

Yilmaz. Seismic Data Analysis, 2001

[18]

Yin X. Y., Liu X. J., Zong Z. Y. Pre-Stack Basis Pursuit Seismic Inversion for Brittleness of Shale. Petroleum Science, 2015, 12(4): 618-627.

[19]

Yuan S. Y., Wang S. X., Luo C. M., . Simultaneous Multitrace Impedance Inversion with Transform-Domain Sparsity Promotion. Geophysics, 2015, 80(2): R71-R80.

[20]

Zhang F. C., Dai R. H., Liu H. Q. Seismic Inversion Based on L1-Norm Misfit Function and Total Variation Regularization. Journal of Applied Geophysics, 2014, 109: 111-118.

[21]

Zhang J., Liu H. S., Tong S. Y., . Estimation of Elastic Parameters Using Two-Term Fatti Elastic Impedance Inversion. Journal of Earth Science, 2015, 26(4): 556-566.

[22]

Zhang R., Sen M. K., Srinivasan S. A Prestack Basis Pursuit Seismic Inversion. Geophysics, 2013, 78(1): R1-R11.

[23]

Zong Z.-Y., Yin X.-Y., Zhang F., . Reflection Coefficient Equation and Pre-Stack Seismic Inversion with Young’s Modulus and Poisson Ratio. Chinese Journal of Geophysics, 2012, 55(11): 3786-3794.

[24]

Zong Z.-Y., Yin X.-Y., Wu G. C. Elastic Impedance Parameterization and Inversion with Young’s Modulus and Poisson’s Ratio. Geophysics, 2013, 78(6): N35-N42.

AI Summary AI Mindmap
PDF

104

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/