A fractal measure of spatial association between landslides and conditioning factors

Renguang Zuo , Emmanuel John M. Carranza

Journal of Earth Science ›› 2017, Vol. 28 ›› Issue (4) : 588 -594.

PDF
Journal of Earth Science ›› 2017, Vol. 28 ›› Issue (4) : 588 -594. DOI: 10.1007/s12583-017-0772-2
Invited Article

A fractal measure of spatial association between landslides and conditioning factors

Author information +
History +
PDF

Abstract

Measuring the relative importance and assigning weights to conditioning factors of landslides occurrence are significant for landslide prevention and/or mitigation. In this contribution, a fractal method is introduced for measuring the spatial relationships between landslides and conditioning factors (such as faults, rivers, geological boundaries, and roads), and for assigning weights to conditioning factors for mapping of landslide susceptibility. This method can be expressed as ρ= –d, where d is the fractal dimension, and C is a constant. This relationship indicates a fractal relation between landslide density (ρ) and distances to conditioning factors (ε). The case of d>0 suggests a significant spatial correlation between landslides and conditioning factors. The larger the d (>0) value, the stronger the spatial correlation is between landslides and a specific conditioning factor. Two case studies in South China were examined to demonstrate the usefulness of this novel method.

Keywords

geological hazard / landslides / fractal / spatial statistic

Cite this article

Download citation ▾
Renguang Zuo, Emmanuel John M. Carranza. A fractal measure of spatial association between landslides and conditioning factors. Journal of Earth Science, 2017, 28(4): 588-594 DOI:10.1007/s12583-017-0772-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Agterberg F. P. Multifractals and Geostatistics. Journal of Geochemical Exploration, 2012, 122: 113-122.

[2]

Agterberg F. P. Fractals and Spatial Statistics of Point Patterns. Journal of Earth Science, 2013, 24(1): 1-11.

[3]

Alimohammadlou Y., Najafi A., Gokceoglu C. Estimation of Rainfall-Induced Landslides Using ANN and Fuzzy Clustering Methods: A Case Study in Saeen Slope, Azerbaijan Province, Iran. Catena, 2014, 120: 149-162.

[4]

Althuwaynee O. F., Pradhan B., Lee S. Application of an Evidential Belief Function Model in Landslide Susceptibility Mapping. Computers & Geosciences, 2012, 44: 120-135.

[5]

Barrile V., Cirianni F., Leonardi G., . A Fuzzy-Based Methodology for Landslide Susceptibility Mapping. Procedia—Social and Behavioral Sciences, 2016, 223: 896-902.

[6]

Blenkinsop T. Scaling Laws for the Distribution of Gold, Geothermal, and Gas Resources. Pure and Applied Geophysics, 2014, 172(7): 2045-2056.

[7]

Carlson C. A. Spatial Distribution of Ore Deposits. Geology, 1991, 19 2 111

[8]

Cheng Q. M. Mapping Singularities with Stream Sediment Geochemical Data for Prediction of Undiscovered Mineral Deposits in Gejiu, Yunnan Province, China. Ore Geology Reviews, 2007, 32(1/2): 314-324.

[9]

Cheng Q. M. Modeling Local Scaling Properties for Multiscale Mapping. Vadose Zone Journal, 2008, 7 2 525

[10]

Cheng Q. M. Singularity Theory and Methods for Mapping Geochemical Anomalies Caused by Buried Sources and for Predicting Undiscovered Mineral Deposits in Covered Areas. Journal of Geochemical Exploration, 2012, 122: 55-70.

[11]

Cheng Q. M., Agterberg F. P. Multifractal Modeling and Spatial Point Processes. Mathematical Geology, 1995, 27(7): 831-845.

[12]

Faraji Sabokbar H., Shadman Roodposhti M., Tazik E. Landslide Susceptibility Mapping Using Geographically-Weighted Principal Component Analysis. Geomorphology, 2014, 226: 15-24.

