Crustal Structure of Yunnan Province of China from Teleseismic Receiver Functions: Implications for Regional Crust Evolution

Fang Wang , Shuangxi Zhang , Mengkui Li

Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (6) : 1419 -1430.

PDF
Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (6) : 1419 -1430. DOI: 10.1007/s12583-017-0822-9
Geophysical Imaging from Subduction Zones to Petroleum Reservoirs

Crustal Structure of Yunnan Province of China from Teleseismic Receiver Functions: Implications for Regional Crust Evolution

Author information +
History +
PDF

Abstract

Yunnan Province is located on the southeastern margin of Tibet and represents an important marker in understanding the tectonic evolution of Tibetan Plateau. In this study, we calculated teleseismic P-wave receiver functions at 49 permanent broadband seismic stations in Yunnan Province and estimated crustal thickness and the bulk crust ratios of P-wave to S-wave velocities using the H-κ method together with more detailed crustal structural profiles from the common conversion point stacking method. There is a significant transition of Moho interface and lower crustal composition along latitude 26°N in northwestern Yunnan. Decrease of crustal thickness with a concomitant increase of Poisson’s ratio occurs at station CUX. An interesting phenomenon is that a step-like Moho fashion is observed at several stations, which might correspond to local thermal activities, such as partial melt/lower crust delamination. Our results show changes in crustal properties appear to be associated with varieties in upper mantle structure and compositions, combined with other previous studies. We propose the controlling factor of the dynamic processes below 26°N is the result of eastern forward subduction of the Indian Plate; the northern part is controlled by the redirected material flow from the SE Tibet.

Keywords

crustal structure / receiver function / Poisson’s ratio / tectonic evolution

Cite this article

Download citation ▾
Fang Wang, Shuangxi Zhang, Mengkui Li. Crustal Structure of Yunnan Province of China from Teleseismic Receiver Functions: Implications for Regional Crust Evolution. Journal of Earth Science, 2018, 29(6): 1419-1430 DOI:10.1007/s12583-017-0822-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bai D. H., Unsworth M. J., Meju M. A., . Crustal Deformation of the Eastern Tibetan Plateau Revealed by Magnetotelluric Imaging. Nature Geoscience, 2010, 3(5): 358-362.

[2]

Bao X. W., Sun X. X., Xu M. J., . Two Crustal Low-Velocity Channels beneath SE Tibet Revealed by Joint Inversion of Rayleigh Wave Dispersion and Receiver Functions. Earth and Planetary Science Letters, 2015, 415: 16-24.

[3]

Chen M., Huang H., Yao H., . Low Wave Speed Zones in the Crust beneath SE Tibet Revealed by Ambient Noise Adjoint Tomography. Geophysical Research Letters, 2014, 41(2): 334-340.

[4]

Christensen N. I. Poisson’s Ratio and Crustal Seismology, 1996, 3139-3156.

[5]

Christensen N. I., Fountain D. M. Constitution of the Lower Continental Crust Based on Experimental Studies of Seismic Velocities in Granulite. Geological Society of America Bulletin, 1975, 86(2): 227-236.

[6]

Clark M. K., Royden L. H. Topographic Ooze: Building the Eastern Margin of Tibet by Lower Crustal Flow. Geology, 2000, 28(8): 703-706.

[7]

Frederiksen A. W., Delaney C. Deriving Crustal Properties from the P Coda without Deconvolution: The Southwestern Superior Province, North America. Geophysical Journal International, 2015, 201(3): 1491-1506.

[8]

Hammond J. O. S. Constraining Melt Geometries beneath the Afar Depression, Ethiopia from Teleseismic Receiver Functions: The Anisotropic H-Κ stacking Technique. Geochemistry, Geophysics, Geosystems, 2014, 15(4): 1316-1332.

[9]

He C. S., Santosh M., Wu J. P., . Plume or no Plume: Emeishan Large Igneous Province in Southwest China Revisited from Receiver Function Analysis. Physics of the Earth and Planetary Interiors, 2014, 232: 72-78.

