Proto-South China Sea Plate Tectonics Using Subducted Slab Constraints from Tomography

Jonny Wu, John Suppe

Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (6) : 1304-1318.

Journal of Earth Science ›› 2018, Vol. 29 ›› Issue (6) : 1304-1318. DOI: 10.1007/s12583-017-0813-x
Geophysical Imaging from Subduction Zones to Petroleum Reservoirs

Proto-South China Sea Plate Tectonics Using Subducted Slab Constraints from Tomography

Author information +
History +

Abstract

The past size and location of the hypothesized proto-South China Sea vanished ocean basin has important plate-tectonic implications for Southeast Asia since the Mesozoic. Here we present new details on proto-South China Sea paleogeography using mapped and unfolded slabs from tomography. Mapped slabs included: the Eurasia-South China Sea slab subducting at the Manila trench; the northern Philippine Sea Plate slab subducting at the Ryukyu trench; and, a swath of detached, subhorizontal, slab-like tomographic anomalies directly under the South China Sea at 450 to 700 km depths that we show is subducted ‘northern proto-South China Sea’ lithosphere. Slab unfolding revealed that the South China Sea lay directly above the ‘northern Proto-South China Sea’ with both extending 400 to 500 km to the east of the present Manila trench prior to subduction. Our slab-based plate reconstruction indicated the proto-South China Sea was consumed by double-sided subduction, as follows: (1) The ‘northern proto-South China Sea’ subducted in the Oligo–Miocene under the Dangerous Grounds and southward expanding South China Sea by in-place ‘self subduction’ similar to the western Mediterranean basins; (2) limited southward subduction of the proto-South China Sea under Borneo occurred pre-Oligocene, represented by the 800–900 km deep ‘southern proto-South China Sea’ slab.

Keywords

seismic tomography / plate tectonics / South China Sea / proto-South China Sea / subducted slabs / Borneo / Oligocene–Miocene

Cite this article

Download citation ▾
Jonny Wu, John Suppe. Proto-South China Sea Plate Tectonics Using Subducted Slab Constraints from Tomography. Journal of Earth Science, 2018, 29(6): 1304‒1318 https://doi.org/10.1007/s12583-017-0813-x

