Drainage Responses to the Activity of the Langshan Range-Front Fault and Tectonic Implications

Shaopeng Dong , Peizhen Zhang , Huiping Zhang , Wenjun Zheng , Huixian Chen

Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (1) : 193 -209.

PDF
Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (1) : 193 -209. DOI: 10.1007/s12583-017-0902-8
Structural Geology and Active Tectonics

Drainage Responses to the Activity of the Langshan Range-Front Fault and Tectonic Implications

Author information +
History +
PDF

Abstract

Langshan, a monoclinic mountain, which started to uplift since Oligocene, bounds the northwest margin of the Hetao Basin. The continuous activity of the active normal Langshan range-front fault forms the typical basin-and-range landform in Langshan area and controls the landform evolution of Langshan. Langshan is an ideal place to study relationship between quantitative geomorphological index and active deformation. According to study on knickpoints, fitting on longitudinal channel profiles and steepness index, we demonstrate that the main controlling factors on distribution of normalized steepness index of channels are not climate (precipitation), lithology, sediment flux, but tectonic factor, or the activity of Langshan range-front fault. The short channels in southeast flank, whose lengths are shorter than 16 km, may be still in the non-steady status. If not considering these short channels, the distribution of normalized steepness index along the Langshan range-front fault appears like M-shape pattern, while the normalized steepness index in the middle section is higher than those at both ends. This pattern is well consistent with geometrical segmentation model of the Langshan range-front fault. Combining previous active tectonic research on Langshan range-front fault, which demonstrates the Langshan range-front fault has been in the stage of linkup, we reasonably infer the Langshan range-front fault now is the result of linkup of both fault which continuously bilaterally extended independently. Our tectonic geomorphological study also supports the conclusion that the Langshan range-front fault has been in the stage of linkup. The formation of several knickpoints due to tectonic factor may have been caused by slip-rate variation because of linkup of both independent faults. Based on cognition above, we also proposed the geological and geomorphological evolutionary model of the Langshan range-front fault since Oligocene.

Keywords

Langshan range-front fault / Hetao Basin / steepness index / Langshan / geomorphological evolutionary model

Cite this article

Download citation ▾
Shaopeng Dong, Peizhen Zhang, Huiping Zhang, Wenjun Zheng, Huixian Chen. Drainage Responses to the Activity of the Langshan Range-Front Fault and Tectonic Implications. Journal of Earth Science, 2018, 29(1): 193-209 DOI:10.1007/s12583-017-0902-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ackermann R. V., Schlische R. W., Withjack M. O. The Geometric and Statistical Evolution of Normal Fault Systems: An Experimental Study of the Effects of Mechanical Layer Thickness on Scaling Laws. Journal of Structural Geology, 2001, 23(11): 1803-1819.

[2]

Arrowsmith J. R., Zielke O. Tectonic Geomorphology of the San Andreas Fault Zone from High Resolution Topography: An Example from the Cholame Segment. Geomorphology, 2009, 113(1/2): 70-81.

[3]

Blevins M. Deciphering Controls on Polyphase Intraplate Deformation in the Ertomiao Region, Lang Shan, North-Central China: [Dissertation], 2008.

[4]

Boulton S. J., Whittaker A. C. Quantifying the Slip Rates, Spatial Distribution and Evolution of Active Normal Faults from Geomorphic Analysis: Field Examples from an Oblique-Extensional Graben, Southern Turkey. Geomorphology, 2009, 104(3/4): 299-316.

[5]

Bull W. B. Tectonic Geomorphology North and South of the Garlock Fault, California, 1977, 115-137.

[6]

Burbank D. W., Anderson R. S. Tectonic Geomorphology, 2011

[7]

Chen L. The Research on Paleoearthquake, the Recerrence Rule of Strong Earthquakes and Possible Sites of Strong Earthquakes in the Future of Hetao Basin: [Dissertation], 2002.

[8]

Chen Y. Morphotectoic Features of Taiwan Mountain Belt Based on Hypsometric Integral, Topographic Fractals and SL Index, Tainan: [Dissertation], 2004.

[9]

Chen Y., Song G., Chen Z. Stream Power Incision Model for Non-steady State Orogens. Chinese Science Bulletin, 2006, 51(7): 865-869.

