Organo-petrographic and pore facets of Permian shale beds of Jharia Basin with implications to shale gas reservoir

Vinod Atmaram Mendhe, Subhashree Mishra, Ranjit G. Khangar, Alka Damodhar Kamble, Durgesh Kumar, Atul Kumar Varma, H. Singh, Sujeet Kumar, Mollika Bannerjee

Journal of Earth Science ›› 2017, Vol. 28 ›› Issue (5) : 897-916.

Journal of Earth Science ›› 2017, Vol. 28 ›› Issue (5) : 897-916. DOI: 10.1007/s12583-017-0779-8
Articles

Organo-petrographic and pore facets of Permian shale beds of Jharia Basin with implications to shale gas reservoir

Author information +
History +

Abstract

The shale deposits of Damodar Valley have received great attention since preliminary studies indicate their potential for shale gas. However, fundamental information allied to shale gas reservoir characteristics are still rare in India, as exploration is in the primary stage. In this study, Barakar shale beds of eastern part of Jharia Basin are evaluated for gas reservoir characteristics. It is evident that Barakar shales are carbonaceous, silty, contains sub-angular flecks of quartz and mica, irregular hair-line fractures and showing lithological variations along the bedding planes, signifying terrestrial-fluviatile deposits under reducing environment. The values of TOC varies from 1.21 wt.% to 17.32 wt.%, indicating good source rock potentiality. The vitrinite, liptinite, inertinite and mineral matter ranging from 0.28 vol.% to 12.98 vol.%, 0.17 vol.% to 3.23 vol.%, 0.23 vol.% to 9.05 vol.%, and 74.74 vol.% to 99.10 vol.%, respectively. The ternary facies plot of maceral composition substantiated that Barakar shales are vitrinite rich and placed in the thermal-dry gas prone region. The low values of the surface area determined following different methods point towards low methane storage capacity, this is because of diagenesis and alterations of potash feldspar responsible for pore blocking effect. The pore size distribution signifying the micro to mesoporous nature, while Type II sorption curve with the H2 type of hysteresis pattern, specifies the heterogeneity in pore structure mainly combined-slit and bottle neck pores.

Keywords

shale gas / petrographic composition / surface area / pore disposition / pore volume

Cite this article

Download citation ▾
Vinod Atmaram Mendhe, Subhashree Mishra, Ranjit G. Khangar, Alka Damodhar Kamble, Durgesh Kumar, Atul Kumar Varma, H. Singh, Sujeet Kumar, Mollika Bannerjee. Organo-petrographic and pore facets of Permian shale beds of Jharia Basin with implications to shale gas reservoir. Journal of Earth Science, 2017, 28(5): 897‒916 https://doi.org/10.1007/s12583-017-0779-8