References

Bai Y. L., Wu S. G., Liu Z., . Full-Fit Reconstruction of the South China Sea Conjugate Margins. Tectonophysics, 2015, 661: 121-135.
CrossRef Google scholar
Barckhausen U., Engels M., Franke D., . Evolution of the South China Sea: Revised Ages for Breakup and Seafloor Spreading. Marine and Petroleum Geology, 2014, 58: 599-611.
CrossRef Google scholar
Bezada M. J., Humphreys E. D., Toomey D. R., . Evidence for Slab Rollback in Westernmost Mediterranean from Improved Upper Mantle Imaging. Earth and Planetary Science Letters, 2013, 368: 51-60.
CrossRef Google scholar
Boyden J. A., Müller R. D., Gurnis M., . Keller G. R., Baru C., . Next-Generation Plate-Tectonic Reconstructions Using GPlates. Geoinformatics: Cyber Infrastructure for the Solid Earth Sciences, 2011, Cambridge: Cambridge University Press, 95-113
CrossRef Google scholar
Briais A., Patriat P., Tapponnier P. Updated Interpretation of Magnetic Anomalies and Seafloor Spreading Stages in the South China Sea: Implications for the Tertiary Tectonics of Southeast Asia. Journal of Geophysical Research: Solid Earth, 1993, 98(B4): 6299-6328.
CrossRef Google scholar
Cullen A. B. Transverse Segmentation of the Baram-Balabac Basin, NW Borneo: Refining the Model of Borneo’s Tectonic Evolution. Petroleum Geoscience, 2010, 16(1): 3-29.
CrossRef Google scholar
Cullen A. B., Zechmeister M. S., Elmore R. D., . Paleomagnetism of the Crocker Formation, Northwest Borneo: Implications for Late Cenozoic Tectonics. Geosphere, 2012, 8(5): 1146-1169.
CrossRef Google scholar
Domeier M., Doubrovine P. V., Torsvik T. H., . Global Correlation of Lower Mantle Structure and Past Subduction. Geophysical Research Letters, 2016, 43(10): 4945-4953.
CrossRef Google scholar
Dziewonski A. M., Anderson D. L. Preliminary Reference Earth Model. Physics of the Earth and Planetary Interiors, 1981, 25(4): 297-356.
CrossRef Google scholar
Engdahl E. R. v d H. R. B. R. Global Teleseismic Earthquake Relocation with Improved Travel Times and Procedures for Depth Determination. Bulletin of the Seismological Society of America, 1998, 88(3): 722-743.
Engdahl E. R., Villaseñor A., . Lee W. H. K., Kanamori H., Jennings P. C., . Global Seismicity: 1900–1999. International Handbook of Earthquake and Engineering Seismology, 2002, Cambridge: Part A. Academic Press, 665-690
CrossRef Google scholar
Faccenna C., Becker T. W., Auer L., . Mantle Dynamics in the Mediterranean. Reviews of Geophysics, 2014, 52(3): 283-332.
CrossRef Google scholar
Fan J. K., Zhao D. P., Dong D. D., . P-Wave Tomography of Subduction Zones around the Central Philippines and Its Geodynamic Implications. Journal of Asian Earth Sciences, 2017, 146: 76-89.
CrossRef Google scholar
Franke D., Barckhausen U., Heyde I., . Seismic Images of a Collision Zone Offshore NW Sabah/Borneo. Marine and Petroleum Geology, 2008, 25(7): 606-624.
CrossRef Google scholar
Fukao Y., Obayashi M., Inoue H., . Subducting Slabs Stagnant in the Mantle Transition Zone. Journal of Geophysical Research: Solid Earth, 1992, 97(B4): 4809-4822.
CrossRef Google scholar
Fuller M., Ali J. R., Moss S. J., . Paleomagnetism of Borneo. Journal of Asian Earth Sciences, 1999, 17(1/2): 3-24.
CrossRef Google scholar
Goes S., Agrusta R., van Hunen J., . Subduction-Transition Zone Interaction: A Review. Geosphere, 2017, 13(3): 644-664.
CrossRef Google scholar
Hafkenscheid E., Wortel M. J. R., Spakman W. Subduction History of the Tethyan Region Derived from Seismic Tomography and Tectonic Reconstructions. Journal of Geophysical Research: Solid Earth, 2006, 111 B8 B08401
CrossRef Google scholar
Hall R. Cenozoic Geological and Plate Tectonic Evolution of SE Asia and the SW Pacific: Computer-Based Reconstructions, Model and Animations. Journal of Asian Earth Sciences, 2002, 20(4): 353-431.
