Age, Geochemistry, and Tectonic Implications of Dulaerqiao Granite, Inner Mongolia

Anxia Chen , Duo Zhou , Qingkui Zhang , Zhongzhu Yang

Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (1) : 78 -92.

PDF
Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (1) : 78 -92. DOI: 10.1007/s12583-017-0817-6
Mineralogy and Petrogeochemistry

Age, Geochemistry, and Tectonic Implications of Dulaerqiao Granite, Inner Mongolia

Author information +
History +
PDF

Abstract

Dulaerqiao granite is located at the Xinlin-Xiguitu-Toudaoqiao suture zone between the Erguna massif and the Xing’an massif, northeast of Inner Mongolia. The rocks are mainly composed of K-feldspar, quartz, and plagioclase. Zircon LA-ICP-MS U-Pb data show that this granite was deposited in the Late Carboniferous Period (308.7±2.0 Ma). The samples are rich in alkali, Fe, and Al and low in Mg, Ca, and P. Chondrite-normalized REEs exhibit right-inclined patterns with significant negative Eu anomalies. Additionally, the granite shows high quantities of trace elements such as Zr, Hf, Th, K, and Rb and decreased quantities of Sr, P, and Ti. The chemical characteristics identified herein and a series of diagrams that distinguish different types of granite show that Dulaerqiao alkali-feldspar granites belong to the aluminous A-type granite group. Meanwhile, the initial magma crystallizes under high-temperature, low-pressure conditions resulting from a tectonic extension setting. The formation of Dulaerqiao aluminous A-type granite is related to the rejuvenation of the ancient Xinlin-Xiguitu- Toudaoqiao suture zone, which was activated by the interaction between the combined Erguna-Xing’an massif and the Songnen massif in the Late Paleozoic Era. This aluminous A-type granite was deposited about 30 Ma after the collision.

Keywords

aluminous A-type granite / zircon U-Pb age / geochemistry / post-orogenic extensional environment / rejuvenation of an ancient suture zone / Dulaerqiao

Cite this article

Download citation ▾
Anxia Chen, Duo Zhou, Qingkui Zhang, Zhongzhu Yang. Age, Geochemistry, and Tectonic Implications of Dulaerqiao Granite, Inner Mongolia. Journal of Earth Science, 2018, 29(1): 78-92 DOI:10.1007/s12583-017-0817-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Andersen T. Correction of Common Lead in U-Pb Analyses that do not Report 204Pb. Chemical Geology, 2002, 192(1/2): 59-79.

[2]

Atherton M. P., Petford N. Generation of Sodium-Rich Magmas from Newly Underplated Basaltic Crust. Nature, 1993, 362(6416): 144-146.

[3]

Audet P., Bürgmann R. Dominant Role of Tectonic Inheritance in Supercontinent Cycles. Nature Geoscience, 2011, 4(3): 184-187.

[4]

Barth M. G., McDonough W. F., Rudnick R. L. Tracking the Budget of Nb and Ta in the Continental Crust. Chemical Geology, 2000, 165(3/4): 197-213.

[5]

Batchelor R. A., Bowden P. Petrogenetic Interpretation of Granitoid Rock Series Using Multicationic Parameters. Chemical Geology, 1985, 48(1/2/3/4): 43-55.

[6]

Belousova E., Griffin W., O’Reilly S. Y., . Igneous Zircon: Trace Element Composition as an Indicator of Source Rock Type. Contributions to Mineralogy and Petrology, 2002, 143(5): 602-622.

[7]

Blight J. H. S., Crowley Q. G., Petterson M. G., . Granites of the Southern Mongolia Carboniferous Arc: New Geochronological and Geochemical Constraints. Lithos, 2010, 116(1/2): 35-52.

[8]

Boynton W. V. Cosmochemistry of the Rare Earth Elements: Meteorite Studies, 1984, In: Henserson, P, 63-114

[9]

Chen A. X., Zhou D., Zhang Q. K., . Tectonic and Sedimentary Environment in the Ordovician Period of Central Xing’an Block. Geoscience, 2016, 30(5): 1061-1071.

[10]

Chen A. X., Zhou D., Zhang Q. K., . Late Paleozoic Tectonic Sedimentary Environment of Toudaoqiao Area in the North-Central Section of Daxinganling. Geology and Resources, 2014, 23: 1-8.