References

Aisharhan A. S., Nairn A. E. M. Sedimentary Basins and Petroleum Geology of the Middle East, 2003, The Netherlands: Elsevier, 944.
Brooks B. T. Evidence of Catalytic Action in Petroleum Formation. Industrial & Engineering Chemistry, 1952, 44(11): 2570-2577.
CrossRef Google scholar
Brown M. L. Analytical Trilinear Pressure Transient Model for Multiply Fractured Horizontal Wells in Tight Shale Reservoirs, 2009, Golden: Colorado School of Mines
Brunauer S., Deming L. S., Deming W. E., . On a Theory of the van Der Waals Adsorption of Gases. Journal of the American Chemical Society, 1940, 62(7): 1723-1732.
CrossRef Google scholar
Brunauer S., Emmett P. H., Teller E. Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society, 1938, 60(2): 309-319.
CrossRef Google scholar
Bureau of Indian Standard BIS Methods of Test for Coal and Coke (Second Revision of IS: 1350). Part I, Proximate Analysis, 1995, New Delhi: Manak Bhawan, 9 Bahadur Shah Zafar Marg, 1-29.
Casshyap S. M. Sedimentary Cycles and Environment of Deposition of the Barakar Coal Measures of Lower Gondwana, India. SEPM Journal of Sedimentary Research, 1970, 40, 1302-1317.
Casshyap S. M., Tewari R. C. Depositional Model and Tectonic Evolution of Gondwana Basins. The Palaeobotanist, 1987, 36: 59-66.
Chalmers G. R. L., Bustin R. M. The Organic Matter Distribution and Methane Capacity of the Lower Cretaceous Strata of Northeastern British Columbia, Canada. International Journal of Coal Geology, 2007, 70(1/2/3): 223-239.
CrossRef Google scholar
Chandra D. Jharia Coalfield, 1992, Bangalore: Geological Society of India, 1-11.
Chandra S. K. Deposition of Bivalves in Indian Gondwana Coal Measures. Indian Miner., 1990, 44(1): 31-44.
Chandra S. K., Betekhtina O. A. Bivalves in Indian Gondwana Coal Measures. Indian J. Geol., 1990, 62(1): 18-26.
Clarkson C. R., Freeman M., He L., . Characterization of Tight Gas Reservoir Pore Structure Using USANS/SANS and Gas Adsorption Analysis. Fuel, 2012, 95: 371-385.
CrossRef Google scholar
Claypool G. E. Kerogen Conversion in Fractured Shale Petroleum Systems, 1998.
Coal India Limited Coal Atlas of India, 1993, Ranchi: CMPDI
Curtis J. B. Fractured Shale-Gas Systems. AAPG Bulletin, 2002, 86: 1921-1938.
Curtis M. E., Cardott B. J., Sondergeld C. H., . Development of Organic Porosity in the Woodford Shale with Increasing Thermal Maturity. International Journal of Coal Geology, 2012, 103: 26-31.
CrossRef Google scholar
de Boer J. H. The Structure and Properties of Porous Materials, 1958, London: Butterworths, 68.
Durand B., Alpern B., Pittion L. J., . Burrus J., . Reflectance of Vitrinite as a Control of Thermal History of Sediments. Thermal Modeling in Sedimentary Basins, Insitut Francais Petrole Research Conferences on Exploration, Carcan, France, June 3–7, 1985. Editions Technip, Paris, 1986, 441-473.
EIA-Energy Information Administration, USA World Shale Gas Resources: An Initial Assessment of 14 Regions Outside the United States, EIA Website, 2011.
EIA-Energy Information Administration, USA Annual Energy Review, 2012.
Fu H. J., Tang D. Z., Xu T., . Characteristics of Pore Structure and Fractal Dimension of Low-Rank Coal: A Case Study of Lower Jurassic Xishanyao Coal in the Southern Junggar Basin, NW China. Fuel, 2017, 193: 254-264.
CrossRef Google scholar
Grim R. E. Relation of Clay Mineralogy to Origin and Recovery of Petroleum. AAPG Bulletin, 1947, 31: 1491-1499.
Hakimi M. H., Abdullah W. H., Sia S. G., . Organic Geochemical and Petrographic Characteristics of Tertiary Coals in the Northwest Sarawak, Malaysia: Implications for Palaeoenvironmental Conditions and Hydrocarbon Generation Potential. Marine and Petroleum Geology, 2013, 48: 31-46.
CrossRef Google scholar
Hardy P. Chapter 1: Introduction and Overview: The Role of Shale Gas in Securing Our Energy Future in Fracking, 2014, Cambridge: Environmental Science and Technology, Royal Society of Chemistry, Thomas Graham House, 1-45.