[13]

Ghosh S., Carranza E. J. M. Spatial Analysis of Mutual Fault/Fracture and Slope Controls on Rocksliding in Darjeeling Himalaya, India. Geomorphology, 2010, 122(1/2): 1-24.

[14]

Ghosh S., Carranza E. J. M., van Westen C. J., . Selecting and Weighting Spatial Predictors for Empirical Modeling of Landslide Susceptibility in the Darjeeling Himalayas (India). Geomorphology, 2011, 131(1/2): 35-56.

[15]

Ghosh S., Günther A., Carranza E. J. M., . Rock Slope Instability Assessment Using Spatially Distributed Structural Orientation Data in Darjeeling Himalaya (India). Earth Surface Processes and Landforms, 2010, 35(15): 1773-1792.

[16]

Ghosh S., van Westen C. J., Carranza E. J. M., . A Quantitative Approach for Improving the BIS (Indian) Method of Medium-Scale Landslide Susceptibility. Journal of the Geological Society of India, 2009, 74(5): 625-638.

[17]

Ghosh S., van Westen C. J., Carranza E. J. M., . Integrating Spatial, Temporal, and Magnitude Probabilities for Medium-Scale Landslide Risk Analysis in Darjeeling Himalayas, India. Landslides, 2012, 9(3): 371-384.

[18]

Ghosh S., van Westen C. J., Carranza E. J. M., . Generating Event-Based Landslide Maps in a Data-Scarce Himalayan Environment for Estimating Temporal and Magnitude Probabilities. Engineering Geology, 2012, 128: 49-62.

[19]

Gorum T., Carranza E. J. M. Control of Style-of-Faulting on Spatial Pattern of Earthquake-Triggered Landslides. International Journal of Environmental Science and Technology, 2015, 12(10): 3189-3212.

[20]

Guzzetti F., Malamud B. D., Turcotte D. L., . Power-Law Correlations of Landslide Areas in Central Italy. Earth and Planetary Science Letters, 2002, 195(3/4): 169-183.

[21]

Guzzetti F., Reichenbach P., Cardinali M., . Probabilistic Landslide Hazard Assessment at the Basin Scale. Geomorphology, 2005, 72(1/2/3/4): 272-299.

[22]

Hong H. Y., Pourghasemi H. R., Pourtaghi Z. S. Landslide Susceptibility Assessment in Lianhua County (China): A Comparison between a Random Forest Data Mining Technique and Bivariate and Multivariate Statistical Models. Geomorphology, 2016, 259: 105-118.

[23]

Hong H. Y., Pradhan B., Xu C., . Spatial Prediction of Landslide Hazard at the Yihuang Area (China) Using Two-Class Kernel Logistic Regression, Alternating Decision Tree and Support Vector Machines. Catena, 2015, 133: 266-281.

[24]

Iwahashi J., Watanabe S., Furuya T. Mean Slope-Angle Frequency Distribution and Size Frequency Distribution of Landslide Masses in Higashikubiki Area, Japan. Geomorphology, 2003, 50(4): 349-364.

[25]

Kawabata D., Bandibas J. Landslide Susceptibility Mapping Using Geological Data: A DEM from ASTER Images and an Artificial Neural Network (ANN). Geomorphology, 2009, 113(1/2): 97-109.

[26]

Lee S., Hwang J., Park I. Application of Data-Driven Evidential Belief Functions to Landslide Susceptibility Mapping in Jinbu, Korea. Catena, 2013, 100: 15-30.

[27]

Lee S., Ryu J. H., Won J. S., . Determination and Application of the Weights for Landslide Susceptibility Mapping Using an Artificial Neural Network. Engineering Geology, 2004, 71(3/4): 289-302.

[28]

Lee Y. F., Chi Y. Y. Rainfall-Induced Landslide Risk at Lushan, Taiwan. Engineering Geology, 2011, 123(1/2): 113-121.