[10]

Chen Y. C., Sung Q., Cheng K. Y. Along-Strike Variations of Morphotectonic Features in the Western Foothills of Taiwan: Tectonic Implications Based on Stream-Gradient and Hypsometric Analysis. Geomorphology, 2003, 56(1/2): 109-137.

[11]

Cheng S., Li C., Yang G., . The Denudational-Surface Sequence and Controls on the Landscape Development in the Langshan Mountains-Seertengshan Mountains, Inner Mongolia. Quaternary Sciences, 2006, 26(1): 99-107.

[12]

Crosby C. J., Arrowsmith J. R., Prentice C. S. Application of LiDAR Data to Constraining a Late Pleistocene Slip Rate and Vertical Deformation of the Northern San Andreas Fault, Fort Ross to Mendocino, California, USA: [Dissertation], 2007.

[13]

Deng Q. Active Tectonic Map of China, 2007.

[14]

Deng Q., Cheng S., Min W., . Discussion on Cenozoic Tectonics and Dynamics of Ordos Block. Journal of Geomechanics, 1999, 5(3): 13-21.

[15]

Densmore A. L., Dawers N. H., Gupta S., . Landscape Evolution at Extensional Relay Zones, 2003, Journal of Geophysical Research: Solid Earth, 108(B5): B52273

[16]

Dong S. P. Late Quaternary Tectonic Activity and Paleoseismology along the Langshan Range-Front Fault: [Dissertation], 2016.

[17]

Dong, S. P., Zhang, P. Z., Zheng, W., et al., Paleoseismic and Slip-Rate Observations along the Langshan Range-Front Fault, Hetao Basin, China. (in Press)

[18]

Duvall A., Kirby E., Burbank D. Tectonic and Lithologic Controls on Bedrock Channel Profiles and Processes in Coastal California. Journal of Geophysical Research, 2004, 109 F3 F03002

[19]

Farr T. G., Rosen P. A., Caro E., . The Shuttle Radar Topography Mission. Reviews of Geophysics, 2007, 45 2 RG2004

[20]

Geology Bureau of Inner Mongolia Municipality GBIMM Regional Geological Map of Inner Mongolia, Scale 1: 200 000, 1976.

[21]

Hack J. T. Studies of Longitudinal Stream Profiles in Virginia and Maryland, 1957.

[22]

Hack J. T. Stream-Profile Analysis and Stream-Gradient Index. Journal of Research of the US Geological Survey, 1973, 1(4): 421-429.

[23]

Hare P. W., Gardner T. Geomorphic Indicators of Vertical Neotectonism along Converging Plate Margins, Nicoya Peninsula, Costa Rica, 1985, 75-104.

[24]

Howard A. D., Kerby G. Channel Changes in Badlands. Geological Society of America Bulletin, 1983, 94(6): 739-752.

[25]

Howard A. D. A Detachment-Limited Model of Drainage Basin Evolution. Water Resources Research, 1994, 30(7): 2261-2285.

[26]

Howard A. D., Dietrich W. E., Seidl M. A. Modeling Fluvial Erosion on Regional to Continental Scales. Journal of Geophysical Research: Solid Earth, 1994, 99(B7): 13971-13986.

[27]

Hu X. F., Pan B. T., Kirby E., . Spatial Differences in Rock Uplift Rates Inferred from Channel Steepness Indices along the Northern Flank of the Qilian Mountain, Northeast Tibetan Plateau. Chinese Science Bulletin, 2010, 55(27/28): 3205-3214.

[28]

Jackson J., McKenzie D. The Geometrical Evolution of Normal Fault Systems. Journal of Structural Geology, 1983, 5(5): 471-482.

[29]

Jia L. Y., Zhang X. J., He Z. X., . Late Quaternary Climatic and Tectonic Mechanisms Driving River Terrace Development in an Area of Mountain Uplift: A Case Study in the Langshan Area, Inner Mongolia, Northern China. Geomorphology, 2015, 234: 109-121.

[30]

Jia L. Y., Zhang X. J., Ye P. S., . Development of the Alluvial and Lacustrine Terraces on the Northern Margin of the Hetao Basin, Inner Mongolia, China: Implications for the Evolution of the Yellow River in the Hetao Area since the Late Pleistocene. Geomorphology, 2016, 263: 87-98.