International Committee for Coal Petrology ICCP International Handbook of Coal Petrography, 1963, 2, Paris: Centre National de la Recherche Scientifique
International Committee for Coal Petrology ICCP International Handbook of Coal Petrography, 1971, 2, Unpagenated: International Committee for Coal and Organic Petrology
International Committee for Coal Petrology ICCP International Handbook of Coal Petrography, 1973, 2, Paris: Centre National Recherche Scientifique
International Committee for Coal Petrology ICCP International Handbook of Coal Petrography, 1993, 2, England: University of New Castle
International Committee for Coal Petrology ICCP Vitrinite Classification, 1995, Aachen: ICCP System 1994, 1-24.
International Committee for Coal Petrology ICCP The New Vitrinite Classification (ICCP System 1994). Fuel, 1998, 77: 349-358.
International Energy Agency IEA World Energy Outlook—Global Energy Prospects: Impact of Developments in China & India, 2007, 1-674.
IUPAC Compendium of Chemical Terminology, 1997, 2, Oxford: Compiled by A.D. McNaught and A. Wilkinson, Blackwell Scientific Publications
Jacob K. F. N. I., Ramaswamy S. K., Rizvi S. R. A., . Sedimentological Studies in Parts of Jharia and East Bokaro Coalfields. Geological Survey of India, 1958, 24A(6): 339-357.
Jarvie D. M. Shale Resource Systems for Oil and Gas: Part 1—Shale Gas Resource Systems. In: Breyer, J., ed., Shale Reservoirs—Giant Resources for the 21st Century. American Association of Petroleum Geologists Memoir, 2012, 97: 69-87.
Jarvie D. M., Hill R. J., Ruble T. E., . Unconventional Shale-Gas Systems: The Mississippian Barnett Shale of North-Central Texas as One Model for Thermogenic Shale-Gas Assessment. AAPG Bulletin, 2007, 91(4): 475-499.
CrossRef Google scholar
Kuila U., Prasad M. Specific Surface Area and Pore-Size Distribution in Clays and Shales. Geophysical Prospecting, 2013, 61(2): 341-362.
CrossRef Google scholar
Kuila U., Prasad M., Derkowski A., . Compositional Controls on Mudrock Pore-Size Distribution: An Example from Nibrara Formation, 2012.
Labani M. M., Rezaee R., Saeedi A., . Evaluation of Pore Size Spectrum of Gas Shale Reservoirs Using Low Pressure Nitrogen Adsorption, Gas Expansion and Mercury Porosimetry: A Case Study from the Perth and Canning Basins, Western Australia. Journal of Petroleum Science and Engineering, 2013, 112: 7-16.
CrossRef Google scholar
Li A., Ding W. L., He J. H., . Investigation of Pore Structure and Fractal Characteristics of Organic-Rich Shale Reservoirs: A Case Study of Lower Cambrian Qiongzhusi Formation in Malong Block of Eastern Yunnan Province, South China. Marine and Petroleum Geology, 2016, 70: 46-57.
CrossRef Google scholar
Loucks R. G., Reed R. M., Ruppel S. C., . Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research, 2009, 79(12): 848-861.
CrossRef Google scholar
Mani D., Patil D. J., Dayal A. M., . Thermal Maturity, Source Rock Potential and Kinetics of Hydrocarbon Generation in Permian Shales from the Damodar Valley Basin, Eastern India. Marine and Petroleum Geology, 2015, 66: 1056-1072.
CrossRef Google scholar
Mastalerz M., He L. L., Melnichenko Y. B., . Porosity of Coal and Shale: Insights from Gas Adsorption and SANS/USANS Techniques. Energy & Fuels, 2012, 26(8): 5109-5120.
CrossRef Google scholar
Mastalerz M., Schimmelmann A., Lis G. P., . Influence of Maceral Composition on Geochemical Characteristics of Immature Shale Kerogen: Insight from Density Fraction Analysis. International Journal of Coal Geology, 2012, 103: 60-69.
CrossRef Google scholar
Mendhe V. A., Mishra S., Varma A. K., . Gas Reservoir Characteristics of the Lower Gondwana Shales in Raniganj Basin of Eastern India. Journal of Petroleum Science and Engineering, 2017, 149: 649-664.
CrossRef Google scholar
Mendhe V. A., Bannerjee M., Varma A. K., . Fractal and Pore Dispositions of Coal Seams with Significance to Coalbed Methane Plays of East Bokaro, Jharkhand, India. Journal of Natural Gas Science and Engineering, 2017, 38: 412-433.
