Development and Evolution of the Size of Polygonal Fracture Systems during Fluid-Solid Separation in Clay-Rich Deposits

Teodolina Lopez , Raphaël Antoine , José Darrozes , Michel Rabinowicz , David Baratoux

Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (6) : 1319 -1334.

PDF
Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (6) : 1319 -1334. DOI: 10.1007/s12583-017-0814-9
Geophysical Imaging from Subduction Zones to Petroleum Reservoirs

Development and Evolution of the Size of Polygonal Fracture Systems during Fluid-Solid Separation in Clay-Rich Deposits

Author information +
History +
PDF

Abstract

In continental and oceanic conditions, clay-rich deposits are characterised by the development of polygonal fracture systems (PFS). PFS can increase the vertical permeability of clay-rich deposits (mean permeability ≤10-16 m2) and are pathways for fluids. On continents, the width of PFS ranges from centimeters to hundreds of meters, while in oceanic contexts they are up to a few kilometres large. These structures are linked to water-solid separation during deposition, consolidation and complete fluid squeeze of the clay horizon. During the last few decades, modeling of melt migration in partially molten plastic rocks led to rigorous quantifications of two-phase flows with a particular emphasis on 2D and 3D induced flow structures. The numerical modeling shows that the melt migrates on distances at most equal to a few times the compaction length L that depends on permeability and viscosity. Consequently, polygonal structures in partially molten plastic rocks result from the melt-rock separation and their sizes are proportional to L. Applying these results to fluid-solid separation in clay-rich horizons, we show that (1) centimetric to kilometric PFS result from the dramatic increase of L during compaction and (2), this process involve agglomerates with 100 μm to 1 mm size.

Keywords

compaction / clay deposit / agglomerates / polygonal fractures / desiccation cracks

Cite this article

Download citation ▾
Teodolina Lopez, Raphaël Antoine, José Darrozes, Michel Rabinowicz, David Baratoux. Development and Evolution of the Size of Polygonal Fracture Systems during Fluid-Solid Separation in Clay-Rich Deposits. Journal of Earth Science, 2018, 29(6): 1319-1334 DOI:10.1007/s12583-017-0814-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alba-Simionesco C., Coasne B., Dosseh G., . Effects of Confinement on Freezing and Melting. Journal of Physics: Condensed Matter, 2006, 18(6): R15-R68.

[2]

Alsharhan A. S., Kendall C. G. S. C. Holocene Coastal Carbonates and Evaporites of the Southern Arabian Gulf and their Ancient Analogues. Earth-Science Reviews, 2003, 61(3/4): 191-243.

[3]

Andresen K. J., Huuse M. ‘Bulls-Eye’ Pockmarks and Polygonal Faulting in the Lower Congo Basin: Relative Timing and Implications for Fluid Expulsion during Shallow Burial. Marine Geology, 2011, 279(1/2/3/4): 111-127.

[4]

Baer J. U., Kent T. F., Anderson S. H. Image Analysis and Fractal Geometry to Characterize Soil Desiccation Cracks. Geoderma, 2009, 154(1/2): 153-163.

[5]

Bercovici D., Ricard Y., Schubert G. A Two-Phase Model for Compaction and Damage: 1. General Theory. Journal of Geophysical Research: Solid Earth, 2001, 106(B5): 8887-8906.

[6]

Bernaud D., Dormieux L., Maghous S. A Constitutive and Numerical Model for Mechanical Compaction in Sedimentary Basins. Computers and Geotechnics, 2006, 33(6/7): 316-329.

[7]

Bishop A. W., Green G. E., Garga V. K., . A New Ring Shear Apparatus and Its Application to the Measurement of Residual Strength. Géotechnique, 1971, 21(4): 273-328.

[8]

Brinker C. J., Schere G. W. Sol-Gel Science: The Physic and Chemistry of Gel Processing, 1990.

[9]

Buessem W. R., Nagy B. The Mechanism of the Deformation of Clay. Clays and Clay Minerals, 1954, 2(1): 480-491.

[10]

Carman P. C. L’écoulement des Gaz à Travers les Milieux Poreux, 1961.

[11]

Cartwright J. A. Episodic Basin-Wide Hydrofracturing of Overpressured Early Cenozoic Mudrock Sequences in the North Sea Basin. Marine and Petroleum Geology, 1994, 11(5): 587-607.

