Typical oxygen isotope profile of altered oceanic crust recorded in continental intraplate basalts

Huan Chen , Qun-Ke Xia , Etienne Deloule , Jannick Ingrin

Journal of Earth Science ›› 2017, Vol. 28 ›› Issue (4) : 578 -587.

PDF
Journal of Earth Science ›› 2017, Vol. 28 ›› Issue (4) : 578 -587. DOI: 10.1007/s12583-017-0798-5
Invited Article

Typical oxygen isotope profile of altered oceanic crust recorded in continental intraplate basalts

Author information +
History +
PDF

Abstract

Recycled oceanic crust (ROC) has long been suggested to be a candidate introducing enriched geochemical signatures into the mantle source of intraplate basalts. The different parts of oceanic crust are characterized by variable oxygen isotope compositions (δ18O=3.7‰ to 13.6‰). To trace the signatures of ROC in the mantle source of intraplate basalts, we measured the δ18O values of clinopyroxene (cpx) phenocrysts in the Cenozoic basalts from the Shuangliao volcanic field, NE China using secondary ion mass spectrometer (SIMS). The δ18O values of the Shuangliao cpx phenocrysts in four basalts ranging from 4.10‰ to 6.73‰ (with average values 5.93‰±0.36‰, 5.95‰±0.30‰, 5.58‰±0.66‰, and 4.55‰± 0.38‰, respectively) apparently exceed those of normal mantle-derived cpx (5.6‰±0.2‰) and fall in the typical oxygen isotope range of altered oceanic crust. The δ18O values display the negative correlations with the Eu, Sr anomalies of whole rocks and erupted ages, demonstrating that (1) the ROC is the main enriched component in the mantle source of the Shuangliao basalts and (2) the contributions of ROC varied with time. The basalt with the lowest δ18O value is characterized by a significant K positive anomaly, highest H2O/Ce and Ba/Th ratios, suggesting that the mantle source of basalts with low δ18O can also include a water-rich sediment component that may be the trigger for partial melting. Considering the continuous subduction of the Pacific slab, the temporal heterogeneity of the source components is likely to be caused by the Pacific slab subduction.

Keywords

continental basalt / oxygen isotope / recycled oceanic crust / Pacific slab / eastern China

Cite this article

Download citation ▾
Huan Chen, Qun-Ke Xia, Etienne Deloule, Jannick Ingrin. Typical oxygen isotope profile of altered oceanic crust recorded in continental intraplate basalts. Journal of Earth Science, 2017, 28(4): 578-587 DOI:10.1007/s12583-017-0798-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bach W., Alt J. C., Niu Y. L., . The Geochemical Consequences of Late-Stage Low-Grade Alteration of Lower Ocean Crust at the SW Indian Ridge: Results from ODP Hole 735B (Leg 176). Geochimica et Cosmochimica Acta, 2001, 65(19): 3267-3287.

[2]

Chen H., Xia Q.-K., Ingrin J. Water Content of the Xiaogulihe Ultrapotassic Volcanic Rocks, NE China: Implications for the Source of the Potassium-Rich Component. Science Bulletin, 2015, 60(16): 1468-1470.

[3]

Chen H., Xia Q.-K., Ingrin J., . Changing Recycled Oceanic Components in the Mantle Source of the Shuangliao Cenozoic Basalts, NE China: New Constraints from Water Content. Tectonophysics, 2015, 650: 113-123.

[4]

Chen H., Xia Q.-K., Ingrin J., . Heterogeneous Source Components of Intraplate Basalts from NE China Induced by the Ongoing Pacific Slab Subduction. Earth and Planetary Science Letters, 2017, 459: 208-220.

[5]

Chen Y., Zhang Y. X., Graham D., . Geochemistry of Cenozoic Basalts and Mantle Xenoliths in Northeast China. Lithos, 2007, 96(1/2): 108-126.

[6]

Ching-oh S., Williams R. J., Shine-soon S. Distribution Coefficients of Eu and Sr for Plagioclase-Liquid and Clinopyroxene-Liquid Equilibria in Oceanic Ridge Basalt: An Experimental Study. Geochimica et Cosmochimica Acta, 1974, 38(9): 1415-1433.