[10]

He C. S., Zhu L. P., Wang Q. C. The Significance of Crust Structure and Continental Dynamics Inferred from Receiver Functions in West Yunnan. Acta Geologica Sinica (English Edition), 2009, 83(6): 1163-1172.

[11]

Hopper J. R., Buck W. R. The Effect of Lower Crustal Flow on Continental Extension and Passive Margin Formation, 1996, 20175-20194.

[12]

Hu J. F., Su Y. J., Zhu X. G., . S-Wave Velocity and Poisson’s Ratio Structure of Crust in Yunnan and Its Implication. Science in China (Series D), 2005, 48(2): 210-218.

[13]

Hu J. F., Yang H. Y., Li G. Q., . Seismic Signature of the Mantle Transition Zone beneath Eastern Tibet and Sichuan Basin. Journal of Asian Earth Sciences, 2013, 62: 606-615.

[14]

Hu J. F., Yang H. Y., Xu X. Q., . Lithospheric Structure and Crust-Mantle Decoupling in the Southeast Edge of the Tibetan Plateau. Gondwana Research, 2012, 22(3/4): 1060-1067.

[15]

Hu S. B., He L. J., Wang J. Y. Heat Flow in the Continental Area of China: A New Data Set. Earth and Planetary Science Letters, 2000, 179(2): 407-419.

[16]

Huang H., Yao H. J. v d H. R. D. Radial Anisotropy in the Crust of SE Tibet and SW China from Ambient Noise Interferometry. Geophysical Research Letters, 2010, 37 21 L21310

[17]

Huang R., Zhu L. P., Xu Y. X. Crustal Structure of Hubei Province of China from Teleseismic Receiver Functions: Evidence for Lower Crust Delamination. Tectonophysics, 2014, 636: 286-292.

[18]

Huang Z. C., Wang P., Xu M. J., . Mantle Structure and Dynamics beneath SE Tibet Revealed by New Seismic Images. Earth and Planetary Science Letters, 2015, 411: 100-111.

[19]

Kan R. J., Lin Z. Y. A Preliminary Study on Crustal and Upper Mantle Structure in Yunnan. Earthquake Research in China, 1986, 2: 50-61.

[20]

Kennett B. L. N., Engdahl E. R. Traveltimes for Global Earthquake Location and Phase Identification. Geophysical Journal International, 1991, 105(2): 429-465.

[21]

Langston C. A. Structure under Mount Rainier, Washington, Inferred from Teleseismic Body Waves. Journal of Geophysical Research, 1979, 84(B9): 4749-4762.

[22]

Lees J. M., Wu H. T. Poisson’s Ratio and Porosity at Coso Geothermal Area, California. Journal of Volcanology and Geothermal Research, 2000, 95(1/2/3/4): 157-173.

[23]

Lei J. S., Zhao D. P., Su Y. J. Insight into the Origin of the Tengchong Intraplate Volcano and Seismotectonics in Southwest China from Local and Teleseismic Data. Journal of Geophysical Research, 2009, 114 B5 B5302

[24]

Li C., van der Hilst R. D. Structure of the Upper Mantle and Transition Zone beneath Southeast Asia from Traveltime Tomography. Journal of Geophysical Research, 2010, 115 B7 B7308

[25]

Li C. v d H. R. D. M. A. S., . Subduction of the Indian Lithosphere beneath the Tibetan Plateau and Burma. Earth and Planetary Science Letters, 2008, 274(1/2): 157-168.

[26]

Li M. K., Zhang S. X., Wang F., . Crustal and Upper-Mantle Structure of the Southeastern Tibetan Plateau from Joint Analysis of Surface Wave Dispersion and Receiver Functions. Journal of Asian Earth Sciences, 2016, 117: 52-63.

[27]

Li Y. H., Wu Q. J., Tian X. B., . Crustal Structure in the Yunnan Region Determined by Modelling Receiver Functions. Chinese Journal of Geophysics, 2009, 52: 67-80.