[12]

Cartwright J. A., Lonergan L. Volumetric Contraction during the Compaction of Mudrocks: A Mechanism for the Development of Regional-Scale Polygonal Fault Systems. Basin Research, 1996, 8(2): 183-193.

[13]

Cartwright J. A., Dewhurst D. N. Layer-Bound Compaction Faults in Fine-Grained Sediments. Geological Society of America Bulletin, 1998, 110(10): 1242-1257.

[14]

Cartwright J., James D., Bolton A. The Genesis of Polygonal Fault Systems: A Review. Geological Society, London, Special Publications, 2003, 216(1): 223-243.

[15]

Casagrande A. The Structure of Clay and Its Importance in the Foundation Engineering. J. Boston Soc. Civil Eng., 1932, 19 168.

[16]

Christidis G. E., Dellisanti F., Valdre G., . Structural Modifications of Smectites Mechanically Deformed under Controlled Conditions. Clay Minerals, 2005, 40(4): 511-522.

[17]

Connolly J. A. D., Podladchikov Y. Y. Temperature-Dependent Viscoelastic Compaction and Compartmentalization in Sedimentary Basins. Tectonophysics, 2000, 324(3): 137-168.

[18]

Connolly J. A. D., Podladchikov Y. Y. A Hydromechanical Model for Lower Crustal Fluid Flow, 2013, In: Metasomatism and the Chemical Transformation of Rock, 599-658.

[19]

Connolly J. A. D., Podladchikov Y. Y. An Analytical Solution for Solitary Porosity Waves: Dynamic Permeability and Fluidization of Nonlinear Viscous and Viscoplastic Rock. Geofluids, 2014, 15(1/2): 269-292.

[20]

Davies R., Cartwright J., Rana J. Giant Hummocks in Deep-Water Marine Sediments: Evidence for Large-Scale Differential Compaction and Density Inversion during Early Burial. Geology, 1999, 27 10 907

[21]

Davies R. J., Ireland M. T., Cartwright J. A. Differential Compaction due to the Irregular Topology of a Diagenetic Reaction Boundary: A New Mechanism for the Formation of Polygonal Faults. Basin Research, 2009, 21(3): 354-359.

[22]

Davies R. J., Ireland M. T. nitiation and Propagation of Polygonal Fault Arrays by Thermally Triggered Volume Reduction Reactions in Siliceous Sediment. Marine Geology, 2011, 289(1/2/3/4): 150-158.

[23]

Dewhurst D. N., Cartwright J. A., Lonergan L. The Development of Polygonal Fault Systems by Syneresis of Colloidal Sediments. Marine and Petroleum Geology, 1999, 16(8): 793-810.

[24]

Paola N., Collettini C., Trippetta F., . A Mechanical Model for Complex Fault Patterns Induced by Evaporite Dehydration and Cyclic Changes in Fluid Pressure. Journal of Structural Geology, 2007, 29(10): 1573-1584.

[25]

Engelhardt W. V., Gaida K. H. Concentration Changes of Pore Solutions during Compaction of Clay Sediments. Journal of Sedimentary Research, 1963, 33(4): 919-930.

[26]

Fowler A. C. On the Transport of Moisture in Polythermal Glaciers. Geophysical & Astrophysical Fluid Dynamics, 1984, 28(2): 99-140.

[27]

Gardien V., Rabinowicz M., Vigneresse J. L., . Long-Lived Interaction between Hydrothermal and Magmatic Fluids in the Soultz-Sous-Forêts Granitic System (Rhine Graben, France). Lithos, 2016, 246/247: 110-127.

[28]

Gay A., Lopez M., Cochonat P., . Polygonal Faults-Furrows System Related to Early Stages of Compaction—Upper Miocene to Recent Sediments of the Lower Congo Basin. Basin Research, 2004, 16(1): 101-116.

[29]

Goulty N. R. Polygonal Fault Networks in Fine-Grained Sediments—An Alternative to the Syneresis Mechanism. First Break, 2001, 19(2): 69-73.

[30]

Goulty N. R. Mechanics of Layer-Bound Polygonal Faulting in Fine-Grained Sediments. Journal of the Geological Society, 2002, 159(3): 239-246.