[31]

Kirby E., Whipple K. X. Expression of Active Tectonics in Erosional Landscapes. Journal of Structural Geology, 2012, 44: 54-75.

[32]

Kirby E., Whipple K. X. Quantifying Differential Rock-Uplift Rates Via Stream Profile Analysis. Geology, 2001, 29(5): 415-418.

[33]

Journal of Geophysical Research: Solid Earth, 2003, 108 B4

[34]

Li Y., Ran Y., Chen L., . The Latest Surface Rupture Events on the Major Active Faults and Great Historical Earthquakes in Hetao Fault-Depression Zone. Seismol. Geol., 2015, 37(1): 110-125.

[35]

Li X., Wang J., Xiong R., . The Response of the Change Channel Steepness Index to the Difference of Uplift Rate in the Liupanshan Mountain Area. Quaternary Sciences, 2016, 36(2): 443-452.

[36]

Manighetti I., King G., Sammis C. G. The Role of Off-Fault Damage in the Evolution of Normal Faults. Earth and Planetary Science Letters, 2004, 217(3/4): 399-408.

[37]

Moglen G. E., Bras R. L. The Effect of Spatial Heterogeneities on Geomorphic Expression in a Model of Basin Evolution. Water Resources Research, 1995, 31(10): 2613-2623.

[38]

Journal of Geophysical Research, 2007, 112 F3

[39]

Montgomery D. R., Foufoula-Georgiou E. Channel Network Source Representation Using Digital Elevation Models. Water Resources Research, 1993, 29(12): 3925-3934.

[40]

Montgomery D. R. Slope Distributions, Threshold Hillslopes, and Steady-State Topography. American Journal of Science, 2001, 301(4/5): 432-454.

[41]

Papanikolaou I. D., Roberts G. P. Geometry, Kinematics and Deformation Rates along the Active Normal Fault System in the Southern Apennines: Implications for Fault Growth. Journal of Structural Geology, 2007, 29(1): 166-188.

[42]

Poage M. A., Chamberlain C. P. Empirical Relationships between Elevation and the Stable Isotope Composition of Precipitation and Surface Waters: Considerations for Studies of Paleoelevation Change. American Journal of Science, 2001, 301(1): 1-15.

[43]

Rao G., Chen P., Hu J. M., . Timing of Holocene Paleo-Earthquakes along the Langshan Piedmont Fault in the Western Hetao Graben, North China: Implications for Seismic Risk. Tectonophysics, 2016, 677/678: 115-124.

[44]

Rãdoane M., Rãdoane N., Dumitriu D. Geomorphological Evolution of Longitudinal River Profiles in the Carpathians. Geomorphology, 2003, 50(4): 293-306.

[45]

Research Group on Active Fault Zone around Ordos” Active Fault Zone around Ordos, 1988.

[46]

Roberts G. P., Michetti A. M. Spatial and Temporal Variations in Growth Rates along Active Normal Fault Systems: An Example from the Lazio-Abruzzo Apennines, Central Italy. Journal of Structural Geology, 2004, 26(2): 339-376.

[47]

Rockwell T. K., Keller E. A., Clark M. N., . Chronology and Rates of Faulting of Ventura River Terraces, California. Geological Society of America Bulletin, 1984, 95(12): 1466-1474.

[48]

Schumm S. A., Schumm S. A., Dumont J. F., . Active Tectonics and Alluvial Rivers, 2002.

[49]

Sklar, L., Dietrich, W. E., 1998. River Longitudinal Profiles and Bedrock Incision Models: Stream Power and the Influence of Sediment Supply. In: Tinkler, K. J., Wohl, E. E., eds., Rivers over Rock: Fluvial Processes in Bedrock Channels. American Geophysical Union. 237–260

[50]

Snow R. S., Slingerland R. L. Mathematical Modeling of Graded River Profiles. The Journal of Geology, 1987, 95(1): 15-33.

[51]

Snow R. S., Slingerland R. L. Stream Profile Adjustment to Crustal Warping: Nonlinear Results from a Simple Model. The Journal of Geology, 1990, 98(5): 699-708.