[28]

Ligorría J. P., Ammon C. J. Iterative Deconvolution and Receiver-Function Estimation. Bulletin of the Seismological Society of America, 1999, 89(5): 1395-1400.

[29]

Lombardi D., Braunmiller J., Kissling E., . Moho Depth and Poisson’s Ratio in the Western-Central Alps from Receiver Functions. Geophysical Journal International, 2008, 173(1): 249-264.

[30]

Lou H., Wang C. Y. Wavelet Analysis and Interpretation of Gravity Data in Sichuan-Yunnan Region, China. Acta Seismologica Sinica, 2005, 18(5): 552-561.

[31]

Y., Zhang Z. J., Pei S. P., . 2.5-Dimensional Tomography of Uppermost Mantle beneath Sichuan-Yunnan and Surrounding Regions. Tectonophysics, 2014, 627: 193-204.

[32]

Niu F. L., James D. E. Fine Structure of the Lowermost Crust beneath the Kaapvaal Craton and Its Implications for Crustal Formation and Evolution. Earth and Planetary Science Letters, 2002, 200(1/2): 121-130.

[33]

Owens T. J., Zandt G. Implications of Crustal Property Variations for Models of Tibetan Plateau Evolution. Nature, 1997, 387(6628): 37-43.

[34]

Royden L. H., Burchfiel B. C., King R. W., . Surface Deformation and Lower Crustal Flow in Eastern Tibet. Science, 1997, 276(5313): 788-790.

[35]

Royden L. H., Burchfiel B. C., van der Hilst R. D. The Geological Evolution of the Tibetan Plateau. Science, 2008, 321(5892): 1054-1058.

[36]

Sanders C. O., Ponko S. C., Nixon L. D., . Seismological Evidence for Magmatic and Hydrothermal Structure in Long Valley Caldera from Local Earthquake Attenuation and Velocity Tomography. Journal of Geophysical Research: Solid Earth, 1995, 100(B5): 8311-8326.

[37]

Savage M. K. Lower Crustal Anisotropy or Dipping Boundaries?. Effects on Receiver Functions and a Case Study in New Zealand. Journal of Geophysical Research: Solid Earth, 1998, 103(B7): 15069-15087.

[38]

Shen Z. K., J. N., Wang M., . Contemporary Crustal Deformation around the Southeast Borderland of the Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 2005, 110 B11 B11409

[39]

Shi Y. T., Gao Y., Wu J., . Crustal Seismic Anisotropy in Yunnan, Southwestern China. Journal of Seismology, 2008, 13(2): 287-299.

[40]

Silver P. G., Chan W. W. Shear Wave Splitting and Subcontinental Mantle Deformation. Journal of Geophysical Research, 1991, 96(B10): 16429-16454.

[41]

Sol S., Meltzer A., Bürgmann R., . Geodynamics of the Southeastern Tibetan Plateau from Seismic Anisotropy and Geodesy. Geology, 2007, 35(6): 563-566.

[42]

Sun Y., Niu F. L., Liu H. F., . Crustal Structure and Deformation of the SE Tibetan Plateau Revealed by Receiver Function Data. Earth and Planetary Science Letters, 2012, 349/350: 186-197.

[43]

Thompson D. A., Bastow I. D., Helffrich G., . Precambrian Crustal Evolution: Seismic Constraints from the Canadian Shield. Earth and Planetary Science Letters, 2010, 297(3/4): 655-666.

[44]

Tkalčić H., Chen Y. L., Liu R. F., . Multistep Modelling of Teleseismic Receiver Functions Combined with Constraints from Seismic Tomography: Crustal Structure beneath Southeast China. Geophysical Journal International, 2011, 187(1): 303-326.