[31]

Goulty N. R. Geomechanics of Polygonal Fault Systems: A Review. Petroleum Geoscience, 2008, 14(4): 389-397.

[32]

Grégoire M., Rabinowicz M., Janse A. J. A. Mantle Mush Compaction: A Key to Understand the Mechanisms of Concentration of Kimberlite Melts and Initiation of Swarms of Kimberlite Dykes. Journal of Petrology, 2006, 47(3): 631-646.

[33]

Haberlah D., McTainsh G. H. Quantifying Particle Aggregation in Sediments. Sedimentology, 2011, 58(5): 1208-1216.

[34]

Hamaker H. C. The London—van Der Waals Attraction between Spherical Particles. Physica, 1937, 4(10): 1058-1072.

[35]

Hansen D. M., Shimeld J. W., Williamson M. A., . Development of a Major Polygonal Fault System in Upper Cretaceous Chalk and Cenozoic Mudrocks of the Sable Subbasin, Canadian Atlantic Margin. Marine and Petroleum Geology, 2004, 21(9): 1205-1219.

[36]

Harris R. C. Giant Desiccation Cracks in Arizona. Arizona Geological Survey, Arizona, 2004, 1-93.

[37]

Henriet J., De Batist M., Van Vaerenbergh W., . Seismic Facies and Clay Tectonic Features of the Ypresian Clay in the Southern North Sea. In: Proc. of the ‘Intern. Symposium on the Ypresian Stage’. Bull. Belg. Ver. Geol., 1991, 97(3/4): 457-472.

[38]

Hibsch C., Cartwright J., Hansen D. M., . Normal Faulting in Chalk: Tectonic Stresses vs. Compaction-related polygonal faulting, 2003, 216: 291-308.

[39]

Higgs W. G., McClay K. R. Analogue Sandbox Modelling of Miocene Extensional Faulting in the Outer Moray Firth. Geological Society, London, Special Publications, 1993, 71(1): 141-162.

[40]

Holdich R. G. Fundamental of Particle Technology. Chap. 13 Colloïds and Agglomeration, 2002.

[41]

Hooker M. L., Herron G. M., Penas P. Effects of Residue Burning, Removal, and Incorporation on Irrigated Cereal Crop Yields and Soil Chemical Properties1. Soil Science Society of America Journal, 1982, 46 1 122

[42]

Hustoft S., Mienert J., Bünz S., . High-Resolution 3D-Seismic Data Indicate Focussed Fluid Migration Pathways above Polygonal Fault Systems of the Mid-Norwegian Margin. Marine Geology, 2007, 245: 89-106.

[43]

Kaila A. Observations on the Effect of Nitrogen and Phosphorus upon the Humification of Straw. Acta Agralia Fennica, 1952, 78(2): 1-27.

[44]

Karig D. E., Hou G. High-Stress Consolidation Experiments and Their Geologic Implications. Journal of Geophysical Research, 1992, 97 B1 289

[45]

Kocurek G., Hunter R. E. Origin of Polygonal Fractures in Sand, Uppermost Navajo and Page Sandstones, Page, Arizona. SEPM Journal of Sedimentary Research, 1986, 56(6): 895-904.

[46]

Kopf A., Behrmann J. H. Extrusion Dynamics of Mud Volcanoes on the Mediterranean Ridge Accretionary Complex, 2000, 174: 169-204.

[47]

Reviews of Geophysics, 2002, 40 2

[48]

Kopf, A. J., Clennell, M. B., Brown, K. M., 2005. Physical Properties of Muds Extruded from Mud Volcanoes: Implications for Episodicity of Eruptions and Relationship to Seismicity. In: Martinelli, G., Panahi, B., eds., Mud Volcanoes, Geodynamics and Seismicity. 263–283

[49]

Lee-Desautel R. Theory of van der Waals Forces as Applied to Particlate Materials, 2005.

[50]

Li H. P., Zhu Y. L., Zhang J. B., . Effects of Temperature, Strain Rate and Dry Density on Compressive Strength of Saturated Frozen Clay. Cold Regions Science and Technology, 2004, 39(1): 39-45.

[51]

Li J. H., Zhang L. M. Study of Desiccation Crack Initiation and Development at Ground Surface. Engineering Geology, 2011, 123(4): 347-358.