CrossRef Google scholar
Hall R. Late Jurassic–Cenozoic Reconstructions of the Indonesian Region and the Indian Ocean. Tectonophysics, 2012, 570/571: 1-41.
CrossRef Google scholar
Hall R., Spakman W. Mantle Structure and Tectonic History of SE Asia. Tectonophysics, 2015, 658: 14-45.
CrossRef Google scholar
Hinz K., Fritsch J., Kempter E. H. K., . Thrust Tectonics along the North-Western Continental Margin of Sabah/Borneo. Geologische Rundschau, 1989, 78(3): 705-730.
CrossRef Google scholar
Holloway N. H. North Palawan Block, Philippines—Its Relation to Asian Mainland and Role in Evolution of South China Sea. AAPG Bulletin, 1982, 66 9 1355.
Huang Z. C., Zhao D. P., Wang L. P Wave Tomography and Anisotropy beneath Southeast Asia: Insight into Mantle Dynamics. Journal of Geophysical Research: Solid Earth, 2015, 120(7): 5154-5174.
Hutchison C. S., Bergman S. C., Swauger D. A., . A Miocene Collisional Belt in North Borneo: Uplift Mechanism and Isostatic Adjustment Quantified by Thermochronology. Journal of the Geological Society, 2000, 157(4): 783-793.
CrossRef Google scholar
Hutchison C. S. Oroclines and Paleomagnetism in Borneo and South-East Asia. Tectonophysics, 2010, 496(1/2/3/4): 53-67.
CrossRef Google scholar
Hutchison C. S. The ‘Rajang Accretionary Prism’ and ‘Lupar Line’ Problem of Borneo. Geological Society, London, Special Publications, 1996, 106(1): 247-261.
CrossRef Google scholar
Koulakov I. High-Frequency P and S Velocity Anomalies in the Upper Mantle beneath Asia from Inversion of Worldwide Traveltime Data. Journal of Geophysical Research: Solid Earth, 2011, 116 B4 B04301
CrossRef Google scholar
Legendre C. P., Zhao L., Chen Q. F. Upper-Mantle Shear-Wave Structure under East and Southeast Asia from Automated Multimode Inversion of Waveforms. Geophysical Journal International, 2015, 203(1): 707-719.
CrossRef Google scholar
Li C. v d H. R. D. E. E. R., . A New Global Model for P Wave Speed Variations in Earth’s Mantle. Geochemistry, Geophysics, Geosystems, 2008, 9 5 Q05018
CrossRef Google scholar
Li C., van der Hilst R. D. Structure of the Upper Mantle and Transition Zone beneath Southeast Asia from Traveltime Tomography. Journal of Geophysical Research: Solid Earth, 2010, 115 B7 B07308
CrossRef Google scholar
Li C.-F., Xu X., Lin J., . Ages and Magnetic Structures of the South China Sea Constrained by Deep Tow Magnetic Surveys and IODP Expedition 349. Geochemistry, Geophysics, Geosystems, 2014, 15(12): 4958-4983.
CrossRef Google scholar
Lister G. S., White L. T., Hart S., . Ripping and Tearing the Rolling-Back New Hebrides Slab. Australian Journal of Earth Sciences, 2012, 59(6): 899-911.
CrossRef Google scholar
Lu R.-Q., Suppe J., He D.-F., . Deep Subducting Slab Reconstruction and Its Geometry, Kinematics: A Case Study for the Tonga-Kermadec Slab from Tomography. Chinese Journal Geophysics, 2013, 56(11): 3837-3845.
Obayashi M., Yoshimitsu J., Nolet G., . Finite Frequency Whole Mantle P Wave Tomography: Improvement of Subducted Slab Images. Geophysical Research Letters, 2013, 40(21): 5652-5657.
CrossRef Google scholar
Pubellier M., Morley C. K. The Basins of Sundaland (SE Asia): Evolution and Boundary Conditions. Marine and Petroleum Geology, 2014, 58: 555-578.
CrossRef Google scholar
Rangin C., Spakman W., Pubellier M., . Tomographic and Geological Constraints on Subduction along the Eastern Sundaland Continental Margin (South-East Asia). Bulletin de la Societe Geologique de France, 1999, 170(6): 775-788.
Rawlinson N., Fichtner A., Sambridge M., . Chapter One—Seismic Tomography and the Assessment of Uncertainty. Advances in Geophysics. Elsevier, 2014, 55: 1-76.
CrossRef Google scholar
Replumaz A., Tapponnier P. Reconstruction of the Deformed Collision Zone between India and Asia by Backward Motion of Lithospheric Blocks. Journal of Geophysical Research: Solid Earth, 2003, 108 B6 2285