[11]

Chen B., Jahn B. M., Wilde S., . Two Contrasting Paleozoic Magmatic Belts in Northern Inner Mongolia, China: Petrogenesis and Tectonic Implications. Tectonophysics, 2000, 328(1/2): 157-182.

[12]

Collins W. J., Beams S. D., White A. J. R., . Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia. Contributions to Mineralogy and Petrology, 1982, 80(2): 189-200.

[13]

Creaser R. A., Price R. C., Wormald R. J. A-Type Granites Revisited: Assessment of a Residual-Source Model. Geology, 1991, 19(2): 163-166.

[14]

Cui F. H., Zheng C. Q., Xu X. C., . Late Carboniferous Magmatic Activities in the Quanshenglinchang Area, Great Xing’an Range: Constrains on the Timing of Amalgamation between Xing’an and Songnen Massifs. Acta Geologica Sinica, 2013, 87(9): 1247-1263.

[15]

Dargahi S., Arvin M., Pan Y. M., . Petrogenesis of Post-Collisional A-Type Granitoids from the Urumieh-Dokhtar Magmatic Assemblage, Southwestern Kerman, Iran: Constraints on the Arabian–Eurasian Continental Collision. Lithos, 2010, 115(1/2/3/4): 190-204.

[16]

Defant M. J., Drummond M. S. Derivation of some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature, 1990, 347(6294): 662-665.

[17]

Deng J. F., Luo Z. H., Su S. G., . Petrogenesis, Tectonic Environment and Mineralization, 2004, 93-94.

[18]

Deng X. Q., Peng T. P., Zhao T. P. Geochronology and Geochemistry of the Late Paleoproterozoic Aluminous A-Type Granite in the Xiaoqinling Area along the Southern Margin of the North China Craton: Petrogenesis and Tectonic Implications. Precambrian Research, 2016, 285: 127-146.

[19]

Dewey J. F. Extensional Collapse of Orogens. Tectonics, 1988, 7(6): 1123-1139.

[20]

Dilek Y., Furnes H. Ophiolite Genesis and Global Tectonics: Geochemical and Tectonic Fingerprinting of Ancient Oceanic Lithosphere. Geological Society of America Bulletin, 2011, 123(3/4): 387-411.

[21]

Eby G. N. The A-Type Granitoids: A Review of Their Occurrence and Chemical Characteristics and Speculations on Their Petrogenesis. Lithos, 1990, 26(1/2): 115-134.

[22]

Eby G. N. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology, 1992, 20 7 641

[23]

Feng Z. Q. The Palezonic Tectono-Magmatic Evolution of the Northern Great Xing’an Range: [Dissertation], 2015.

[24]

Ge W. C., Wu F. Y., Zhou C. Y., . Emplacement Age of the Tahe Granite and Its Constraints on the Tectonic Nature of the Ergun Block in the Northern Part of the Da Hinggan Range. Science Bulletin, 2005, 50(18): 2097-2105.

[25]

Green T. H. Significance of Nb/Ta as an Indicator of Geochemical Processes in the Crust-Mantle System. Chemical Geology, 1995, 120(3/4): 347-359.

[26]

Hong D. W., Wang S. G., Han B. F., . Tectonic Environment, Classification and Identification Sign of Alkali Granite. Science in China (Series B), 1995, 25(4): 418-426.

[27]

Hong D. W., Wang S. G., Han B. F., . Post-Orogenic Alkaline Granites from China and Comparisons with Anorogenic Alkaline Granites Elsewhere. Journal of Southeast Asian Earth Sciences, 1996, 13(1): 13-27.

[28]

Hoskin P. W. O., Black L. P. Metamorphic Zircon Formation by Solid-State Recrystallization of Protolith Igneous Zircon. Journal of Metamorphic Geology, 2000, 18(4): 423-439.

[29]

Hoskin P. W. O. Trace-Element Composition of Hydrothermal Zircon and the Alteration of Hadean Zircon from the Jack Hills Australia. Geochimica et Cosmochimica Acta, 2005, 69(3): 637-648.