CrossRef Google scholar
Mendhe V. A., Mishra S., Bannerjee M., . Evaluation of Thermal Maturity, Pore Structure and Behaviour of Gas Transport in Permian Shale Beds of Jharia Basin, Jharkhand, 2017, 1397-1408.
Mendhe V. A., Mishra S., Kamble A. D., . Geological Controls and Flow Mechanism of Permian Gas Shale Reservoir of Raniganj Basin, West Bengal. Journal of Geosciences Research, 2017, 1: 161-172.
Mendhe V. A., Kamble A. D., Bannerjee M., . Evaluation of Shale Gas Reservoir in Barakar and Barren Measures Formations of North and South Karanpura Coalfields, Jharkhand. Journal of the Geological Society of India, 2016, 88(3): 305-316.
CrossRef Google scholar
Mendhe V. A., Mishra S., Kamble A. D., . Shale Gas and Emerging Energy Resource: Prospects in India. The Indian Mining & Engineering Journal, 2015, 54(6): 21-31.
Mendhe V. A., Mishra S., Varma A. K., . Coalbed Methane-Produced Water Quality and Its Management Options in Raniganj Basin, West Bengal, India. Applied Water Science, 2015, 7(3): 1359-1367.
CrossRef Google scholar
Meyer K., Klobes P. Comparison between Different Presentations of Pore Size Distribution in Porous Materials. Fresenius’ Journal of Analytical Chemistry, 1999, 363(2): 174-178.
CrossRef Google scholar
Mishra S., Mani D., Kavitha S., . Organic Matter Characteristics and Gas Generation Potential of the Tertiary Shales from NW Kutch, India. Journal of Petroleum Science and Engineering, 2014, 124: 114-121.
CrossRef Google scholar
Mishra S., Mendhe V. A., Kamble A. D., . Prospects of Shale Gas Exploitation in Lower Gondwana of Raniganj Coalfield (West Bengal), India. The Palaeobotanist, 2016, 65: 31-46.
Montgomery S. L., Jarvie D. M., Bowker K. A., . Mississippian Barnett Shale, Fort Worth Basin, North-Central Texas: Gas-Shale Play with Multi-Trillion Cubic Foot Potential. AAPG Bulletin, 2005, 89(2): 155-175.
CrossRef Google scholar
Moore D. E., Morrow C. A., Byerlee J. D. Use of Swelling Clays to Reduce Permeability and Its Potential Application to Nuclear Waste Repository Sealing. Geophysical Research Letters, 1982, 9(9): 1009-1012.
CrossRef Google scholar
Padhy P. K., Das S. K. Shale Oil and Gas Plays: Indian Sedimentary Basins. Geohorizons, 2013, 18: 20-25.
Passey Q. R., Bohacs K. M., Esch W. L., . From Oil-Prone Source Rock to Gas-Producing Shale Reservoir––Geologic and Petrophysical Characterization of Unconventional Shale-Gas Reservoirs. Society Petroleum Engineers, 2010, 2010 131350.
Person M., Raffensperger J. P., Ge S. M., . Basin-Scale Hydrogeologic Modeling. Reviews of Geophysics, 1996, 34(1): 61-87.
CrossRef Google scholar
Pollastro R. M. Total Petroleum System Assessment of Undiscovered Resources in the Giant Barnett Shale Continuous (Unconventional) Gas Accumulation, Fort Worth Basin, Texas. AAPG Bulletin, 2007, 91(4): 551-578.
CrossRef Google scholar
Pophare A. M., Mendhe V. A., Varade A. Evaluation of Coal Bed Methane Potential of Coal Seams of Sawang Colliery, Jharkhand, India. Journal of Earth System Science, 2008, 117(2): 121-132.
CrossRef Google scholar
Quantachrome Characterising Porous Materials and Powders AutosorbiQ and ASiQwin. Gas Sorption System Operating Manual, 2014, 2: 199-426.
Roshan H., Al-Yaseri A. Z., Sarmadivaleh M., . On Wettability of Shale Rocks. Journal of Colloid and Interface Science, 2016, 475: 104-111.
CrossRef Google scholar
Ross D. J. K., Marc B. R. The Importance of Shale Composition and Pore Structure upon Gas Storage Potential of Shale Gas Reservoirs. Marine and Petroleum Geology, 2009, 26(6): 916-927.
CrossRef Google scholar
Rouquerol F., Rouquerol J., Sing K. S. W. Adsorption by Powders and Porous Solids, 1999, London: Academic Press
Ruppel S. C., Loucks R. G., Gale J. F. W. Barnett, Woodford, and Related Mudrock Successions in Texas Cores and Outcrops, 2008.