[52]

Li X. J., Wang P. X., Xu C. Z., . Clay Minerals Distribution in Surface Sediments in Western South China Sea and Provenance. Marine Geol. Quatern. Geol., 2008, 28: 9-16.

[53]

Lifshitz E. M. The Theory of Molecular Attractive Force Between Solids. Soviet Physics, 1956, 2 1 73.

[54]

Lonergan L., Cartwright J., Jolly R. The Geometry of Polygonal Fault Systems in Tertiary Mudrocks of the North Sea. Journal of Structural Geology, 1998, 20(5): 529-548.

[55]

Lowenstein T. K., Hardie L. A. Criteria for the Recognition of Salt-Pan Evaporites. Sedimentology, 1985, 32(5): 627-644.

[56]

Luo X. R., Vasseur G. Natural Hydraulic Cracking: Numerical Model and Sensitivity Study. Earth and Planetary Science Letters, 2002, 201(2): 431-446.

[57]

Lynch J. M., Elliott L. F. Aggregate Stabilization of Volcanic Ash and Soil during Microbial Degradation of Straw. Appl. Environ. Microbiol., 1983, 45(4): 1398-1401.

[58]

Mangold N., Allemand P., Duval P., . Experimental and Theoretical Deformation of Ice-Rock Mixtures: Implications on Rheology and Ice Content of Martian Permafrost. Planetary and Space Science, 2002, 50(4): 385-401.

[59]

Martin J. P. The Effect of Composts and Compost Materials Upon the Aggregation of the Silt and Clay Particles of Collington Sandy Loam. Soil Science Society of America Journal, 1942, 7: 218-222.

[60]

McKenzie D. The Generation and Compaction of Partially Molten Rock. Journal of Petrology, 1984, 25(3): 713-765.

[61]

McGeary R. K. Mechanical Packing of Spherical Particles. Journal of the American Ceramic Society, 1961, 44(10): 513-522.

[62]

Mondol N. H., Bjørlykke K., Jahren J., . Experimental Mechanical Compaction of Clay Mineral Aggregates—Changes in Physical Properties of Mudstones during Burial. Marine and Petroleum Geology, 2007, 24(5): 289-311.

[63]

Moses G. G., Rao S. N., Rao P. N. Undrained Strength Behaviour of a Cemented Marine Clay under Monotonic and Cyclic Loading. Ocean Engineering, 2003, 30(14): 1765-1789.

[64]

Murray H. H. Overview—Clay Mineral Applications. Applied Clay Science, 1991, 5(5/6): 379-395.

[65]

Neal J. T., Langer A. M., Kerr P. F. Giant Desiccation Polygons of Great Basin Playas. Geological Society of America Bulletin, 1968, 79 1 69

[66]

Neumann M. G., Gessner F., Schmitt C. C., . Influence of theLayer Charge and Clay Particle Size on the Interactions between the Cationic Dye Methylene Blue and Clays in an Aqueous Suspension. Journal of Colloid and Interface Science, 2002, 255(2): 254-259.

[67]

Okamoto A., Shimizu H. Contrasting Fracture Patterns Induced by Volume-Increasing and-Decreasing Reactions: Implications for the Progress of Metamorphic Reactions. Earth and Planetary Science Letters, 2015, 417: 9-18.

[68]

Osipov V. I. Structural Bonds and the Properties of Clays. Bulletin of the International Association of Engineering Geology, 1975, 12(1): 13-2.

[69]

Osipov V. I., Sokolov V. N. Relation between the Microfabric of Clay Soils and Their Origin and Degree of Compaction. Bulletin of the International Association of Engineering Geology, 1978, 18(1): 73-81.

[70]

Pansu M., Gautheyrou J. Handbook of Soil Analysis: Mineralogical, Organic and Inorganic Methods, 2006

[71]

Paszkowski M. Some Aspects of Grease Flow in Lubrication Systems and Friction Nodes, Tribology—Fundamentals and Advancements, 2013.

[72]

Pratt B. R. Syneresis Cracks: Subaqueous Shrinkage in Argillaceous Sediments Caused by Earthquake-Induced Dewatering. Sedimentary Geology, 1998, 117(1/2): 1-10.