CrossRef Google scholar
Schlüter H. U., Hinz K., Block M. Tectono-Stratigraphic Terranes and Detachment Faulting of the South China Sea and Sulu Sea. Marine Geology, 1996, 130(1/2): 39-78.
CrossRef Google scholar
Seton M., Müller R. D., Zahirovic S., . Global Continental and Ocean Basin Reconstructions since 200 Ma. Earth-Science Reviews, 2012, 113(3/4): 212-270.
CrossRef Google scholar
Sibuet J.-C., Yeh Y.-C., Lee C.-S. Geodynamics of the South China Sea. Tectonophysics, 2016, 692: 98-119.
CrossRef Google scholar
Sigloch K., Mihalynuk M. G. Intra-Oceanic Subduction Shaped the Assembly of Cordilleran North America. Nature, 2013, 496(7443): 50-56.
CrossRef Google scholar
Spakman W., Wortel M. J. R., . Cavazza W., Roure F. M., Spakman W., . Tomographic View on Western Mediterranean Geodynamics. The TRANSMED Atlas, The Mediterranean Region from Crust to Mantle, 2004, Heidelberg: Springer-Verlag, 31-52
CrossRef Google scholar
Sun W., Lin C.-T., Zhang C.-C., . Initiation and Evolution of the South China Sea: An Overview. Acta Geochimica, 2016, 35(3): 215-225.
CrossRef Google scholar
Tan E., Gurnis M., Han L. J. Slabs in the Lower Mantle and Their Modulation of Plume Formation. Geochemistry, Geophysics, Geosystems, 2002, 3(11): 1-24.
CrossRef Google scholar
Taylor B., Hayes D. E. Origin and History of the South China Sea Basin. In: Hayes, D. E., ed., The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands: Part 2. American Geophysical Union, Washington D.C. Geophysical Monographs Series, 1983, 27: 23-56.
Torsvik T. H., Müller R. D., Van der Voo R., . Global Plate Motion Frames: Toward a Unified Model. Reviews of Geophysics, 2008, 46 3 44
CrossRef Google scholar
van der Meer D. G., Spakman W., van Hinsbergen D. J. J., . Towards Absolute Plate Motions Constrained by Lower-Mantle Slab Remnants. Nature Geoscience, 2009, 3(1): 36-40.
CrossRef Google scholar
van der Meer D. G., van Hinsbergen D. J. J., Spakman W. Atlas of the Underworld: Slab Remnants in the Mantle, Their Sinking History, and a New Outlook on Lower Mantle Viscosity. Tectonophysics, 2017.
von Hagke C., Philippon M., Avouac J.-P., . Origin and Time Evolution of Subduction Polarity Reversal from Plate Kinematics of Southeast Asia. Geology, 2016, 44(8): 659-662.
CrossRef Google scholar
Wu J., Suppe J., Lu R. Q., . Philippine Sea and East Asian Plate Tectonics since 52 Ma Constrained by New Subducted Slab Reconstruction Methods. Journal of Geophysical Research: Solid Earth, 2016, 121(6): 4670-4741.
Yan P., Liu H. L. Tectonic-Stratigraphic Division and Blind Fold Structures in Nansha Waters, South China Sea. Journal of Asian Earth Sciences, 2004, 24(3): 337-348.
CrossRef Google scholar
Zahirovic S., Seton M., Müller R. D. The Cretaceous and Cenozoic Tectonic Evolution of Southeast Asia. Solid Earth, 2014, 5(1): 227-273.
CrossRef Google scholar
Zahirovic S., Müller R. D., Seton M., . Tectonic Speed Limits from Plate Kinematic Reconstructions. Earth and Planetary Science Letters, 2015, 418: 40-52.
CrossRef Google scholar
Zahirovic S., Matthews K. J., Flament N., . Tectonic Evolution and Deep Mantle Structure of the Eastern Tethys since the Latest Jurassic. Earth-Science Reviews, 2016, 162: 293-337.
CrossRef Google scholar
Zhao D. P. The 2011 Tohoku Earthquake (M w 9.0) Sequence and Subduction Dynamics in Western Pacific and East Asia. Journal of Asian Earth Sciences, 2015, 98: 26-49.
CrossRef Google scholar
Zhou D., Ru K., Chen H.-Z. Kinematics of Cenozoic Extension on the South China Sea Continental Margin and Its Implications for the Tectonic Evolution of the Region. Tectonophysics, 1995, 251(1/2/3/4): 161-177.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/