[30]

Hu D. G., Tan C. X., Zhang H. Middle Proterozoic Ophiolites in the Alihe Area, Inner Mongolia. Regional Geology of China, 1995, 4: 334-343.

[31]

IMBGMR Inner Mongolia Bureau of Geology Mineral Resources Lithostratigraphy of Inner Mongolia Autonomous Region, 1996, 46-53.

[32]

Jahn B. M., Litvinovsky B. A., Zanvilevich A. N., . Peralkaline Granitoid Magmatism in the Mongolian-Transbaikalian Belt: Evolution, Petrogenesis and Tectonic Significance. Lithos, 2009, 113(3/4): 521-539.

[33]

Jia X. H., Wang Q., Tang G. J. A-Type Granites: Research Progress and Implications. Geotectonica et Metallogenia, 2009, 33(3): 465-480.

[34]

King P. L., White A. J. R., Chappell B. W., . Characterization and Origin of Aluminous A-Type Granites from the Lachlan Fold Belt, Southeastern Australia. Journal of Petrology, 1997, 38(3): 371-391.

[35]

Li B. M. Geochemistry and Tectonic Background of the Volcanic Rocks of Early Carboniferous Moergenhe Formation in Nenjiang Area, Heilongjiang Province: [Dissertation], 2012, 1-50.

[36]

Li R. S. Xinling Ophiolite. Heilongjiang Geology, 1991, 2(1): 19-31.

[37]

Li Y., Xu W. L., Wang F., . Geochronology and Geochemistry of Late Paleozoic Volcanic Rocks on the Western Margin of the Songnen Zhangguangcai Range Massif, NE China: Implications for the Amalgamation History of the Xing’an and Songnen-Zhangguangcai Range Massifs. Lithos, 2014, 205: 394-410.

[38]

Liegeios L. P. Preface-Some Words on the Post-Collisional Magmatism. Lithos, 1998, 45: 15-17.

[39]

Liu C., Meng L. S. Geophysical Field and Crustal Evolution in NE China, 2010, 82-190.

[40]

Liu C. S., Chen X. M., Chen P. R., . Subdivision, Discrimination Criteria and Genesis for A Type Rock Suites. Geological Journal of China Universities, 2003, 9(4): 573-591.

[41]

Liu Y. J., Zhang X. Z., Jin W., . Late Paleozoic Tectonic Evolution in Northeast China. Geology in China, 2010, 37(4): 943-951.

[42]

Ludwig K. R. User’s Manual for Isoplot 3.0: A Geochronological Toolkit for Microsoft Excel, 2003.

[43]

Maniar P. D., Piccoli P. M. Tectonic Discrimination of Granitoids. Geological Society of America Bulletin, 1989, 101(5): 635-643.

[44]

Miao L. C., Fan W. M., Zhang F. Q., . Zircon^SHRIMP Geochronology of the Xinkailing-Kele Complex in the Northwestern Lesser Xing’an Range, and Its Geological Implications. Chinese Science Bulletin, 2004, 49(2): 201-209.

[45]

Pan G. T., Xiao Q. H., Lu S. N., . Subdivision of Tectonic Units in China. Geology in China, 2009, 36(1): 1-28.

[46]

Pankhurst M. J., Schaefer B. F., Turner S. P., . The Source of A-Type Magmas in Two Contrasting Settings: U-Pb, Lu-Hf and Re-Os Isotopic Constraints. Chemical Geology, 2013, 351(5): 175-194.

[47]

Patiño Douce A. E. What do Experiments Tell Us about the Relative Contributions of Crust and Mantle to the Origin of Granitic Magmas?. Geological Society, London, Special Publications, 1999, 168(1): 55-75.

[48]

Pearce J. Sources and Settings of Granitic Rocks. Episodes, 1996, 19(4): 120-125.

[49]

Poitrasson F., Duthou J. L., Pin C. The Relationship between Petrology and Nd Isotopes as Evidence for Contrasting Anorogenic Granite Genesis: Example of the Corsican Province (SE France). Journal of Petrology, 1995, 36(5): 1251-1274.

[50]

Qiu J. S., Wang D. Z., Satoshi K., . Geochemistry and Petrogenesis of Aluminous A-Type Granites in the Coastal Area of Fujian Province. Geochimica, 2000, 29(4): 313-321.