[45]

Tkalčić H., Pasyanos M. E., Rodgers A. J., . A Multistep Approach for Joint Modeling of Surface Wave Dispersion and Teleseismic Receiver Functions: Implications for Lithospheric Structure of the Arabian Peninsula. Journal of Geophysical Research: Solid Earth, 2006, 111 B11 B11311

[46]

Wang C. Y., Lou H., Silver P. G., . Crustal Structure Variation along 30°N in the Eastern Tibetan Plateau and its Tectonic Implications. Earth and Planetary Science Letters, 2010, 289(3/4): 367-376.

[47]

Wang P., Wang L. S., Mi N., . Crustal Thickness and Average VP/VS Ratio Variations in Southwest Yunnan, China, from Teleseismic Receiver Functions, 2010, Journal of Geophysical Research, 115(B11): B11308

[48]

Wang Q. S., Wu C. Z., Liu H. C., . Studies on the General Distribution of Crustal Thickness and Characteristics of Crustal Structure under the Asian Continent. Seismology and Geology, 1982, 4: 1-9.

[49]

Xu L. L., Rondenay S. v d H. R. D. Structure of the Crust beneath the Southeastern Tibetan Plateau from Teleseismic Receiver Functions. Physics of the Earth and Planetary Interiors, 2007, 165(3/4): 176-193.

[50]

Xu Q., Zhao J. M., Yuan X. H., . Mapping Crustal Structure beneath Southern Tibet: Seismic Evidence for Continental Crustal Underthrusting. Gondwana Research, 2015, 27(4): 1487-1493.

[51]

Xu Y., Liu J. H., Liu F. T., . Crust and Upper Mantle Structure of the Ailao Shan-Red River Fault Zone and Adjacent Regions. Science in China: Earth Sciences, 2005, 48(2): 156-164.

[52]

Xu Z. J., Song X. D., Zhu L. P. Crustal and Uppermost Mantle S Velocity Structure under Hi-CLIMB Seismic Array in Central Tibetan Plateau from Joint Inversion of Surface Wave Dispersion and Receiver Function Data. Tectonophysics, 2013, 584: 209-220.

[53]

Yao H. J., Beghein C., van der Hilst R. D. Surface Wave Array Tomography in SE Tibet from Ambient Seismic Noise and Two-Station Analysis—II. Crustal and Upper-Mantle Structure. Geophysical Journal International, 2008, 173(1): 205-219.

[54]

Yao H. J., van der Hilst R. D., Montagner J. P. Heterogeneity and Anisotropy of the Lithosphere of SE Tibet from Surface Wave Array Tomography. Journal of Geophysical Research, 2010, B12307.

[55]

Yeck W. L., Sheehan A. F., Schulte-Pelkum V. Sequential H-κ Stacking to Obtain Accurate Crustal Thicknesses beneath Sedimentary Basins. Bulletin of the Seismological Society of America, 2013, 103(3): 2142-2150.

[56]

Zandt G., Ammon C. A. Continental Crust Composition Constrained by Measurements of Crustal Poisson’s Ratio. Nature, 1995, 374(6518): 152-154.

[57]

Zhang X. M., Hu J. F., Hu Y. L., . Structure of S-Wave Velocity in the Crust-Upper Mantle and Tectonic Setting of Strong Earthquakes beneath Yunnan. Chinese Journal of Geophysics, 2011, 54(3): 286-298.

[58]

Zhang X., Wang Y. H. Crustal and Upper Mantle Velocity Structure in Yunnan, Southwest China. Tectonophysics, 2009, 471(3/4): 171-185.

[59]

Zhang Z. J., Wang Y. H., Chen Y., . Crustal Structure across Longmenshan Fault Belt from Passive Source Seismic Profiling. Geophysical Research Letters, 2009, 36 17 L17310

[60]

Zhu L. P. Crustal Structure across the San Andreas Fault, Southern California from Teleseismic Converted Waves. Earth and Planetary Science Letters, 2000, 179(1): 183-190.

[61]

Zhu L. P., Kanamori H. Moho Depth Variation in Southern California from Teleseismic Receiver Functions. Journal of Geophysical Research: Solid Earth, 2000, 105(B2): 2969-2980.

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/