[29]

Li C. J., Ma T. H., Zhu X. S., . The Power-Law Relationship between Landslide Occurrence and Rainfall Level. Geomorphology, 2011, 130(3/4): 221-229.

[30]

Malamud B. D., Turcotte D. L., Guzzetti F., . Landslide Inventories and Their Statistical Properties. Earth Surface Processes and Landforms, 2004, 29(6): 687-711.

[31]

Oh H. J., Pradhan B. Application of a Neuro-Fuzzy Model to Landslide-Susceptibility Mapping for Shallow Landslides in a Tropical Hilly Area. Computers & Geosciences, 2011, 37(9): 1264-1276.

[32]

Pelletier J. D., Malamud B. D., Blodgett T., . Scale-Invariance of Soil Moisture Variability and Its Implications for the Frequency-Size Distribution of Landslides. Engineering Geology, 1997, 48(3/4): 255-268.

[33]

Poli S., Sterlacchini S. Landslide Representation Strategies in Susceptibility Studies Using Weights-of-Evidence Modeling Technique. Natural Resources Research, 2007, 16(2): 121-134.

[34]

Pradhan B. A Comparative Study on the Predictive Ability of the Decision Tree, Support Vector Machine and Neuro-Fuzzy Models in Landslide Susceptibility Mapping Using GIS. Computers & Geosciences, 2013, 51: 350-365.

[35]

Pradhan B., Lee S. Landslide Susceptibility Assessment and Factor Effect Analysis: Backpropagation Artificial Neural Networks and Their Comparison with Frequency Ratio and Bivariate Logistic Regression Modelling. Environmental Modelling & Software, 2010, 25(6): 747-759.

[36]

Raines G. L. Are Fractal Dimensions of the Spatial Distribution of Mineral Deposits Meaningful?. Natural Resources Research, 2008, 17(2): 87-97.

[37]

Rouai M., Jaaidi E. B. Scaling Properties of Landslides in the Rif Mountains of Morocco. Engineering Geology, 2003, 68(3/4): 353-359.

[38]

Trigila A., Iadanza C., Spizzichino D. Quality Assessment of the Italian Landslide Inventory Using GIS Processing. Landslides, 2010, 7(4): 455-470.

[39]

Tsangaratos P., Benardos A. Estimating Landslide Susceptibility through a Artificial Neural Network Classifier. Natural Hazards, 2014, 74(3): 1489-1516.

[40]

Tsangaratos P., Ilia I. Comparison of a Logistic Regression and Naïve Bayes Classifier in Landslide Susceptibility Assessments: The Influence of Models Complexity and Training Dataset Size. Catena, 2016, 145: 164-179.

[41]

Turcotte D. L., Malamud B. D. Landslides, Forest Fires, and Earthquakes: Examples of Self-Organized Critical Behavior. Physica A: Statistical Mechanics and Its Applications, 2004, 340(4): 580-589.

[42]

Wang Z. Y., Zuo R. G., Zhang Z. J. Spatial Analysis of Fe Deposits in Fujian Province, China: Implications for Mineral Exploration. Journal of Earth Science, 2015, 26(6): 813-820.

[43]

Zhang G., Chen L., Yin K. Landslide Hazard Zonation of Yongjia County, Zhejiang Province. Hydrogeology & Engineering Geology, 2005, 3: 27-31.

[44]

Zhu A. X., Wang R. X., Qiao J. P., . An Expert Knowledge-Based Approach to Landslide Susceptibility Mapping Using GIS and Fuzzy Logic. Geomorphology, 2014, 214: 128-138.

[45]

Zuo R. G. A Nonlinear Controlling Function of Geological Features on Magmatic-Hydrothermal Mineralization. Scientific Reports, 2016, 6 1 27127

[46]

Zuo R. G., Agterberg F. P., Cheng Q. M., . Fractal Characterization of the Spatial Distribution of Geological Point Processes. International Journal of Applied Earth Observation and Geoinformation, 2009, 11(6): 394-402.

AI Summary AI Mindmap
PDF

168

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/