[51]

Rampone E., Piccardo G. B. The Ophiolite-Oceanic Lithosphere Analogue: New Insights from the Northern Apennines (Italy). Geological Society of America Special Paper, 2000, 349: 21-34.

[52]

Robinson P. T., Zhou M. F., Hu X. F., . Geochemical Constraints on the Origin of the Hegenshan Ophiolite, Inner Mongolia, China. Journal of Asian Earth Sciences, 1999, 17(4): 423-442.

[53]

Ryan P. D., Dewey J. F. Continental Eclogites and the Wilson Cycle. Journal of the Geological Society, 1997, 154(3): 437-442.

[54]

Şengör A. M. C., Natal’in B. A., Burtman V. S. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 1993, 364(6435): 299-307.

[55]

Shao X. F. Geochemical Characteristics and Geological Significance of Ophiolite from Maihantewula, Southwest Section of Tayuan-Toudaoqiao Matching Belt in Inner Mongolia. Global Geology, 2016, 35(2): 429-440.

[56]

She H. Q., Li J. W., Xiang A. P., . U-Pb Ages of the Zircons from Primary Rocks in Middle-Northern Daxinganling and Its Implications to Geotectonic Evolution. Acta Petrologica Sinica, 2012, 28(2): 571-594.

[57]

Shellnutt J. G., Zhou M. F. Permian Peralkaline, Peraluminous and Metaluminous A-Type Granites in the Panxi District, SW China: Their Relationship to the Emeishan Mantle Plume. Chemical Geology, 2007, 243(3/4): 286-316.

[58]

Shi G. H., Miao L. C., Zhang F. Q., . Emplacement Age and Tectonic Implications of the Xilinhot A-Type Granite in Inner Mongolia, China. Chinese Science Bulletin, 2004, 49(4): 384-389.

[59]

Skjerlie K. P., Johnston A. D. Vapor-Absent Melting at 10 kbar of a Biotite-and Amphibole-Bearing Tonalitic Gneiss: Implications for the Generation of A-Type Granites. Geology, 1992, 20 3 263

[60]

Sui Z. M., Ge W. C., Xu X. C., . Characteristics and Geological Implications of the Late Paleozoic Post-Orogenic Shierzhan Granite in the Great Xing’an Range. Acta Petrologica Sina, 2009, 25(10): 2679-2686.

[61]

Sun D. Y., Wu F. Y., Li H. M., . Emplacement Age of the Postorogenic A-Type Granites in Northwestern Lesser Xing’an Ranges, and Its Relationship to the Eastward Extension of Suolushan-Hegenshan-Zhalaite Collisional Suture Zone. Chinese Science Bulletin, 2001, 46(5): 427-432.

[62]

Sun S. S., McDonough W. F. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 1989, 42(1): 313-345.

[63]

Sun X. M., Liu C., Zhu D. F., . Geophysical Features and Tectonic Attribute of the Derbugan Fault in the Western Slope of Da Hinggan Ling Mountains. Chinese Journal of Geophysics, 2011, 54(2): 433-440.

[64]

Sylvester P. J. Post-Collisional Alkaline Granites. The Journal of Geology, 1989, 97(3): 261-280.

[65]

Turner S., Sandiford M., Foden J. Some Geodynamic and Compositional Constraints on “Postorogenic” Magmatism. Geology, 1992, 20 10 931

[66]

Wang C. W., Jin W., Zhang X. Z., . New Understanding of the Late Paleozoic Tectonics in Northeastern China and Adjacent Areas. Journal of Stratigraphy, 2008, 32(2): 119-136.

[67]

Wang X. W., Liu Y. Y. Pre-Mesozoic Tectonic Evolution and Its Relation with Development of Late Mesozoic Basin in Northeastern China. Geoscience, 1997, 11(4): 434-443.

[68]

Watson E. B., Harrison T. M. Zircon Saturation Revisited: Temperature and Composition Effects in a Variety of Crustal Magma Types. Earth and Planetary Science Letters, 1983, 64(2): 295-304.

[69]

Whalen J. B., Currie K. L., Chappell B. W. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology, 1987, 95(4): 407-419.

[70]

Wilson M. Igneous Petrogenesis, 2001, 7-12.