[73]

Quaicoe I., Nosrati A., Skinner W., . Agglomeration Behaviour and Product Structure of Clay and Oxide Minerals. Chemical Engineering Science, 2013, 98: 40-50.

[74]

Rabinowicz M., Genthon P., Ceuleneer G., . Compaction in a Mantle Mush with High Melt Concentrations and the Generation of Magma Chambers. Earth and Planetary Science Letters, 2001, 188(3/4): 313-328.

[75]

Rabinowicz M., Ricard Y., Grégoire M. Compaction in a Mantle with a very Small Melt Concentration: Implications for the Generation of Carbonatitic and Carbonate-Bearing High Alkaline Mafic Melt Impregnations. Earth and Planetary Science Letters, 2002, 203(1): 205-220.

[76]

Rabinowicz M., Vigneresse J. L. Melt Segregation under Compaction and Shear Channeling: Application to Granitic Magma Segregation in a Continental Crust, 2004, Journal of Geophysical Research: Solid Earth, 109(B4)

[77]

Rabinowicz M., Ceuleneer G. The Effect of Sloped Isotherms on Melt Migration in the Shallow Mantle: A Physical and Numerical Model Based on Observations in the Oman Ophiolite. Earth and Planetary Science Letters, 2005, 229(3/4): 231-246.

[78]

Rabinowicz M., Toplis M. J. Melt Segregation in the Lower Part of the Partially Molten Mantle Zone beneath an Oceanic Spreading Centre: Numerical Modelling of the Combined Effects of Shear Segregation and Compaction. Journal of Petrology, 2009, 50(6): 1071-1106.

[79]

Rabinowicz M., Bystricky M., Schmocker M., . Development of Fluid Veins during Deformation of Fluid-Rich Rocks Close to the Brittle-Ductile Transition: Comparison between Experimental and Physical Models. Journal of Petrology, 2010, 51(10): 2047-2066.

[80]

Rasmussen P. E., Allmaras R. R., Rohde C. R., . Crop Residue Influences on Soil Carbon and Nitrogen in a Wheat-Fallow System1. Soil Science Society of America Journal, 1980, 44 3 596

[81]

Räss L., Yarushina V. M., Simon N. S. C., . Chimneys, Channels, Pathway Flow or Water Conducting Features—An Explanation from Numerical Modelling and Implications for CO2 Storage. Energy Procedia, 2014, 63: 3761-3774.

[82]

Rayhani M. H. T., Yanful E. K., Fakher A. Physical Modeling of Desiccation Cracking in Plastic Soils. Engineering Geology, 2008, 97(1/2): 25-31.

[83]

Rayhani M. H., Yanful E. K., Fakher A. Desiccation-Induced Cracking and Its Effect on the Hydraulic Conductivity of Clayey Soils from Iran. Canadian Geotechnical Journal, 2007, 44(3): 276-283.

[84]

Ribe N. M. The Deformation and Compaction of Partial Molten Zones. Geophysical Journal International, 1985, 83(2): 487-501.

[85]

Roscoe R. The Viscosity of Suspensions of Rigid Spheres. British Journal of Applied Physics, 1952, 3(8): 267-269.

[86]

Rutter E. H., Wanten P. H. Experimental Study of the Compaction of Phyllosilicate-Bearing Sand at Elevated Temperature and with Controlled Pore Water Pressure. Journal of Sedimentary Research, 2000, 70(1): 107-116.

[87]

Rutter E. H., Arkwright J. C., Holloway R. F., . Strains and Displacements in the Mam Tor Landslip, Derbyshire, England. Journal of the Geological Society, 2003, 160(5): 735-744.

[88]

Rutter E. H., Green S. Quantifying Creep Behaviour of Clay-Bearing Rocks below the Critical Stress State for Rapid Failure: Mam Tor Landslide, Derbyshire, England. Journal of the Geological Society, 2011, 168(2): 359-372.

[89]

Schneider F., Potdevin J. L., Wolf S., . Mechanical and Chemical Compaction Model for Sedimentary Basin Simulators. Tectonophysics, 1996, 263: 307-317.

[90]

Schwinka V., Moertel H. Physico-Chemical Properties of Illite Suspensions after Cycles of Freezing and Thawing. Clays and Clay Minerals, 1999, 47(6): 718-725.