[7]

Deegan F. M., Whitehouse M. J., Troll V. R., . Pyroxene Standards for SIMS Oxygen Isotope Analysis and Their Application to Merapi Volcano, Sunda Arc, Indonesia. Chemical Geology, 2016, 447: 1-10.

[8]

Dixon J. E., Leist L., Langmuir C., . Recycled Dehydrated Lithosphere Observed in Plume-Influenced Mid-Ocean-Ridge Basalt. Nature, 2002, 420(6914): 385-389.

[9]

Drake M. J., Weill D. F. Partition of Sr, Ba, Ca, Y, Eu2+, Eu3+, and Other REE between Plagioclase Feldspar and Magmatic Liquid: An Experimental Study. Geochimica et Cosmochimica Acta, 1975, 39(5): 689-712.

[10]

Eiler J. M. Oxygen Isotope Variations of Basaltic Lavas and Upper Mantle Rocks. Reviews in Mineralogy and Geochemistry, 2001, 43(1): 319-364.

[11]

Eiler J. M., Farley K. A., Valley J. W., . Oxygen Isotope Variations in Ocean Island Basalt Phenocrysts. Geochimica et Cosmochimica Acta, 1997, 61(11): 2281-2293.

[12]

Eiler J. M., Schiano P., Kitchen N., . Oxygen-Isotope Evidence for Recycled Crust in the Sources of Mid-Ocean-Ridge Basalts. Nature, 2000, 403(6769): 530-534.

[13]

Farmer G. L. Holland H., Turekian K. Continental Basaltic Rocks. Treatise on Geochemistry, 2014, 75-110

[14]

Fichtner A., Villaseñor A. Crust and Upper Mantle of the Western Mediterranean—Constraints from Full-Waveform Inversion. Earth and Planetary Science Letters, 2015, 428: 52-62.

[15]

Fitzsimons I. C. W., Harte B., Clark R. M. SIMS Stable Isotope Measurement: Counting Statistics and Analytical Precision. Mineralogical Magazine, 2000, 64(1): 59-83.

[16]

Gao Y. J., Hoefs J., Przybilla R., . A Complete Oxygen Isotope Profile through the Lower Oceanic Crust, ODP Hole 735B. Chemical Geology, 2006, 233(3/4): 217-234.

[17]

Gregory R. T., Taylor H. P. J.r. An Oxygen Isotope Profile in a Section of Cretaceous Oceanic Crust, Samail Ophiolite, Oman: Evidence for δ18O Buffering of the Oceans by Deep (>5 km) Seawater-Hydrothermal Circulation at Mid-Ocean Ridges. Journal of Geophysical Research: Solid Earth, 1981, 86(B4): 2737-2755.

[18]

Gurenko A. A., Bindeman I. N., Chaussidon M. Oxygen Isotope Heterogeneity of the Mantle beneath the Canary Islands: Insights from Olivine Phenocrysts. Contributions to Mineralogy and Petrology, 2011, 162(2): 349-363.

[19]

Gurenko A. A., Chaussidon M., Schmincke H. U. Magma Ascent and Contamination beneath one Intraplate Volcano: Evidence from S and O Isotopes in Glass Inclusions and Their Host Clinopyroxenes from Miocene Basaltic Hyaloclastites Southwest of Gran Canaria (Canary Islands). Geochimica et Cosmochimica Acta, 2001, 65(23): 4359-4374.

[20]

Hartley M. E., Thordarson T., Taylor C., . Evaluation of the Effects of Composition on Instrumental Mass Fractionation during SIMS Oxygen Isotope Analyses of Glasses. Chemical Geology, 2012, 334: 312-323.

[21]

Hoffman S. E., Wilson M., Stakes D. S. Inferred Oxygen Isotope Profile of Archaean Oceanic Crust, Onverwacht Group, South Africa. Nature, 1986, 321(6065): 55-58.

[22]

Huang J. L., Zhao D. P. High-Resolution Mantle Tomography of China and Surrounding Regions. Journal of Geophysical Research, 2006, 111 B9 B09305

[23]

Jung S., Hoernes S. The Major- and Trace-Element and Isotope (Sr, Nd, O) Geochemistry of Cenozoic Alkaline Rift-Type Volcanic Rocks from the Rhön Area (Central Germany): Petrology, Mantle Source Characteristics and Implications for Asthenosphere-Lithosphere Interactions. Journal of Volcanology and Geothermal Research, 2000, 99(1/2/3/4): 27-53.