[71]

Wu F. Y., Li X. H., Yang J. H., . Discussion on the Petrogenesis of Granites. Acta Petrologica Sinica, 2007, 23(6): 1217-1238.

[72]

Wu F. Y., Sun D. Y., Ge W. C., . Geochronology of the Phanerozoic Granitoids in Northeastern China. Journal of Asian Earth Sciences, 2011, 41(1): 1-30.

[73]

Xiong F. H., Ma C. Q., Jiang H. A., . Geochronology and Petrogenesis of Triassic High-K Calc-Alkaline Granodiorites in the East Kunlun Orogen, West China: Juvenile Lower Crustal Melting during Post-Collisional Extension. Journal of Earth Science, 2016, 27(3): 474-490.

[74]

Yarmolyuk V. V., Kovalenko V. I., Sal’nikova E. B., . Geochronology of Igneous Rocks and Formation of the Late Paleozoic South Mongolian Active Margin of the Siberian Continent. Stratigraphy and Geological Correlation, 2008, 16(2): 162-181.

[75]

Zhang L., Liu Y. J., Li W. M., . Discussion on the Basement Properties and East Boundary of the Ergun Massif. Chinese Journal of Geology, 2013, 48(1): 227-244.

[76]

Zhang Q., Wang Y., Li C. D., . A Granite Classification Based on Pressures. Geological Bulletin of China, 2006, 25(11): 1274-1278.

[77]

Zhang Q. Reappraisal of the Origin of C-Type Adakitic Rocks from East China. Acta Petrologica et Mineralogica, 2011, 30(4): 739-747.

[78]

Zhang X. H., Yuan L. L., Xue F. H., . Early Permian A-Type Granites from Central Inner Mongolia, North China: Magmatic Tracer of Post-Collisional Tectonics and Oceanic Crustal Recycling. Gondwana Research, 2015, 28(1): 311-327.

[79]

Zhang Y. Q., Xu L. Q., Kang X. L., . Age Dating of Alkali Granite in Jingesitai Area of Dong Ujimqin Banner, Inner Mongolia, and Its Significance. Geology in China, 2009, 36(5): 988-995.

[80]

Zhao L. M., Takasu A., Liu Y. J., . Blueschist from the Toudaoqiao Area, Inner Mongolia, NE China: Evidence for the Suture between the Ergun and the Xing’an Blocks. Journal of Earth Science, 2017, 28(2): 241-248.

[81]

Zhao Z., Chi X. G., Pan S. Y., . Zircon^U-Pb LA-ICP-MS Dating of Carboniferous Volcanics and Its Geological Significance in the Northwestern Lesser Xing’an Range. Acta Petroligica Sinica, 2010, 26(8): 2452-2464.

[82]

Zheng C. Q., Zhou J. B., Jin W., . Geochronology in the North Segment of the Derbugan Fault Zone, Great Xing’an Range, NE China. Acta Petrologica Sinica, 2009, 25(8): 1989-2000.

[83]

Zhou J. B., Wang B., Wilde S. A., . Geochemistry and U-Pb Zircon Dating of the Toudaoqiao Blueschists in the Great Xing’an Range, Northeast China, and Tectonic Implications. Journal of Asian Earth Sciences, 2015, 97: 197-210.

[84]

Zhou J. B., Wilde S. A. The Crustal Accretion History and Tectonic Evolution of the NE China Segment of the Central Asian Orogenic Belt. Gondwana Research, 2013, 23(4): 1365-1377.

[85]

Zhou J. B., Wilde S. A., Zhang X. Z., . A >1 300 km Late Pan-African Metamorphic Belt in NE China: New Evidence from the Xing’an Block and Its Tectonic Implications. Tectonophysics, 2011, 509(3/4): 280-292.

[86]

Zhou M. F., Zhang H. F., Robinson P. T., . Comments on “Petrology of the Hegenshan Ophiolite and Its Implication for the Tectonic Evolution of Northern China” by T. 89–104]. Earth and Planetary Science Letters, 2004, 217(1/2): 207-210.

[87]

Zhou Z. M., Ma C. Q., Xie C. F., . Genesis of Highly Fractionated I-Type Granites from Fengshun Complex: Implications to Tectonic Evolutions of South China. Journal of Earth Science, 2016, 27(3): 444-460.

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/