[52]

Snyder N. P., Whipple K. X., Tucker G. E., . Landscape Response to Tectonic Forcing: Digital Elevation Model Analysis of Stream Profiles in the Mendocino Triple Junction Region, Northern California. Geological Society of America Bulletin, 2000, 112(8): 1250-1263.

[53]

Snyder N. P., Whipple K. X., Tucker G. E., . Channel Response to Tectonic Forcing: Field Analysis of Stream Morphology and Hydrology in the Mendocino Triple Junction Region, Northern California. Geomorphology, 2003, 53(1/2): 97-127.

[54]

Stock J. D., Montgomery D. R. Geologic Constraints on Bedrock River Incision Using the Stream Power Law. Journal of Geophysical Research: Solid Earth, 1999, 104(B3): 4983-4993.

[55]

Strahler A. N. Hypsometric (Area-Altitude) Analysis of Erosional Topography. Geological Society of America Bulletin, 1952, 63(11): 1117-1142.

[56]

Summerfield M. A. Geomorphology & Global Tectonics, 2000.

[57]

Tarboton D. G., Bras R. L., Rodriguez-Iturbe I. Scaling and Elevation in River Networks. Water Resources Research, 1989, 25(9): 2037-2051.

[58]

Wallace R. E. Profiles and Ages of Young Fault Scarps, North-Central Nevada. Geological Society of America Bulletin, 1977, 88(9): 1267-1281.

[59]

Wang N., Han Z., Li X., . Tectonic Uplift of Mt. Lushan Indicated by the Steepness Indices of the River Longitudinal Profiles. Acta Geographica Sinica, 2015, 70(9): 1516-1525.

[60]

Wen X. Z. Earthquake Behavior of Variable Rupture-Scale on Active Faults and Application of the Cascade-Rupturing Model. Acta Seismologica Sinica, 2001, 14(4): 404-416.

[61]

Whipple K. X., Tucker G. E. Dynamics of the Stream-Power River Incision Model: Implications for Height Limits of Mountain Ranges, Landscape Response Timescales, and Research Needs. Journal of Geophysical Research: Solid Earth, 1999, 104(B8): 17661-17674.

[62]

Whipple K. X. Bedrock Rivers and the Geomorphology of Active Orogens. Annual Review of Earth and Planetary Sciences, 2004, 32(1): 151-185.

[63]

Whipple K. X., Hancock G. S., Anderson R. S. River Incision into Bedrock: Mechanics and Relative Efficacy of Plucking, Abrasion, and Cavitation. Geological Society of America Bulletin, 2000, 112(3): 490-503.

[64]

Whittaker A. C., Attal M., Cowie P. A., . Decoding Temporal and Spatial Patterns of Fault Uplift Using Transient River Long Profiles. Geomorphology, 2008, 100(3/4): 506-526.

[65]

Wobus C., Whipple K. X., Kirby E., . Tectonics from Topography: Procedures, Promise, and Pitfalls. Geological Society of America Special Papers, 2006, 398: 55-74.

[66]

Xia X. P., Sun M., Zhao G. C., . U-Pb and Hf Isotopic Study of Detrital Zircons from the Wulashan Khondalites: Constraints on the Evolution of the Ordos Terrane, Western Block of the North China Craton. Earth and Planetary Science Letters, 2006, 241(3/4): 581-593.

[67]

Yang Y. T., Li W., Ma L. Tectonic and Stratigraphic Controls of Hydrocarbon Systems in the Ordos Basin: A Multicycle Cratonic Basin in Central China. AAPG Bulletin, 2005, 89(2): 255-269.

[68]

Zhao H., Li Y., Yang J., . The Longitudinal Profiles of the Ten Rivers in North Tianshan Mountains and Their Tectonic Significance. Acta Geographica Sinica, 2009, 64(5): 563-570.

[69]

Zhu R. X., Chen L., Wu F. Y., . Timing, Scale and Mechanism of the Destruction of the North China Craton. Science China Earth Sciences, 2011, 54(6): 789-797.

[70]

Zhu R. X., Xu Y. G., Zhu G., . Destruction of the North China Craton. Science China Earth Sciences, 2012, 55(10): 1565-1587.

AI Summary AI Mindmap
PDF

155

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/