[24]

Geochemistry, Geophysics, Geosystems, 2003, 4 6

[25]

Kita N. T., Nagahara H., Tachibana S., . High Precision SIMS Oxygen Three Isotope Study of Chondrules in LL3 Chondrites: Role of Ambient Gas during Chondrule Formation. Geochimica et Cosmochimica Acta, 2010, 74(22): 6610-6635.

[26]

Kita N. T., Ushikubo T., Fu B., . High Precision SIMS Oxygen Isotope Analysis and the Effect of Sample Topography. Chemical Geology, 2009, 264(1/2/3/4): 43-57.

[27]

Kokfelt T. F., Hoernle K., Hauff F., . Combined Trace Element and Pb-Nd-Sr-O Isotope Evidence for Recycled Oceanic Crust (Upper and Lower) in the Iceland Mantle Plume. Journal of Petrology, 2006, 47(9): 1705-1749.

[28]

Kuritani T., Ohtani E., Kimura J. I. Intensive Hydration of the Mantle Transition Zone beneath China Caused by Ancient Slab Stagnation. Nature Geoscience, 2011, 4(10): 713-716.

[29]

Lei J. S., Xie F. R., Fan Q. C., . Seismic Imaging of the Deep Structure under the Chinese Volcanoes: An Overview. Physics of the Earth and Planetary Interiors, 2013, 224: 104-123.

[30]

Li J. Y. Permian Geodynamic Setting of Northeast China and Adjacent Regions: Closure of the Paleo-Asian Ocean and Subduction of the Paleo-Pacific Plate. Journal of Asian Earth Sciences, 2006, 26(3/4): 207-224.

[31]

Liu J., Xia Q.-K., Deloule E., . Recycled Oceanic Crust and Marine Sediment in the Source of Alkali Basalts in Shandong, Eastern China: Evidence from Magma Water Content and Oxygen Isotopes. Journal of Geophysical Research: Solid Earth, 2015, 120(12): 8281-8303.

[32]

Liu J., Xia Q.-K., Deloule E., . Water Content and Oxygen Isotopic Composition of Alkali Basalts from the Taihang Mountains, China: Recycled Oceanic Components in the Mantle Source. Journal of Petrology, 2015, 56(4): 681-702.

[33]

Liu X., Zhao D. P., Li S. Z., . Age of the Subducting Pacific Slab beneath East Asia and Its Geodynamic Implications. Earth and Planetary Science Letters, 2017, 464: 166-174.

[34]

Maruyama S., Isozaki Y., Kimura G., . Paleogeographic Maps of the Japanese Islands: Plate Tectonic Synthesis from 750 Ma to the Present. The Island Arc, 1997, 6(1): 121-142.

[35]

Marzoli A., Piccirillo E. M., Renne P. R., . The Cameroon Volcanic Line Revisited: Petrogenesis of Continental Basaltic Magmas from Lithospheric and Asthenospheric Mantle Sources. Journal of Petrology, 2000, 41(1): 87-109.

[36]

Mattey D., Lowry D., Macpherson C. Oxygen Isotope Composition of Mantle Peridotite. Earth and Planetary Science Letters, 1994, 128(3/4): 231-241.

[37]

Muehlenbachs K., Clayton R. N. Oxygen Isotope Composition of the Oceanic Crust and Its Bearing on Seawater. Journal of Geophysical Research, 1976, 81(23): 4365-4369.

[38]

Page F. Z., Kita N. T., Valley J. W. Ion Microprobe Analysis of Oxygen Isotopes in Garnets of Complex Chemistry. Chemical Geology, 2010, 270(1/2/3/4): 9-19.

[39]

Plank T., Langmuir C. H. The Chemical Composition of Subducting Sediment and Its Consequences for the Crust and Mantle. Chemical Geology, 1998, 145(3/4): 325-394.

[40]

Putlitz B., Matthews A., Valley J. W. Oxygen and Hydrogen Isotope Study of High-Pressure Metagabbros and Metabasalts (Cyclades, Greece): Implications for the Subduction of Oceanic Crust. Contributions to Mineralogy and Petrology, 2000, 138(2): 114-126.