[91]

Skempton A. W. Long-Term Stability of Clay Slopes. Géotechnique, 1964, 14(2): 77-102.

[92]

Sergeyev Y. M., Grabowska-Olszewska B., Osipov V. I., . The Classification of Microstructures of Clay Soils. Journal of Microscopy, 1980, 120(3): 237-260.

[93]

Ślizowski J., Lankof L. Salt-Mudstones and Rock-Salt Suitabilities for Radioactive-Waste Storage Systems: Rheological Properties. Applied Energy, 2003, 75(1/2): 137-144.

[94]

Yuen D. A. Stationary Points in Activation Energy for Heat Dissipated with a Power Law Temperature-Dependent Viscoelastoplastic Rheology. Geophysical Research Letters, 2014, 41(14): 4953-4960.

[95]

Stuevold L. M., Faerseth R. B., Arnesen L., . Polygonal Faults in the Ormen Lange Field, Møre Basin, Offshore Mid Norway. Geological Society, London, Special Publications, 2003, 216(1): 263-281.

[96]

Suetnova E., Vasseur G. 1-D Modelling Rock Compaction in Sedimentary Basins Using a Visco-Elastic Rheology. Earth and Planetary Science Letters, 2000, 178(3/4): 373-383.

[97]

Sweet D. E., Soreghan G. S. Polygonal Cracking in Coarse Clastics Records Cold Temperatures in the Equatorial Fountain Formation (Pennsylvanian–Permian, Colorado). Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 268(3/4): 193-204.

[98]

Sun Q. L., Wu S. G., Yao G. S., . Characteristics and Formation Mechanism of Polygonal Faults in Qiongdongnan Basin, Northern South China Sea. Journal of Earth Science, 2009, 20(1): 180-192.

[99]

Sun Q. L., Wu S. G., F. L., . Polygonal Faults and Their Implications for Hydrocarbon Reservoirs in the Southern Qiongdongnan Basin, South China Sea. Journal of Asian Earth Sciences, 2010, 39(5): 470-479.

[100]

Talbot C. J., Rönnlund P., Schmeling H., . Diapiric Spoke Patterns. Tectonophysics, 1991, 188(1/2): 187-201.

[101]

Tang C.-S., Cui Y.-J., Tang A.-M., . Experiment Evidence on the Temperature Dependence of Desiccation Cracking Behavior of Clayey Soils. Engineering Geology, 2010, 114(3/4): 261-266.

[102]

Tang C.-S., Shi B., Liu C., . Experimental Characterization of Shrinkage and Desiccation Cracking in Thin Clay Layer. Applied Clay Science, 2011, 52(1/2): 69-77.

[103]

Tewksbury B. J., Hogan J. P., Kattenhorn S. A., . Polygonal Faults in Chalk: Insights from Extensive Exposures of the Khoman Formation, Western Desert, Egypt: Reply. Geology, 2014, 42(6): 479-482.

[104]

Vasseur G., Djeran-Maigre I., Grunberger D., . Evolution of Structural and Physical Parameters of Clays during Experimental Compaction. Marine and Petroleum Geology, 1995, 12(8): 941-954.

[105]

van Olphen H. An Introduction to Clay Colloid Chemistry: For Clay Technologists, Geologists, and Soil Scientists, 1977.

[106]

Watterson J., Walsh J., Nicol A., . Geometry and Origin of a Polygonal Fault System. Journal of the Geological Society, 2000, 157(1): 151-162.

[107]

Wei K. S., Cui H. Y., Ye S. F., . High-Precision Sequence Stratigraphy in Qiongdongnan Basin. Earth Science—Journal of China University of Geosciences, 2001, 20: 59-66.

[108]

Weinberger R. Initiation and Growth of Cracks during Desiccation of Stratified Muddy Sediments. Journal of Structural Geology, 1999, 21(4): 379-386.

[109]

Wiggins C., Spiegelman M. Magma Migration and Magmatic Solitary Waves in 3-D. Geophysical Research Letters, 1995, 22(10): 1289-1292.

[110]

Yarushina V. M., Podladchikov Y. Y. (De)compaction of Porous Viscoelastoplastic Media: Model Formulation. Journal of Geophysical Research: Solid Earth, 2015, 120(6): 4146-4170.

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/