Schlumberger M. China’s Anton Oilfield Eyes More Opportunities with Schlumberger Partnership, 2012.
Schmoker J. W., . Gautier D. L., Dolton G. L., Takahashi K. I., . Method for Assessing Continuous-Type (Unconventional) Hydrocarbon Accumulations. National Assessment of United States Oil and Gas Resources—Results, Methodology, and Supporting Data, 1995.
Sen S., Das N., Maiti D. Facies Analysis and Depositional Model of Late Permian Raniganj Formation: Study from Raniganj Coal Bed Methane Block. Journal of the Geological Society of India, 2016, 88(4): 503-516.
CrossRef Google scholar
Sengupta N. A Revision of the Geology of the JCF with Particular Reference to Distribution of Coal Seam: [Dissertation], 1980, Dhanbad, India: ISM
Shiver R., Nelsen K., Li E., . Unconventional Shale Reservoir’s Property Estimation through Modeling, Case Studies of Australian Shale. Energy and Power Engineering, 2015, 7(3): 71-80.
CrossRef Google scholar
Sing K. S. W., Everett D. H., Haul R. A. W., . Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity. Pure Applied Chemistry, 1985, 57: 603-619.
CrossRef Google scholar
Sing K. The Use of Nitrogen Adsorption for the Characterisation of Porous Materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 187–188: 3-9.
CrossRef Google scholar
Singh H. A Critical Review of Water Uptake by Shales. Journal of Natural Gas Science and Engineering, 2016, 34: 751-766.
CrossRef Google scholar
Taylor G. H., Teichmuller M., Davis A., . Organic Petrology, 1998, Berlin: Gebruder Borntranger
Tewari R. C., Casshyap S. M. Paleoflow Analysis of Late Paleozoic Gondwana Deposits of Giridih and Adjoining Basins and Paleogeographic Implications. Journal of Geological Society of India, 1982, 23(2): 67-79.
Tewari R. C., Casshyap S. M. Cyclicity in Early Permian Fluviatile Gondwana Coal Measures: An Example from Giridih and Saharjuri Basins, Bihar, India. Sedimentary Geology, 1983, 35(4): 297-312.
CrossRef Google scholar
Tissot B. P., Welte D. H. Petroleum Formation and Occurrence: A New Approach to Oil and Gas Exploration, 1978, New York: Springer-Verlag, 720
CrossRef Google scholar
USGS USGS Research on Energy Resources-Program and Abstracts, 1986.
Uysal I. T., Glikson M., Golding S. D., . Hydrothermal Control on Organic Matter Alteration and Illite Precipitation, Mt Isa Basin, Australia. Geofluids, 2004, 4(2): 131-142.
CrossRef Google scholar
Varma A. K., Hazra B., Mendhe V. A., . Assessment of Organic Richness and Hydrocarbon Generation Potential of Raniganj Basin Shales, West Bengal, India. Marine and Petroleum Geology, 2015, 59: 480-490.
CrossRef Google scholar
Varma A. K., Hazra B., Samad S. K., . Methane Sorption Dynamics and Hydrocarbon Generation of Shale Samples from West Bokaro and Raniganj Basins, India. Journal of Natural Gas Science and Engineering, 2014, 21: 1138-1147.
CrossRef Google scholar
Wang L., Torres A., Xiang L., . A Technical Review on Shale Gas Production and Unconventional Reservoirs Modeling. Natural Resources, 2015, 6(3): 141-151.
CrossRef Google scholar
Wang M., Yang J. X., Wang Z. W., . Nanometer-Scale Pore Characteristics of Lacustrine Shale, Songliao Basin, NE China. PLOS ONE, 2015, 10 8 e0135252
CrossRef Google scholar
Wei L., Wang Y. Z., Mastalerz M. Comparative Optical Properties of Macerals and Statistical Evaluation of Mis-Identification of Vitrinite and Solid Bitumen from Early Mature Middle Devonian––Lower Mississippian New Albany Shale: Implications for Thermal Maturity Assessment. International Journal of Coal Geology, 2016, 168: 222-236.
CrossRef Google scholar
Wintsch R. P., Christoffersen R., Kronenberg A. K. Fluid-Rock Reaction Weakening of Fault Zones. Journal of Geophysical Research: Solid Earth, 1995, 100(B7): 13021-13032.
CrossRef Google scholar
Zhao P. Q., Ma H. L., Rasouli V., . An Improved Model for Estimating the TOC in Shale Formations. Marine and Petroleum Geology, 2017, 83: 174-183.
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/