[41]

Rogers N. W., Hawkesworth C. J., Ormerod D. S. Late Cenozoic Basaltic Magmatism in the Western Great Basin, California and Nevada. Journal of Geophysical Research: Solid Earth, 1995, 100(B6): 10287-10301.

[42]

Sengör A. M. C., Natal’in B. A. Yin A., Harrison M. Paleotectonics of Asia: Fragments of a Synthesis. Tectonic Evolution of Asia, 1996, Cambridge: Cambridge University Press, 486-640.

[43]

Sengör A. M. C., Natal’in B. A., Burtman V. S. Evolution of the Altaid Tectonic Collage and Palaeozoic Crustal Growth in Eurasia. Nature, 1993, 364(6435): 299-307.

[44]

Taylor H. P. The Application of Oxygen and Hydrogen Isotope Studies to Problems of Hydrothermal Alteration and Ore Deposition. Economic Geology, 1974, 69(6): 843-883.

[45]

Valley J. W., Kita N. T. In Situ Oxygen Isotope Geochemistry by Ion Microprobe. Mineralogical Association of Canada Short Course, 2009, Toronto: Mineralogical Association of Canada, 19-63.

[46]

Wang X. C., Wilde S. A., Li Q. L., . Continental Flood Basalts Derived from the Hydrous Mantle Transition Zone. Nature Communications, 2015, 6 7700

[47]

Wang Z., Eiler J. M. Insights into the Origin of Low-δ18O Basaltic Magmas in Hawaii Revealed from in situ Measurements of Oxygen Isotope Compositions of Olivines. Earth and Planetary Science Letters, 2008, 269(3/4): 377-387.

[48]

Wei W., Xu J. D., Zhao D. P., . East Asia Mantle Tomography: New Insight into Plate Subduction and Intraplate Volcanism. Journal of Asian Earth Sciences, 2012, 60: 88-103.

[49]

Woodhead J. D., Greenwood P., Harmon R. S., . Oxygen Isotope Evidence for Recycled Crust in the Source of EM-Type Ocean Island Basalts. Nature, 1993, 362(6423): 809-813.

[50]

Workman R. K., Hart S. R. Major and Trace Element Composition of the Depleted MORB Mantle (DMM). Earth and Planetary Science Letters, 2005, 231(1/2): 53-72.

[51]

Scientific Reports, 2015, 5 1

[52]

Xia Q.-K., Dallai L., Deloule E. Oxygen and Hydrogen Isotope Heterogeneity of Clinopyroxene Megacrysts from Nushan Volcano, SE China. Chemical Geology, 2004, 209(1/2): 137-151.

[53]

Xu Y. G., Zhang H. H., Qiu H. N., . Oceanic Crust Components in Continental Basalts from Shuangliao, Northeast China: Derived from the Mantle Transition Zone?. Chemical Geology, 2012, 328: 168-184.

[54]

Yu S. Y., Xu Y. G., Huang X. L., . Hf-Nd Isotopic Decoupling in Continental Mantle Lithosphere beneath Northeast China: Effects of Pervasive Mantle Metasomatism. Journal of Asian Earth Sciences, 2009, 35(6): 554-570.

[55]

Zhang J., Zhang H. F. Compositional Features and P-T Conditions of Granulite Xenoliths from Late Cretaceous Mafic Dike, Qingdao Region. Acta Petrologica Sinica, 2007, 23(5): 1133-1140.

[56]

Zhang M., Stephenson P. J., O’Reilly S. Y., . Petrogenesis and Geodynamic Implications of Late Cenozoic Basalts in North Queensland, Australia: Trace-Element and Sr-Nd-Pb Isotope Evidence. Journal of Petrology, 2001, 42(4): 685-719.

[57]

Zhou X., Armstrong R. L. Cenozoic Volcanic Rocks of Eastern China—Secular and Geographic Trends in Chemistry and Strontium Isotopic Composition. Earth and Planetary Science Letters, 1982, 58(3): 301-329.

[58]

Zou H. B., Zindler A., Xu X. S., . Major, Trace Element, and Nd, Sr and Pb Isotope Studies of Cenozoic Basalts in SEChina: Mantle Sources, Regional Variations, and Tectonic Significance. Chemical Geology, 2000, 171(1/2): 33-47.

AI Summary AI Mindmap
PDF

160

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/